Arxiu d'etiquetes: fotosíntesis

La falta de fósforo pone en riesgo la seguridad alimentaria mundial

El fósforo (P) es un elemento indispensable para la vida en la Tierra. Estructuras imprescindibles para cualquier ser vivo como el ADN o ARN contienen este elemento, y las plantas no pueden realizar la fotosíntesis sin él. Debido a eso, los cultivos requieren de ingentes cantidades de fósforo para cumplir los estándares de eficiencia y productividad necesarios para alimentar a una población humana que crece sin cesar. Sin embargo, éste es un recurso limitante y finito, y las predicciones no son halagüeñas: las reservas se agotarán en unos 100-150 años. Eso conllevará importantes problemas geopolíticos aún por imaginar ya que, unido a ese carácter efímero de este recurso, se suma el hecho de que el 90% de las existencias están en manos de tan sólo 5 países. El conflicto está servido.

INTRODUCCIÓN

Cualquier persona que haya tenido que comprar alguna vez fertilizante reconocerá esta secuencia: N-P-K (nitrógeno, fósforo, potasio). Son los nutrientes más utilizados para jardinería y producción vegetal en general. Sin ellos, las plantas no crecen o no logran desarrollarse lo suficiente como para persistir a largo plazo. De los tres nutrientes principales, el potasio es el más abundante en la corteza terrestre (representa aproximadamente el 2.4% de la superficie terrestre en peso) sobretodo en antiguos lechos marinos y lacustres, además de ser el más disponible para las plantas. Por otra parte, el nitrógeno, en su forma gaseosa, es extremadamente abundante (el 78.1% del aire que nos rodea es nitrógeno molecular) pero no así sus moléculas en forma sólida, que suelen ser escasas debido su alta mobilidad a través del suelo. No obstante, gracias al Proceso de Haber-Bosch (desarrollado por los investigadores que le dan el nombre, ganadores del Nobel de Química) se logró producir nitrógeno sólido (en forma de amoníaco) a partir del nitrógeno gaseoso, propiciando una gran disponibilidad de este fertilizante inorgánico

haber_bosch_in_lab
Friz Haber (derecha) junto a un científico que manipula el método de Haber-Bosch. Esta manera de extraer el nitrógeno atmosférico y convertirlo en amoníaco es considerado, por muchos científicos e historiadores, como el invento más importante de la historia moderna. Sin él, el mundo no habría podido soportar ni la mitad de la demanda alimentaria actual. Fuente: el juicio de friz haber.

EL CASO DEL FÓSFORO

El fósforo, sin embargo, es el tercero en discordia. Esencial para la vida, es el componente estrella del ADN, ARN, ATP (la energía utilizada en los procesos celulares) y de los fosfolípidos, que revisten las membranas celulares. Está presente en los huesos e interviene en casi cualquier proceso biológico animal. Además, es imprescindible para el crecimiento de las plantas: sin fosfato, la fotosíntesis no puede llevarse a cabo. El mayor problema del fósforo es que no se encuentra libre en la naturaleza. Las plantas y, en general, todos los seres vivos, satisfacen sus necesidades de fósforo gracias, principalmente, a otro organismo vivo: los animales, de las plantas y, éstas, de los residuos de los animales  o de sus cadáveres, que liberan el fosfato en el proceso de descomposición. De hecho, los fertilizantes más importantes hasta la llegada de los fertilizantes inorgánicos, ya en el siglo XX, fueron los excrementos y la orina de los animales de granja, que contienen gran cantidad de fósforo, además de los otros elementos ya mencionados. Sin embargo, a raiz del invento de Haber-Bosch y al aumento de la demanda de alimentos a consecuencia del crecimiento poblacional, se empezaron a explotar los yacimientos de fósforo, que se encuentran en forma de minerales y que son realmente escasos en la corteza terrestre.

100_6906
Guano acumulado en un islote de Perú. El guano, junto con los excrementos y la orina de los animales de granja, fue una importante fuente de fósforo hasta el siglo XX. Este sustrato, formado a base de deposiciones continuas de aves marinas, focas y murciélagos, sigue siendo muy apreciado incluso hoy en día, especialmente en la agricultura ecológica. Fuente: Hiding in Honduras.

UN RECURSO ESCASO, INSUSTITUIBLE Y MAL UTILIZADO

El fósforo es un recurso insustituible y no sintetizable. Las reservas son finitas y se están malgastando, ya que gran parte de los fertilizantes aplicados no son asimilados por las plantas y, a través del suelo, acaban en el mar o en los lagos, donde desequilibran los ecosistemas. Al ser un recurso tan escaso, suele ser el recurso limitante en la mayoría de ecosistemas. Es por eso que una sobrefertilización de fósforo suele ser aprovechada por las algas autótrofas para crecer descontroladamente, lo que provoca, en muchos casos, blooms que pueden generar grandes pérdidas animales, económicas y ambientales.

mar-menor
Extensión de la vegetación del Mar Menor (Murcia) en 2014 y 2016. El 85% de la vegetación ha muerto en menos de dos años, debido a fuertes fenómenos de eutrofización, en los que el fósforo ha jugado un papel clave. El exceso de nutrientes hace proliferar las algas, que terminan dificultando el paso de la luz a la vegetación acúatica, produciéndose su muerte. Fuente: El País.

