Arxiu d'etiquetes: fòssil vivent

Els xifosurs: “fòssils vivents” entre els artròpodes

Els xifosurs o “cassoles de les Moluques” són, probablement, uns dels artròpodes vivents més primitius que existeixen. D’aspecte prehistòric, marins i extremadament reduïts en la fauna actual, aquests organismes emparentats amb els aràcnids han sobreviscut, sense patir gaires canvis, a nombroses extincions…fins a l’actualitat. En aquest article us expliquem amb detall les seves principals característiques, així com les seves actuals amenaces.

Què són els xifosurs?

Els xifosurs (del grec antic xíphos “espasa” i ourá “cua”), coneguts popularment com a “cassoles de les Moluques”, són uns artròpodes marins l’origen dels quals es remunta a l’Ordovicià (485,4 ±1,9 – 443,8 ±1,5 MA), al Paleozoic. Originalment, constituïen una part molt important de la fauna aquàtica; tanmateix, actualment el seu número és extremadament reduït i la seva diversitat es limita a tan sols 4 espècies classificades dins d’un únic ordre (Limulida), essent la resta grups fòssils.

Per saber més sobre els fòssils: Coneixent els fòssils i la seva edat“.

Limulus polyphemus o cassola de les Moluques de l’Atlàntic. Font: Domini Públic.

Degut a la seva estabilitat morfològica en relació a les formes fòssils del Carbonífer i del Triàsic, les espècies actuals es considerenfòssils vivents” (terme que només hauria d’emprar-se en un context divulgatiu), a més a més de les úniques que sobrevisqueren a diversos processos d’extinció.

Quin lloc ocupen en l’arbre de la vida?

De la mateixa manera que els picnogònids o aranyes de mar (a les quals ja vam dedicar una entrada), la posició dels xifosurs en l’arbre de la vida ha estat objecte de discussió. Fins fa pocs anys, els xifosurs s’agrupaven amb els euriptèrids o escorpins marins (actualment extints) degut a certes semblances morfològiques, formant els grup dels Merostomata. Tanmateix, anàlisis més detallats determinaren que els escorpins marins no estarien directament relacionats amb els xifosurs, motiu pel qual actualment el grup Merostomata es considera artificial i, conseqüentment, mancat de validesa científica.

Eurypterus, fòssil d’euriptèrid més comú i el primer gènere descrit. Autor: Obsidian Soul, CC.

La posició més acceptada actualment és que els xifosurs constitueixen per sí mateixos una classe d’artròpodes (classe Xiphosura) dins la superclasse dels quelicerats (subfilum dels queliceromorfs). Alhora, es classifiquen dins el grup dels euquelicerats juntament amb dues classes més: els aràcnids i els ja mencionats euriptèrids.

I sobretot…malgrat els seu aspecte i ser marins, NO estan emparentats amb els crustacis!

Font: Tree of Life Web Project.

Anatomia externa i interna

De la mateixa manera que la majoria de queliceromorfs actuals, els xifosurs tenen el cos dividit en dos segments o tagmes (prosoma i opistosoma), el cap indiferenciat del tòrax, i les antenes i les mandíbules absents. Tanmateix, el caràcter que millor defineix els queliceromorfs és la presència de quelícers, uns apèndixs pre-orals modificats que desenvolupen funcions relacionades sobretot amb l’alimentació. En les aranyes, per exemple, constituirien els típics “ullals”.

Els xifosurs són d’una mida que va d’uns pocs a uns 60 cm de longitud. Dorsalment, el seu cos està cobert d’una closca quitinosa no segmentada dividida en dues parts articulades més o menys equivalents al prosoma i l’opistosoma:

Visió dorsal. Imatge modificada a partir de la fotografia original de Didier Descouens, CC.

Veiem ara les característiques anatòmiques més rellevants de les formes actuals (Limulida):

Tagmes: prosoma i opistosoma

Al prosoma, la closca presenta tres crestes: una de central i dues de laterals. A la part anterior de la cresta central es situen dos ocels diminuts, mentre que a la part externa de les laterals, hi trobem els ulls compostos. La closca s’allarga lateralment cap enrere formant una mena d’ales, les puntes genals. Ventralment, aquesta s’eixampla anteriorment formant una àrea triangular, l’hipostoma, on se situen diversos òrgans sensorials, com els ocels ventrals (que degeneren en l’edat adulta) i l’òrgan frontal.