5 PAÍSES CONTROLAN LA PRODUCCIÓN MUNDIAL

El Servicio Geológico de los Estados Unidos (USGS, por sus siglas en inglés) ha estimado las reservas mundiales de fósforo en 71.000 millones de toneladas. El 90% de éstas están en manos de 6 países: Marruecos (donde, según la USGS, se encuentran el 75% de las reservas mundiales de este mineral), China, Argelia, Siria, Sudáfrica y Jordania. No obstante, son Estados Unidos y, sobretodo, China (el 47% de la producción mundial se localiza ahí) los países que, actualmente, están extrayendo mayor fósforo de sus yacimientos. Una producción que ha ido en aumento en los últimos años, y que irá a más en las próximas décadas. Según este reciente artículo de Nature, será necesario duplicar, para el año 2050, el uso de los fertilizantes fosfatados para cubrir la demanda de alimentos, en un mundo donde ya habrá 9.000 millones de humanos. Pero, para entonces, ya se habrá utilizado más de la mitad del fósforo existente en los yacimientos. Este otro estudio alertó de la posibilidad de que estuviéramos alcanzando el punto máximo de la producción de fósforo, si bien nuevos cálculos estiman su punto máximo entorno al año 2040. Sea como sea, de seguir con la producción actual las reservas se agotarán en no más de 100 años. 

phosphate-rock-reserves
Reservas mundiales de roca fosfórica por país. Marruecos capitaliza las reservas, seguida de China y Argelia. Alrededor de un 90% de las reservas mundiales de fósforo se encuentran en África, lo cual hace presuponer un futuro en el que este continente jugará un papel importantísimo en las negociaciones para hacerse con este recurso finito. Fuente: WRForum.

LA GEOPOLÍTICA ENTRA EN ESCENA

Un síntoma de la posible escasez de fósforo en un futuro no muy lejano es la subida de precios del fósforo que se viene observando recientemente, debido a la creciente demanda. Entre 2007 y 2008 el precio de la tonelada de fosfatos llegó a triplicarse respecto a los valores de 2005, y a costar hasta 9 veces más que en los años 70. Además, se ha calculado que para 2035 la demanda de fósforo superará a la oferta, con lo que los precios aumentarán aún más y, con ellos, las tensiones políticas. No ajenos a ello, numerosos países están ya moviendo ficha para asegurarse un suministro de este valioso recurso para unas décadas más. China, por ejemplo, que ahora mismo es el mayor productor (que no el poseedor de las mayores reservas) ha empezado a establecer aranceles del 135% a sus exportaciones. Estados Unidos, por otro lado, ha firmado un tratado de libre comercio bilateral con Marruecos, lo que le de da derechos de explotar sus yacimientos de fosfato a largo plazo. Teniendo en cuenta que la mayor parte de las reservas de fosfato de Marruecos se encuentran en el Sahara Occidental (región que ha luchado por su independencia desde su ocupación en 1975) no es de extrañar que Estados Unidos siempre haya apoyado a Marruecos en el Consejo de Seguridad de Naciones Unidas, vetando cualquier propuesta a favor de la independencia del Sahara Occidental. 

a2
Incremento en los precios de diferentes minerales fosfatados. Se espera un aumento del precio aun mayor en las próximas décadas, a medida que los yacimientos de fosfato vayan agotándose. Fuente: USDA.
cordell
Estimación de la evolución de la producción de roca fosfórica y momento en el que alcanzará el pico de producción. Muchos científicos concuerdan en que las reservas durarán entre 60 y 130 años más. Fuente: Cordell et al., 2009.

LAS SOLUCIONES PASAN POR VOLVER A LAS RAICES

A tenor de las últimas estimaciones, los yacimientos de fósforo se agotarán, afectando a los cultivos de todo el mundo. Esta disminución de la producción alimentaria tendrá una repercursión global, sobretodo en los países más pobres, los más susceptibles a un posible decrecimiento de la producción de alimentos. De no establecer medidas de reducción de la población mundial, la falta de fósforo combinada con el cambio climático provocará tensas relaciones entre numerosos países, pudiendo desembocar en conflictos geopolíticos de escala planetaria.

7920453668_1a42c7b136_k
Según Metson et al. (2016) una dieta basada en los vegetales ayudaría a reducir la demanda de fósforo. Según sus cálculos, una persona vegetariana requiere de, aproximadamente, 4 kg de roca fosfórica al año, casi 3 veces menos que una dieta predominantemente carnívora, que consume cerca de 11.8 kg de fósforo al año. Fuente: Jeremy Keith.

Es por ello que la principal solución pasa por utilizar el fósforo de una manera más racional y de reciclarlo tanto como sea posible. Hoy en día, entorno a un 80% del fósforo se pierde entre la explotación del mineral, su transporte y su aplicación en los campos, lo cual nos exige a hacer un uso más sostenible de este recurso. No obstante, será su reciclaje el que podrá mantener la producción alimentaria mundial. La principal propuesta sería volver a los inicios: recolectar las heces y orina humanas,  generadas en las ciudades y pueblos, para recuperar ese fósforo que de otro modo acabaría en el medio acuático. I es que aproximadamente el 100% del fósforo consumido por la humanidad a través de los alimentos es excretado en forma heces y orina. Recolectarlo sería como un arma de doble filo: por un lado satisfaríamos la demanda de fósforo de los cultivos y, por otro, evitaríamos que un exceso de estos nutrientes eutrofizaran el agua. Por otro lado, promoviendo un cambio en la dieta, priorizando las verduras en lugar de la carne, se lograría reducir la demanda de fósforo entre un 20 y un 45%, según Cordell et al. (2009).  Otras soluciones pasan por recuperar el uso del estiércol en aquellas zonas más rurales y menos tecnificadas y promover el compostaje de los residuos alimentarios en hogares, fábricas y establecimientos comerciales. Por último, un residuo de las depuradoras de aguas residuales, llamado estruvita (fosfato hidratado de amonio y magnesio) podría ayudar a fertilizar los campos de una manera efectiva y limpia.

1280px-struvit_guelleaufbereitung
El  mineral de estruvita, como el de la imagen, es obtenido de forma espontánea en depuradoras de aguas residuales. A pesar de que ocasiona problemas de obstrucción en las tuberías de las depuradoras debido a su cristalización, podría ser utilizado como un sistema limpio de fertilización que aportaría fósforo, nitrógeno y magnesio. Fuente: Creative Commons.