L’opistosoma presenta els segments fusionats (diferenciats als membres de l’ordre “Synziphosurina”, actualment extints); tanmateix, aquests encara es poden identificar mitjançant les espines mòbils laterals i les fossetes dorsals (6 en total, corresponents als 6 segments fusionats). L’opistosoma finalitza en una espina caudal articulada, el tèlson, el qual dóna nom al grup.

Visió dorsal. Imatge modificada a partir de la fotografia original de Didier Descouens, CC.

Apèndixs

El prosoma presenta 6 parells d’apèndixs: un parell de quelícers per capturar l’aliment i 5 parells de potes locomotores. Aquestes últimes presenten una doble funció, doncs a banda de permetre el desplaçament de l’animal, la seva base està dotada d’unes dents fortes amb què trituren l’aliment. Aquestes bases també s’uneixen al centre formant un canal (endostoma) per canalitzar l’aliment i dur-lo a la boca. Totes les potes locomotores finalitzen en una quela o pinça ben formada, excepte el primer parell en els mascles. L’últim parell presenta un òrgan en ambdós sexes, el flabel, que utilitzen per analitzar la composició de l’aigua.

Al prosoma també hi tenen els quilaris, uns apèndixs vestigials corresponents al primer parell d’apèndixs de l’opistosoma que impedeixen que l’aliment triturat s’escapi per darrera de les bases del darrer parell de potes locomotores.

Detall dels apèndixs del prosoma (vista ventral). Imatge modificada a partir de la fotografia original de Wayne marshall, CC a Flickr.

L’opistosoma també presenta 6 parells d’apèndixs molt modificats: un parell d’opercles genitals més o menys fusionats, a la cara posterior dels quals s’obren els orificis genitals, i 5 parells de brànquies laminars per respirar, protegides per la placa que formen els opercles.

Visión ventral. Imagen modificada a partir de la fotografía original de KatzBird, CC en Flickr.

Un sistema circulatori molt especial

Tot i ser artròpodes, els xifosurs presenten un sistema circulatori molt desenvolupat, amb un complex de “venes” i “artèries” que ben poc es distancien de les d’organismes més complexos. La seva sang conté dos tipus cel·lulars: els amebòcits, equivalents als leucòcits o glòbuls blancs, i els cianòcits, equivalents als eritròcits o glòbuls vermells, però amb hemocianina enlloc d’hemoglobina. Quan l’hemocianina transporta oxigen o entra en contacte amb l’aire, la sang dels xifosurs adquireix un color blau molt característic.

El líquid blau que observem a la imatge correspon a la sang de l’individu. Autor: Dan Century, CC a Flickr.

Biologia

Reproducció i desenvolupament

Durant l’època reproductora, els xifosurs s’apropen en grans grups a les platges o estuaris. En el moment de l’aparellament, els mascles es col·loquen sobre les femelles i s’hi aferren mitjançant les pinces rudimentàries del primer parell de potes. Amb el mascle a l’esquena, les femelles es desplacen fins a la sorra on hi excaven un clot on dipositen entre 200-300 ous sense fecundar. A continuació, el mascle rega els ous amb el seu esperma (fecundació externa), els quals queden enterrats com a conseqüència de les marees.

La reproducció dels xifosurs és tot un espectacle!. Autor: U.S. Fish and Wildlife Service Northeast Region, CC a Flickr.

Després de l’eclosió, els xifosurs passen per dos estadis larvaris pelàgics (viuen a la columna d’aigua) abans d’assolir la forma adulta bentònica lligada al substrat: larva trilobítica, amb els apèndixs opistosòmics poc formats i el tèlson curt, i larva prestwiquianela, amb els apèndixs i el tèlson ben formats. La seva esperança de vida pot arribar als 20 anys.

Ecologia i distribució

Els xifosurs actuals són essencialment marins, encara que entre els seus parents fòssils també n’hi havia que vivien en aigües salobroses i dolces. Són excavadors i habiten fons llimosos o sorrencs entre 3-9 metres de profunditat. Per excavar, s’ajuden dels marges de la seva closca i dels quatre primers parells de potes locomotores, alhora que amb el tèlson aixequen l’opistosoma de manera que el cinquè parell pugui analitzar i filtrar l’aigua.