La locura iniciada a principios del siglo XX con la explotación de la roca fosfórica para producir alimentos a mansalva está llegando a su fin, y esto nos exige adaptar nuestros cultivos y, quizá, nuestro estilo de vida, a un futuro que tendrá que beber mucho de la forma de proceder en el pasado. Urge un cambio de mentalidad, centrado en una reducción de la población mundial y una mayor sostenibilidad de los recursos naturales, si de verdad queremos garantizar un mundo en el que ninguna persona tenga que pasar hambre.

BIBLIOGRAFIA

La manca de fòsfor posa en risc la seguretat alimentària mundial

El fòsfor (P) és un element indispensable per a la vida a la Terra. Estructures imprescindibles per a qualsevol ésser viu com l’ADN o ARN contenen aquest element, i les plantes no poden realitzar la fotosíntesi sense ell. A causa d’això, els cultius requereixen d’ingents quantitats de fòsfor per complir els estàndards d’eficiència i productivitat necessaris per alimentar una població humana que creix sense parar. No obstant això, aquest és un recurs limitant i finit, i les prediccions no són favorables: les reserves s’esgotaran en uns 100-150 anys. Això comportarà importants problemes geopolítics encara per imaginar ja que, unit a aquest caràcter efímer d’aquest recurs, se suma el fet que el 90% de les existències estan en mans de tan sols 5 països. El conflicte està servit.

INTRODUCCIÓ

Qualsevol persona que hagi hagut de comprar alguna vegada fertilitzant reconeixerà aquesta seqüència: N-P-K (nitrogen, fòsfor, potassi). Són els nutrients més utilitzats per a jardineria i producció vegetal en general. Sense ells, les plantes no creixen o no aconsegueixen desenvolupar-se prou com per persistir a llarg termini. Dels tres nutrients principals, el potassi és el més abundant a l’escorça terrestre (representa aproximadament el 2.4% de la superfície terrestre en pes) sobretot en antics llits marins i lacustres, a més de ser el més disponible per a les plantes. D’altra banda, el nitrogen, en la seva forma gasosa, és extremadament abundant (el 78.1% de l’aire que ens envolta és nitrogen molecular) però no així les seves molècules en forma sòlida, que solen ser escasses a causa de la seva alta mobilitat a través del sòl. No obstant això, gràcies al Procés de Haber-Bosch (desenvolupat pels investigadors que li donen el nom, guanyadors del Nobel de Química) es va aconseguir produir nitrogen sòlid (en forma d’amoníac) a partir del nitrogen gasós, propiciant una gran disponibilitat d’aquest fertilitzant inorgànic.

haber_bosch_in_lab
Friz Haver (dreta) al costat d’un científic que manipula el mètode d’Haber-Bosch. Aquesta manera d’extreure el nitrogen atmosfèric i convertir-lo en amoníac és considerat, per molts científics i historiadors, com l’invent més important de la història moderna. Sense ell, el món no hauria pogut suportar ni la meitat de la demanda alimentària actual. Font: el jucio de friz haber .

EL CAS DE L’FÒSFOR

El fòsfor, però, és el tercer en discòrdia. Essencial per a la vida, és el component estrella de l’ADN, ARN, ATP (l’energia utilitzada en els processos cel·lulars) i dels fosfolípids, que revesteixen les membranes cel·lulars. Està present en els ossos i intervé en gairebé qualsevol procés biològic animal. A més, és imprescindible per al creixement de les plantes: sense fosfat, la fotosíntesi no es pot dur a terme. El problema més gran del fòsfor és que no es troba lliure en la naturalesa. Les plantes i, en general, tots els éssers vius, satisfan les seves necessitats de fòsfor gràcies, principalment, a un altre organisme viu: els animals, de les plantes i, aquestes, dels residus dels animals o dels seus cadàvers, que alliberen el fosfat en el procés de descomposició. De fet, els fertilitzants més importants fins a l’arribada dels fertilitzants inorgànics, ja al segle XX, van ser els excrements i l’orina dels animals de granja, que contenen gran quantitat de fòsfor, a més dels altres elements ja esmentats. No obstant això, arran de l’invent de Haber-Bosch i l’augment de la demanda d’aliments a conseqüència del creixement poblacional, es van començar a explotar els jaciments de fòsfor, que es troben en forma de minerals i que són realment escassos en l’escorça terrestre.

100_6906
Guano acumulat en un illot de Perú. El guano, juntament amb els excrements i l’orina dels animals de granja, va ser una important font de fòsfor fins al segle XX. Aquest substrat, format a base de deposicions contínues d’aus marines, foques i ratpenats, segueix sent molt apreciat fins i tot avui dia, especialment en l’agricultura ecològica. Font: Hiding in Honduras.

UN RECURS ESCÀS, INSUBSTITUÏBLE I MAL UTILITZAT

El fòsfor és un recurs insubstituïble i no sintetitzable. Les reserves són finites i s’estan malgastant, ja que gran part dels fertilitzants aplicats no són assimilats per les plantes i, a través del sòl, acaben al mar o als llacs, on desequilibren els ecosistemes. Com que és un recurs tan escàs, sol ser el recurs limitant en la majoria d’ecosistemes. És per això que una sobrefertilització de fòsfor sol ser aprofitada per les algues autòtrofes per créixer descontroladament, el que provoca, en molts casos, blooms que poden generar grans pèrdues animals, econòmiques i ambientals.

mar-menor
Extensió de la vegetació del Mar Menor (Múrcia) el 2014 i el 2016. El 85% de la vegetació ha mort en menys de dos anys, a causa de forts fenòmens d’eutrofització, en els quals el fòsfor ha jugat un paper clau. L’excés de nutrients fa proliferar les algues, que acaben dificultant el pas de la llum a la vegetació aquàtica, el que causa la seva mort. Font: El País.

5 PAÏSOS CONTROLEN LA PRODUCCIÓ MUNDIAL

El Servei Geològic dels Estats Units (USGS, per les sigles en anglès) ha estimat les reserves mundials de fòsfor en 71.000 milions de tones. El 90% d’aquestes estan en mans de 6 països: Marroc (on, segons la USGS, es troben el 75% de les reserves mundials d’aquest mineral), Xina, Algèria, Síria, Sud-àfrica i Jordània. No obstant això, són els Estats Units i, sobretot, la Xina (el 47% de la producció mundial es localitza aquí) els països que, actualment, estan extraient major fòsfor dels seus jaciments. Una producció que ha anat en augment en els últims anys, i que anirà a més en les pròximes dècades. Segons aquest recent article de Nature, caldrà duplicar, per a l’any 2050, l’ús dels fertilitzants fosfatats per cobrir la demanda d’aliments, en un món on ja hi haurà 9.000 milions d’humans. Però, per llavors, ja s’haurà utilitzat més de la meitat del fòsfor existent en els jaciments. Aquest altre estudi va alertar de la possibilitat que estiguéssim arribant al punt màxim de la producció de fòsfor, si bé nous càlculs estimen el seu punt màxim entorn a l’any 2040. Sigui com sigui, de seguir amb la producció actual les reserves s’esgotaran en no més de 100 anys.

phosphate-rock-reserves
Reserves mundials de roca fosfòrica per país. Marroc capitalitza les reserves, seguit de la Xina i Algèria. Al voltant d’un 90% de les reserves mundials de fòsfor es troben a l’Àfrica, fet que fa pressuposar el papel clau d’aquest continent en les negociacions futures per fer-se amb aquest recurs finit. Font: WRForum.

LA GEOPOLÍTICA ENTRA EN ESCENA

Un símptoma de la possible escassetat de fòsfor en un futur no molt llunyà és la pujada de preus del fòsfor que es ve observant recentment, a causa de la creixent demanda. Entre 2007 i 2008 el preu de la tona de fosfats va arribar a triplicar-se respecte als valors de 2005, i a costar fins a 9 vegades més que en els anys 70. A més, s’ha calculat que pel 2035 la demanda de fòsfor superarà a l’oferta, el que comportarà una pujada de preus i, inevitablement, tensions polítiques. No aliens a això, nombrosos països estan ja movent fitxa per assegurar-se un subministrament d’aquest valuós recurs per a unes dècades més. La Xina, per exemple, que ara mateix és el major productor (que no el posseïdor de les majors reserves) ha començat a establir aranzels del 135% a les seves exportacions. Estats Units, d’altra banda, ha signat un tractat de lliure comerç bilateral amb el Marroc, el que li de dóna drets d’explotar els seus jaciments de fosfat a llarg termini. Tenint en compte que la major part de les reserves de fosfat del Marroc es troben al Sàhara Occidental (regió que ha lluitat per la seva independència des de la seva ocupació en 1975) no és d’estranyar que els Estats Units sempre hagi donat suport al Marroc en el Consell de seguretat de les Nacions Unides, vetant qualsevol proposta a favor de la independència del Sàhara Occidental.

a2
Increment en els preus de diferents minerals fosfatats. S’espera un augment del preu encara més gran en les pròximes dècades, a mesura que els jaciments de fosfat vagin esgotant-se. Font: USDA.
cordell
Estimació de l’evolució de la producció de roca fosfòrica i moment en el que assolirà el pic de producció. Molts científics concorden que les reserves duraran entre 60 i 130 anys. Font: Cordell et al., 2009.

LES SOLUCIONS PASSEN PER TORNAR A LES ARRELS

D’acord amb les últimes estimacions, els jaciments de fòsfor s’esgotaran, afectant als cultius de tot el món. Aquesta disminució de la producció alimentària tindrà una repercussió global, sobretot en els països més pobres, els més susceptibles a un possible decreixement de la producció d’aliments. De no establir mesures de reducció de la població mundial, la manca de fòsfor combinada amb el canvi climàtic provocarà tenses relacions entre nombrosos països, podent desembocar en conflictes geopolítics d’escala planetària.

7920453668_1a42c7b136_k
Segons Metson et al. (2016) una dieta basada en els vegetals ajudaria a reduir la demanda de fòsfor. Segons els seus càlculs, una persona vegetariana necessita, aproximadament, 4 kg de roca fosfòrica a l’any, gairebé 3 vegades menys que una dieta predominantment carnívora, que consumeix prop de 11.8 kg de fòsfor a l’any. Font: Jeremy Keith.

És per això que la principal solució passa per utilitzar el fòsfor d’una manera més racional i de reciclar-lo tant com sigui possible. Avui en dia, al voltant d’un 80% del fòsfor es perd entre l’explotació del mineral, el seu transport i la seva aplicació als camps, la qual cosa ens exigeix a fer un ús més sostenible d’aquest recurs. No obstant això, serà el seu reciclatge el que podrà mantenir la producció alimentària mundial. La principal proposta es la de tornar als inicis: recollir els excrements i orina humanes, generades a les ciutats i pobles, per recuperar aquest fòsfor que d’una altra manera acabaria en el medi aquàtic. I és que aproximadament el 100% del fòsfor consumit per la humanitat a través dels aliments és excretat en forma de fems i orina. Recol·lectar-lo seria com una arma de doble tall: d’una banda satisfaríem la demanda de fòsfor dels cultius i, de l’altra, evitaríem que un excés d’aquests nutrients eutrofitzessin l’aigua. D’altra banda, promovent un canvi en la dieta, prioritzant les verdures en lloc de la carn, s’aconseguiria reduir la demanda de fòsfor entre un 20 i un 45%, segons Cordell et al. (2009). Altres solucions passen per recuperar l’ús dels fems en aquelles zones més rurals i menys tecnificades i promoure el compostatge dels residus alimentaris en llars, fàbriques i establiments comercials. Finalment, un residu de les depuradores d’aigües residuals, anomenat estruvita (fosfat hidratat d’amoni i magnesi) podria ajudar a fertilitzar els camps d’una manera efectiva i neta.