En cas de nedar, ho fan de forma invertida, com en aquest vídeo de Wayne Brear:

Són depredadors d’anèl·lids, mol·luscs, així com d’altres invertebrats bentònics. Alhora, també poden alimentar-se d’algues que tallen amb les pinces de les seves potes.

Com ja s’ha comentat, la diversitat actual de xifosurs està representada per 4 espècies dins l’ordre Limulida: Limulus polyphemus (costa atlàntica d’Amèrica del Nord), Tachypleus tridentatus, Tachypleus gigas i Carcinoscorpius rotundicauda (costa indopacífica).

Distribució aproximada de les 4 espècies vivients de xifosurs. Font: Charmichael & Brush, 2012.

Quin és el seu estat de conservació?

Els humans ho hem tornat a fer. Tot i haver sobreviscut a nombroses extincions, els xifosurs es troben ara més amenaçats que mai per causes antròpiques. Entre les principal amenaces destaquen:

  • Alteració dels seus hàbitats: canvis en la temperatura de l’aigua degut a l’escalfament global, contaminació i empobriment o destrucció de les platges (essencials per la seva reproducció). És, d’entre totes les amenaces, la més problemàtica.
  • Ús com a esquer: tradicionalment, els xifosurs s’han capturat pel seu ús com a esquers en la indústria pesquera.
  • Usos biomèdics: la sang dels xifosurs s’utilitza en biomedicina en un test anomenat Limulus amebocyte lysate” (LAL), donat que els seus amebòcits reaccionen vers certes endotoxines bacterianes formant coàguls. El LAL s’empra, per tant, per detectar la presència de bactèries sobre diferents materials. Actualment, la forma d’obtenir la sang és força invasiva i, tot i tornar els individus al seu hàbitat, la seva mortalitat després de l’extracció continua essent elevada.
  • Ús en investigacions sobre la visió, el sistema endocrí i altres processos fisiològics.
  • Alimentació: en alguns països asiàtics, es consumeixen en plats tradicionals o en certs rituals.
  • Compra/venta com a animals de companyia.
Procés d’extracció de sang pel test LAL. Font: National Geographic/Getty Images.
Plat preparat a base de xifosur a Si Racha (Tailàndia). Autor: Marshall Astor, CC.

Les poques dades existents sobre el seu estat de conservació provenen de l’espècie americana Limulus polyphemus, actualment en situació vulnerable i amb una tendència decreixent de les seves poblacions des de fa 100 anys (segons la IUCN).

Recentment, s’ha descobert que els xifosurs són un component important de les xarxes tròfiques bèntiques; a més a més, els seus ous són un suplement alimentari de la dieta de diferents aus migratòries costeres dels EUA. És per aquests motius que actualment existeix un interès creixent en conservar i promoure les seves poblacions, a més a més de per la seva enorme importància biomèdica, cultural i econòmica.

.           .           .

Resoldre les relacions filogenètiques d’un grup format majoritàriament per organismes fòssils no és pas una tasca senzilla. Tot i que ara que comencem a entreveure el seu origen i parentiu, estem condemnant-los a poc a poc a la seva desaparició. Ni els fòssils vivents es salven de la sisena extinció!

Referències

  • Carmichael, R. H. & Brush, E. (2012). Three decades of horseshoe crab rearing: a review of conditions for captive growth and survival. Reviews in Aquaculture, 4(1): 32-43.
  • Chacón, M. L. M. & Rivas, P. (2009). Paleontología de invertebrados. IGME.
  • Grimaldi, D. & Engel, M. S. (2005). Evolution of the Insects. Cambridge University Press.
  • Marshall, A. J., & Williams, W. D. (1985). Zoología. Invertebrados (Vol. 1). Reverté.
  • Pujade-Villar, J. & Arlandis, J. S. (2002). Fonaments de zoologia dels artròpodes (Vol. 53). Universitat de València.
  • The IUCN Red List of Threatened Species: Horseshoe crabs.
  • Xifosuros: Animales de la realeza. Boletín Drosophila.

Imatge de portada propietat de Didier Descouens, CC.

Coneixent els fòssils i la seva edat

ATENCIÓ! AQUEST ARTICLE ESTÀ OBSOLET.

LLEGEIX LA VERSIÓ ACTUAL I MILLORADA AQUÍ

A All You Need Is Biology sovint fem referència als fòssils per explicar el passat dels éssers vius. Però què és exactament un fòssil i com es forma? Per a què serveixen els fòssils? T’has preguntat mai com ho fa la ciència per saber l’edat d’un fòssil? Segueix llegint per descobrir-ho!

QUÈ ÉS UN FÒSSIL?

Si penses en un fòssil, segurament el primer que et ve al cap és un os de dinosaure o una petxina petrificada que et vas trobar al bosc, però un fòssil és molt més. Els fòssils són restes (completes o parcials) d’éssers vius que van viure en el passat (milers, milions d’anys) o rastres de la seva activitat que queden conservats (generalment en roques sedimentàries). Així doncs, existeixen diferents tipus de fòssils:

  • Petrificats i permineralitzats: són els que corresponen a la definició clàssica de fòssil en què les parts orgàniques o buides són substituïdes per minerals (veure apartat següent). La seva formació pot deixar motlles interns o externs (per exemple, de petxines) en el qual el material original pot desaparèixer. La fusta fossilitzada d’aquesta manera es coneix com a  xilòpal.

    cangrejo herradura, fósil, cosmocaixa, mireia querol rovira
    Fòssil petrificat de cranc ferradura i les seves petjades, CosmoCaixa. Foto: Mireia Querol Rovira
  • Icnofòssils: restes de l’activitat d’un ésser viu que queden registrades en la roca i donen informació sobre el comportament de les espècies. Poden ser modificacions de l’entorn (nius i altres construccions), empremtes (icnites), deposicions (copròlits excrements-, ous…) i altres marques com esgarrapades, mossegades…
    Cosmocaixa, huevos, dinosaurio, nido, mireia querol rovira
    Ous de dinosaure (niu). CosmoCaixa. foto: Mireia Querol Rovira

    coprolitos, cosmocaixa, excrementos fósiles, mireia querol rovira
    Copròlits, CosmoCaixa. foto: Mireia Querol Rovira
  • Ambre: resina fòssil de més de 20 milions d’antiguitat. Abans passa per un estat intermedi que s’anomena copal (menys de 20 milions d’anys). La resina, abans de passar a ambre, pot atrapar insectes, aràcnids, pol·len… en aquest cas es consideraria un doble fòssil.

    Pieza de ámbar a la lupa con insectos en su interior. CosmoCaixa. Foto: Mireia Querol Rovira
    Peça d’ambre a la lupa amb insectes al seu interior, CosmoCaixa. Foto: Mireia Querol Rovira
  • Fòssils químics: són els combustibles fòssils, com el petroli i el carbó, que es van formar per l’acumulació de matèria orgànica a altes pressions i temperatures juntament amb l’acció de bacteris anaerobis (que no utilitzen oxigen per al seu metabolisme).
  • Subfòssil: quan el procés de fossilització no s’ha completat (per haver passat poc temps, o les condicions perquè es donés la fossilització no van ser propícies) les restes es coneixen com subfòssils. No tenen més de 11.000 anys d’antiguitat. És el cas dels nostres avantpassats més recents (Edat dels Metalls).
Ötzi, un subfòssil. És la mòmia natural més antiga d’Europa. Va viure durant el Calcolític (Edat de Coure) i va morir fa 5.300 anys. Foto: Wikimedia Commons
    • Fòssil vivent: nom que es dóna a éssers vius actuals molt semblants a organismes ja extingits. El cas més famós és el del celacant, que es creia extingit des de feia 65 milions d’anys fins que va ser redescobert el 1938, però hi ha altres exemples com els nàutils.

      ammonites, nautilus, cosmocaixa, fósil, mireia querol rovira
      Comparació entre la closca d’un nautilus actual (esquerra) i un ammonit de milions d’anys d’antiguitat (dreta). CosmoCaixa. Foto :Mireia Querol Rovira
    • Pseudofòssils: són formacions a les roques que semblen restes d’éssers vius, però en realitat s’han format per processos geològics. El cas més conegut són les dendrites de pirolusita, que semblen vegetals.