1280px-struvit_guelleaufbereitung
El mineral d’estruvita, com el que apareix a dalt, és obtingut de forma espontània en depuradores d’aigües residuals. Tot i que ocasiona problemes d’obstrucció a les canonades de les depuradores a causa de la seva cristal·lització, podria ser utilitzat com un sistema net de fertilització que aportaria fòsfor, nitrogen i magnesi. Font: Creative Commons.

La bogeria iniciada a principis del segle XX amb l’explotació de la roca fosfòrica per produir aliments en grans quantitats està arribant al final, i això ens exigeix a adaptar els nostres cultius i, potser, el nostre estil de vida, a un futur que haurà de beure molt de la forma de procedir en el passat. És urgent un canvi de mentalitat, centrat en una reducció de la població mundial i una major sostenibilitat dels recursos naturals, si de veritat volem garantir un món en el qual cap persona hagi de passar gana.

BIBLIOGRAFIA

Fotosíntesis y vida vegetal

En este artículo hablaremos de la fotosíntesis y de las primeras formas de vida vegetal. En la sistemática actual, el término de planta se ajusta a plantas fundamentalmente del medio terrestre, mientras que el término vegetal es un término antiguo de connotación aristotélica que alude a organismos con funciones fotosintéticas. Pero, como en todo, hay excepciones.

El término planta se acuñó hace muchísimos años. Pero, previamente, fue Aristóteles quién diferenció a los seres vivos en tres grandes grupos:

  • Vegetales (alma vegetativa): realizan la nutrición y reproducción.
  • Animales (alma sensitiva): nutrición, reproducción, percepción, movimiento y deseo.
  • Ser humano: añade a la lista anterior la capacidad de razonar.
Aristotle_Dominiopublico
Aristóteles (Dominio público)

Esta manera simplista de percibir el mundo vivo ha perdurado durante mucho tiempo, y ha ido variando con los estudios de diferentes autores como Linneo o Whittaker, entre otros.

Una clasificación muy actual es la propuesta en 2012, The Revised Classification of Eukaryotes. J. Eukariot. Microbiol. 59 (5): 429-493; nos revela un verdadero árbol de la vida.

image description
Sina ;. Adl, et al. (2012) The revised classification of Eukaryotes.  J Eukaryot Microbiol.; 59 (5): 429-493

¿QUÉ ES LA FOTOSÍNTESIS? ¿ES UN PROCESO ÚNICO?

La fotosíntesis es un proceso metabólico que permite usar la energía lumínica para transformar compuestos simples e inorgánicos en complejos orgánicos. Para hacer esto necesitan una serie de pigmentos fotosintéticos que capten estos rayos de luz y que mediante una serie de reacciones químicas permitan realizar procesos internos que den lugar a los compuestos orgánicos.

Esta opción nutritiva ha  sido desarrollada por muchos organismos en múltiples grupos y ramas del árbol de la vida de los eucariotas. Y entre ellos encontramos a los Archaeplastida, el linaje de organismos que ha dado pie a las plantas terrestres.

Las plantas terrestres (Embryophyta) son fácilmente definibles, pero ¿y las algas? Por lo general, se dice que son organismos eucariotas que viven fundamentalmente en el medio acuático y que tienen una organización relativamente simple (coloniales simples o con órganos muy simples), pero esto no es siempre verdad. Por este motivo, todos los grupos de Archaeplastida que quedan fuera del concepto de plantas terrestres (un pequeño grupo dentro de Archaeplastida) son denominados “algas”.

También hay procariotas fotosintéticos del dominio Eubacteria, y es en estos donde la fotosíntesis presenta una gran variabilidad. Mientras que en los eucariotas es única: la fotosíntesis oxigénica.

El dominio eubacteria es muy amplio, y en sus ramificaciones hay hasta 5 grandes grupos de organismos fotosintéticos: Chloroflexi, Firmicutes, Chlorobi, Proteobacteria y Cianobacterias. Estas últimas son las únicas eubacterias que realizan una fotosíntesis oxigénica; con liberación de oxígeno de las moléculas de agua y usando como donador de electrones el hidrogeno del agua. En el resto, tienen lugar una fotosíntesis anoxigénica: el donador de electrones es el azufre o el sulfuro de hidrógeno, pero jamás liberan O2 dado que raras veces interviene el agua en el proceso; es por esto que son conocidas como bacterias rojas o lilas del azufre.

La fotosíntesis es, probablemente, más antigua que la vida misma. La oxigénica, que está circunscrita a este grupo de bacterias, las cianobacterias, probablemente es posterior, pero fue crucial para el desarrollo de vida en nuestro planeta, dado que transformó la atmosfera en una mucho más oxigenada y gracias a ello la vida en la Tierra pudo evolucionar.

SONY DSC
Amazonas, el pulmón de la Tierra (Autor: Christian Cruzado; Flickr)

¿QUÉ PIGMENTOS SE USAN?

Las cianobacterias comparten pigmentos con las plantas terrestres y el resto de eucariotas fotosintéticos. Estos pigmentos son fundamentalmente clorofilas a y b (las universales), siendo los c y d solo presentes en algunos grupos. Además hay dos pigmentos que también son universales: los carotenos, que actúan como antenas que transmiten la energía a las clorofilas o protegen el centro de reacción contra la autooxidación, y las ficobiliproteínas (ficocianina, ficoeritrina, etc.), que aparecen tanto en cianobacterias como en otros grupos de eucariotas fotosintéticos y se encargan de capturar la energía lumínica.