      Infiltraciones de priolusita en piedra calcárea. CosmoCaixa. Foto: Mireia Querol
      Infiltracions de priolusita en lloses calcàries, CosmoCaixa. Foto: Mireia Querol

Lògicament els fòssils es van fer més comuns a partir de l’aparició de parts dures (petxines, dents, ossos…), fa 543 milions d’anys (Explosió del Cambrià). El registre fòssil anterior a aquest període és molt escàs. Els fòssils més antics que es coneixen són els estromatòlits, roques formades per la precipitació de carbonat càlcic a causa de l’activitat de bacteris fotosintètics que encara existeixen en l’actualitat.

La ciència que estudia els fòssils és la Paleontologia .

stromatolite, estromatòli, estromatolito, mireia querol rovira, fossil, fósil
Estromatòlit de 2.800 milions d’anys d’antiguitat, Australian Museum. Foto: Mireia Querol Rovira

COM ES FORMA UN FÒSSIL?

La fossilització es pot donar de cinc maneres diferents:

    • Petrificació: és la substitució de la matèria orgànica per substàncies minerals de les restes d’un ésser viu enterrat. S’obté una còpia exacta de l’organisme en pedra. El primer pas de la petrificació és la permineralització: els porus de l’organisme estan farcits de mineral però el teixit orgànic està inalterat. És la fossilització més comú que pateixen els ossos.
    • Gelificació: l’organisme queda incrustat en el gel i no pateix gairebé transformacions.
    • Compressió: l’organisme mort queda sobre una capa tova del sòl, com el fang, i queda cobert per capes de sediments.
    • Inclusió : els organismes queden atrapats en ambre o petroli.
    • Impressió: els organismes deixen impressions en el fang i es conserva la marca fins que el fang s’endureix.
Processos de fossilització i fòssils resultants. Autor desconegut

UTILITAT DELS FÒSSILS

  • Els fòssils ens donen informació de com eren els éssers vius en el passat, resultant una evidència de la evolució biològica i una ajuda per establir els llinatges dels éssers vius actuals.
  • Permeten analitzar fenòmens cíclics com canvis climàtics, dinàmiques atmosfera-oceà i fins i tot les pertorbacions orbitals dels planetes.
  • Els que són exclusius d’una determinada època permeten datar amb força exactitud les roques en què es troben (fòssils guia).
  • Donen informació de processos geològics com el moviment dels continents, presència d’antics oceans, cadenes muntanyoses…
  • Els fòssils químics són la nostra principal font d’energia actual.
  • Donen informació sobre el clima del passat, per exemple, estudiant els anells de creixement dels troncs fòssils o les deposicions de matèria orgànica en les varves glacials.

    mireia querol rovira, tronco fósil, xilópalo, AMNH
    Troncs fòssils on s’observen anells de creixement. American Museum of Natural History. Foto: Mireia Querol Rovira

DATACIÓ DELS FÒSSILS

Per conèixer l’edat dels fòssils existeixen mètodes indirectes (datació relativa) i directes (datació absoluta). Com que no hi ha cap mètode perfecte i la precisió disminueix amb l’antiguitat, els jaciments se solen datar amb més d’una tècnica.

DATACIÓ RELATIVA

Els fòssils es daten segons el context en el qual han estat trobats, si estan associats a altres fòssils (fòssils guia) o objectes dels que es coneix l’edat i segons l’estrat en el qual es troben.

En geologia, els estrats són els diferents nivells de roques que s’ordenen segons la seva profunditat: segons la estratigrafia, els més antics són els que es troben a major profunditat, mentre que els més moderns són els més superficials, ja que els sediments no han tingut tant de temps per dipositar-se al substrat. Lògicament si hi ha moviments de terres i alteracions geològiques la datació seria incorrecta si només existís aquest mètode.

Esquema de las eras geológicas y estratso con sus correspondientes fósiles. Fuente
Esquema de les eres geològiques i estrats amb els seus corresponents fòssils. Font

DATACIÓ ABSOLUTA

És més precisa i es basa en les característiques físiques de la matèria.