¿Por qué hay esta variabilidad de pigmentos accesorios? Porque cada pigmento tienen un espectro de absorción diferente, y el tener diferentes moléculas permite recoger mucho mejor el espectro de la luz solar; es decir, la captación de energía es mucho más eficiente.

El resto de bacterias fotosintéticos anoxigénicos no tienen clorofilas y, en su lugar, tienen moléculas específicas de procariotas, las bacterioclorofilas.

Pigment_spectra.png
Espectro de absorción de diferentes pigmentos (Fuente: York University)

¿Dónde se localizan los pigmentos?

En organismos con fotosíntesis oxigénica, las cianobacterias y eucariotas fotosintéticos, los pigmentos están en estructuras complejas. En las cianobacterias, en el citoplasma periférico hay una serie de sacos aplanados concéntricos denominados tilacoides, los cuales solo están rodeados por una membrana. En el lumen del tilacoide es donde se encuentran los pigmentos. En los eucariotas, en cambio, encontramos los cloroplastos: orgánulos intracelulares propios de los eucariotas fotosintéticos donde se realiza la fotosíntesis con mínimo 2 membranas, aunque pueden ser más, y numerosos tilacoides dispuestos de diferentes maneras según los organismos. Ambos grupos, por lo tanto, realizan fotosíntesis oxigénica y presentan tilacoides; la diferencia es que en los eucariotas, los tilacoides se encuentran en el interior de los cloroplastos.

Plagiomnium_affine_laminazellen
Células vegetales en las que son visibles los cloroplastos (Autor: Kristian Peters – Fabelfroh)

En cambio, en organismos con fotosíntesis anoxigénica hay distintas opciones. Las bacterias púrpuras contienen los pigmentos en cromatóforos, una especie de vesículas en el centro o periferia de la célula. En cambio, en las bacterias verdes (Chlorobi y Chloroflexi) se encuentran vesículas aplanadas en la periferia de la célula sobre la membrana plasmática donde están las bacterioclorofilas. En Heliobacterium, el pigmento está adosado a la cara interna de la membrana plasmática. Generalmente no son estructuras complejas, y suelen tener membranas simples.

ORIGEN DE LOS ORGANISMOS FOTOSINTÉTICOS

La evidencia fósil de los primeros organismos fotosintéticos son los estromatolitos (3,2 Ga). Son unas estructuras formadas por láminas finas superpuestas de organismos junto con sus depósitos de carbonato cálcico. Estas formaciones aparecen en zonas someras, de mares cálidos y bien iluminados. Aunque muchas tienen forma de columna, se observan desviaciones porque se orientan hacia la luz del Sol. En su momento, tuvieron una importancia capital en la construcción de formaciones arrecíficas y, también, en los cambios de composición de la atmósfera.  Actualmente hay algunos que aún se encuentran vivos.

1301321830_947d538a4d_o.jpg
Estromatolitos (Autor:Alessandro, Flickr)

REFERENCIAS

  • Apuntes obtenidos en diversas asignatura durante la realización del Grado de Biología Ambiental (Universidad Autónoma de Barcelona) y el Máster de Biodiversidad (Universidad de Barcelona).
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica 2.ªEdición. McGraw-Hill, pp. 906.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, 424 pp.

Difusió-castellà

Plantes carnívores

El carnivorisme és un tipus de nutrició que normalment associem als animals, al món dels  heteròtrofs. Però s’ha vist que hi ha plantes que també són capaces d’alimentar-se d’altres organismes. Aquestes són les anomenades plantes carnívores i les seves estratègies per capturar a les preses són ben diferents i curioses.

QUÈ ÉS UNA PLANTA CARNÍVORA?

Una planta carnívora és aquella planta que tot i ser autòtrofa obté un suplement nutritiu gràcies a que s’alimenta d’animals, sobretot d’insectes.

Per a que una planta sigui carnívora ha de complir  tres requisits bàsics:

  • Han d’atreure la presa per capturar-la i matar-la. Per tal d’atreure normalment presenten coloració vermellosa i també secreten nèctar. I per a capturar les preses han de constar de trampes, adaptacions morfològiques i anatòmiques que permeten retenir i matar la presa.
  • També han de ser capaces de digerir i absorbir els nutrients alliberats per la presa que han capturat.
  • I finalment han d’extreure un benefici significatiu de tot el procés.
Dionaea muscipula
Venus atrapamosques (Dionaea muscipula) (Autor: Jason).

ON VIUEN?

Les carnívores resulten poc competitives en ambients normals i a més acostumen a presentar un sistema radicular petit, per això requereixen d’aquesta especialització que els permet créixer més ràpidament. Generalment es troben en llocs amb poca mineralització, però alta concentració de matèria orgànica i zones d’humitat elevada i assolellades, ja que totes les  carnívores fan la fotosíntesi.

Normalment també són plantes calcífugues, és a dir, no estan ben adaptades a sòls alcalins i prefereixen ambients àcids on la font de calci és la presa. També tendeixen a viure en ambients reductors, per tant apareixen en sòls amb poc oxigen i carregats d’aigua. Algunes fins i tot són aquàtiques i viuen surant o submergides però prop de la superfície.

TIPUS DE TRAMPES I EXEMPLES

El sistema de captura és bastant divers, però es pot classificar segons si hi ha moviment o no.  Considerem actives aquelles que tenen moviment mecànic o per succió. En segon lloc hi hauria les semiactives; aquestes tenen moviment i consten de pèls adhesius. I finalment hi ha les passives, és a dir, que capturen sense moviment gràcies a pèls adhesius o estructures de caiguda com els cucurutxos o les urnes. A continuació veurem les estratègies a través de varis exemples.