DATACIÓ RADIOMÈTRICA

Es basa en la velocitat de desintegració d’isòtops radioactius presents en roques i fòssils. Els isòtops són àtoms del mateix element però amb diferent quantitat de neutrons en el seu nucli . Els isòtops radioactius són inestables, pel que es transformen en altres més estables a una velocitat coneguda pels científics emetent radiació. Comparant la quantitat d’isòtops inestables amb els estables en una mostra, la ciència pot estimar el temps que ha transcorregut des que es va formar el fòssil o roca.

carbono 14
Esquema del cicle del Carboni 14. Font
  • Radiocarboni (Carboni-14): en organismes vius, la relació entre el C12 i el C14 és constant, però quan moren, aquesta relació canvia ja que el C14 deixa de incorporar-se al cos i el que queda es descomposa radioactivament en un període de semidesintegració de 5730 anys. Coneixent la diferència entre el C12 i C14 de la mostra, podrem datar quan va morir l’organisme. El límit màxim de datació per aquest mètode són 60.000 anys, per tant només s’aplica a fòssils recents.
  • Beril·li 10-Alumini 26: té la mateixa aplicació que el C14, però té un període de semidesintegració molt més gran, de manera que permet datacions de 10 milions d’anys, i fins i tot de fins a 15 milions d’anys.
  • Potassi-Argó (40K/40Ar): s’utilitza per datar roques i cendres d’origen volcànic de més de 10.000 anys. És el mètode que es va utilitzar per datar les petjades de Laetoli , el primer rastre de bipedisme del nostre llinatge deixat per Australopithecus afarensis.
  • Sèries de l’Urani (Urani-Tori): s’utilitzen diverses tècniques mitjançant els isòtops de l’urani. S’utilitzen en materials de carbonat de calci, (com coralls) i dipòsits minerals en coves (espeleotemes ).
  • Calci 41: permet datar restes òssies en un interval de temps entre 50.000 i 1.000.000 d’anys.

DATACIÓ PER PALEOMAGNETISME

El pol nord magnètic ha anat canviant al llarg de la història de la Terra, i es coneixen les coordenades geogràfiques en diferents èpoques geològiques.

Alguns minerals tenen propietats magnètiques i es dirigeixen cap al pol nord magnètic quan estan en suspensió aquosa, per exemple en les argiles. Però si es dipositen a terra, queden fixats cap a la posició que tenia el pol nord magnètic en aquell moment. Si observem cap a quines coordenades estan orientats aquests minerals al jaciment, el podem associar amb una època determinada.

Deposición de partículas magnéticas orientadas hacia el polo norte magnético. Fuente: Understanding Earth, Press and Seiver, W.H. Freeman and Co.
Deposició de partícules magnètiques orientades cap al pol nord magnètic. Font: Understanding Earth, Press and Seiver, W.H. Freeman and Co.

Aquesta datació s’utilitza en restes dipositades sobre fons argilosos i com el pol nord magnètic ha estat diverses vegades en les mateixes coordenades geogràfiques, s’obté més d’una data de datació. Segons el context del jaciment, es podran descartar algunes d’aquestes dates fins arribar a una definitiva.

DATACIÓ PER TERMOLUMINISCÈNCIA I LUMINISCÈNCIA ÒPTICA SIMULADA

Certs minerals (quars, feldspat, calcita…) acumulen modificacions en la seva estructura cristal·lina degudes a la desintegració radioactiva de l’entorn. Aquestes modificacions són acumulatives, contínues i dependents del temps d’exposició a la radiació. Quan se sotmet al mineral a estímuls externs, emet llum a causa d’aquestes modificacions. Aquesta luminiscència és molt feble i diferent segons se li apliqui calor (TL), llum visible (OSL) o infrarojos (IRSL).

Termoluminiscencia de la fluorita. Foto: Mauswiesel
Termoluminiscència de la fluorita. Foto: Mauswiesel

Només es poden datar mostres que hagin estat protegides de la llum solar o del calor a més de 500 ºC, ja que llavors es reinicia “el rellotge” en alliberar l’energia de manera natural.

RESSONÀNCIA PARAMAGNÈTICA ELECTRÒNICA (ESR)

La ESR (electro spin ressonance) consisteix a sotmetre la mostra a radiació i mesurar l’energia absorbida per la mostra en funció de la quantitat de radiació a la qual ha estat sotmesa durant la seva història. És un mètode complex del que pots obtenir més informació aquí.

REFERÈNCIES

mireia querol rovira