TRAMPES ACTIVES

Venus atrapamosques

En el cas d’aquesta planta les trampes són mecàniques i estan formades per dues valves unides a un eix central. Aquestes valves són el resultat de la transformació de les fulles, les quals ja no són fotosintètiques. En conseqüència la tija és l’encarregada d’actuar com a pecíol i de fer la fotosíntesis; per això es troba eixamplada, augmentant la seva superfície facilita el procés. D’altra banda, les valves consten de glàndules de nèctar que atrauen a la presa i a més estan envoltades en el seu perímetre per dents que faciliten el tancament, ja que queden superposades per encaixar perfectament i evitar que l’animal s’escapi.

Però, què acciona el seu tancament?  Els encarregats són una sèrie de pèls disparadors que es troben al interior de la valva. Quan la presa es situa sobre la trampa i mou dos cops el mateix pèl o en mou dos en menys de 20s les valves es tanquen immediatament.

A continuació podem veure un vídeo on s’explica aquest procés. El vídeo és originari d’un reportatge emès per La 2 de TVE (Canal de Youtube: Luis Estévez):

Utricularia, la succionadora

Aquesta planta aquàtica que viu submergida prop de la superfície consta de sàculs o utricles que actuen com a trampes. Els sàculs es caracteritzen per tenir a l’entrada uns pèls sensitius que activen el mecanisme de succió de l’animal cap a l’interior, ja que en conseqüència el sàcul genera una pressió interna molt forta. D’aquesta manera succionen l’aigua i arrosseguen l’animal a la trampa. En el moment que entra l’aigua al sàcul, aquest pot arribar a augmentar un 40% el seu volum. La pressió interna és tan gran que quan l’animal és capturat s’escolta la succió.

En el següent curt podem veure a l’Utricularia en acció. El vídeo és originari d’un reportatge emès per La 2 de TVE (Canal de Youtube: Schoolbox):

TRAMPES SEMIACTIVES

Quan t’agafi ja no podràs escapar 

La presència de pèls adhesius no és exclusiva de plantes carnívores, moltes plantes els utilitzen com a defensa o per evitar pèrdua d’aigua. Però algunes carnívores, com la Drosera, els utilitzen per a capturar animals.

Els pèls adhesius o glàndules que presenta Drosera a les seves fulles estan formats per un peu i una cèl·lula apical que allibera mucílag. Aquesta substància atrau les preses per l’olor i pel gust. Quan la presa es situa a les fulles, les gotes de mucílag es van fusionant entre elles fins que formen una massa viscosa que acaba lubricant tota la presa fent impossible que pugui escapar. Cal remarcar que les glàndules tenen certa mobilitat i es desplacen per posar-se en contacte amb l’animal. A més, això provoca el tancament de la fulla facilitant la posterior digestió.

El següent vídeo mostra el funcionament d’aquest mecanisme (Canal de Youtube: TheShopofHorrors):

TRAMPES PASIVES

Compte que t’enganxes!

El cas de Drosophyllum és molt semblant al de Drosera, però aquesta vegada els pèls adhesius no tenen moviment i en conseqüència la fulla tampoc. El insecte queda atrapat simplement perquè s’enganxa i no es pot alliberar.

Drosophyllum
Insectes atrapats pels pèls adhesius de Drosophyllum (Autor: incidencematrix).

Vigila que caus!

Finalment veiem les trampes passives de caiguda, els cucurutxos i les urnes. Aquests a vegades presenten una tapa immòbil que no forma part del mecanisme de captura, però que protegeix la trampa de l’excés d’aigua, evitant que s’ompli. Els cucurutxos i urnes poden estar formats per la pròpia fulla o bé ser una estructura addicional originada pel nervi foliar. Aquest baixa fins l’altura del terra i desprès forma la trampa.

Nepenthes
Urna de Nepenthes (Autor: Nico Nelson).

Les preses es senten atretes cap aquests paranys degut a les glàndules de nèctar situades al interior. Un cop dins sortir és ben complicat! Les parets d’aquestes trampes poden ser viscoses, presentar pèls orientats cap a baix que dificulten la sortida o bé tenen taques translúcides que fan pensar a l’animal que hi ha una sortida, però que en realitat no ho és i llavors l’animal cau esgotat al fons intentant escapar. D’altres a més alliberen substàncies que atordeixen a la presa impedint la fugida.

Heliamphora
Cucurutxos de Heliamphora (Autor: Brian Gratwicke).

Cal dir que els animals grans que acostumen a caure en aquestes trampes és perquè estan malalts o perquè el seu desenvolupament no els permet distingir la trampa, tot i que n’hi ha que arriben a fer 20cm de llarg.

FALSES CARNÍVORES

Hi ha algunes plantes que sembla que en un futur podrien arribar a ser carnívores, però que no ho són per que no tenen un mecanisme especialitzat, és a dir, no compleixen un o més dels requisits necessaris.

És el cas de Dipsacus fullonum.  Aquesta espècie consta d’unes fulles que emmagatzemen aigua al voltant de la tija. Això evita que els insectes no voladors puguin pujar i alhora actua com a trampa potencial de caiguda. De tal manera que alguns insectes poden morir ofegats a l’aigua. Per tant, en un futur podria ser carnívora, ja que capturaria els insectes i a partir d’aquesta aigua absorbiria els nutrients.

Dipsacus fullonum
Acumulació d’aigua amb insectes morts a les fulles de Dipsacus fullonum (Autor: Wendell Smith).

Difusió-català

REFERÈNCIES

Las plantas y el cambio climático

Desde hace unos cuantos años hemos oído hablar del cambio climático. Hoy en día ya es una evidencia y también una preocupación. No solo nos afecta a nosotros, a los humanos, sino también a toda la vida. Se ha hablado bastante del calentamiento global, pero quizá no se haya hecho tanta transmisión de lo que sucede con la vegetación. Son muchas cosas las que se ven afectadas por el cambio climático y la vegetación también es una de ellas. Además, los cambios producidos en esta también nos afectan a nosotros. Pero, ¿cuáles son estos cambios?, ¿cómo los puede regular la vegetación? Y, ¿cómo podemos ayudar a mitigarlos a través de esta?

CAMBIOS EN LA VEGETACIÓN

Distribución de los biomas

En general, debido al cambio climático se espera un incremento de las precipitaciones en algunas partes del planeta, mientras que en otras se espera un descenso. También se denota un incremento global de la temperatura. Esto conlleva a un desplazamiento en la localización de los biomas, las grandes unidades de vegetación (por ejemplo: selvas, bosques tropicales, tundras, etc.).

biomes
Triangulo de los biomas según altitud, latitud y humedad (Imagen de Peter Halasaz).

Por otro lado, existe una tendencia al aumento de la distribución de especies en los rangos septentrionales (altas latitudes) y un detrimento en regiones meridionales (baja latitud). Esto conlleva graves problemas asociados; el cambio en la distribución de las especies afecta a su conservación y a su diversidad genética. En consecuencia, las poblaciones situadas en los márgenes meridionales, que han estado consideradas muy importantes para la conservación a largo plazo de la diversidad genética y por su potencial evolutivo, se ven en peligro por esta perdida. Y, en cambio, los rangos septentrionales se verían afectados por la llegada de otras especies competidoras que podrían desplazar a las ya presentes, siendo pues invasoras.

Distribución de las especies

Dentro del escenario del cambio climático, las especies tienen una cierta capacidad para reajustar su distribución y para adaptarse a este.

Pero, ¿qué tipo de especies podrían estar respondiendo más rápidamente a este cambio? Se deduce que aquellas con un ciclo de vida más rápido y una capacidad de dispersión mayor serán las que muestren mayor adaptación y respondan mejor. Esto podría conllevar a una pérdida de las plantas con ritmos más lentos.

Galactites tomentosa
La cardota (Galactites tomentosa) una planta de ciclo rápido y con gran dispersión (Imagen de Ghislain118).

Un factor que facilita el reajuste en la distribución es la presencia de corredores naturales: estos son partes del territorio geográfico que permiten la conectividad y desplazamiento de especies de un lado a otro. Son importantes para evitar que estas queden aisladas y puedan desplazarse hacia nuevas regiones.

Otro factor es el gradiente altitudinal, el cual proporciona muchos refugios para las especies, facilita la presencia de corredores y permite la redistribución de las especies en altitud. Por lo tanto, en aquellos territorios dónde haya mayor rango altitudinal se verá favorecida la conservación.

En resumen, la capacidad de las especies para hacer frente al cambio climático depende de las características propias de la especie y de las del territorio. Y, por el contrario, la vulnerabilidad de las especies al cambio climático se produce cuando la velocidad que estas presentan para poder desplazar su distribución o adaptarse es menor a la velocidad del cambio climático.

A nivel interno

El cambio climático también afecta a la planta como organismo, ya que le produce cambios en su metabolismo y en su fenología (ritmos periódicos o estacionales de la planta).

Uno de los efectos que empujan a este cambio climático es el incremento de la concentración de dióxido de carbono (CO2) en la atmosfera. Esto podría producir un fenómeno de fertilización de la vegetación. Con el aumento de CO2 en la atmosfera se incrementa también la captación de este por las plantas, aumentando así la fotosíntesis y permitiendo una mayor asimilación. Esto, pero, no son todo ventajas, porque para ello se produce una pérdida de agua importante, debido a que los estomas (estructuras que permiten el intercambio de gases y la transpiración) permanecen largo tiempo abiertos para incorporar este CO2. Por lo tanto, hay efectos contrapuestos y la fertilización dependerá de la planta en sí, como también del clima de ese lugar. Muchos estudios han demostrado que diversas plantas reaccionan diferente a este incremento del CO2, ya que el compuesto afecta a varios procesos fisiológicos y por lo tanto las respuestas no son únicas. Por lo tanto, nos encontramos con un factor que altera el metabolismo de las plantas y que no se puede predecir cómo serán sus efectos sobre ellas. Además, este efecto fertilizante está limitado por la cantidad de nutrientes presentes y sin ellos la producción se frena.

fotosíntesi
Proceso de fotosíntesis (Imagen de At09kg).

Por otro lado, no debemos olvidar que el cambio climático también altera el régimen estacional (las estaciones del año) y que esto afecta al ritmo de la vegetación, a su fenología. Esto puede tener repercusiones incluso a escala global; por ejemplo, podría producir un desajuste en la producción de plantas cultivadas para la alimentación.

PLANTAS COMO REGULADORAS DEL CLIMA

Aunque no se puede hablar de las plantas como reguladoras del clima global, está claro que hay una relación entre el clima y la vegetación. Sin embargo, esta relación es un tanto complicada porque la vegetación tiene tanto efectos de enfriamiento como de calentamiento del clima.

La vegetación disminuye el albedo; los colores oscuros absorben más la radiación solar y por lo tanto se refleja menos luz solar hacía el exterior. Además, al ser organismos de superficie rugosa se aumenta la absorción. En consecuencia, cuanta más vegetación, la temperatura local (calor transferido) aumenta más.

Pero, por otro lado, al aumentar la vegetación hay más evapotranspiración (conjunto de la evaporación de agua de una superficie y la transpiración a través de la plantas). De manera que el calor se gasta en pasar el agua líquida a gaseosa, lo que conlleva a un enfriamiento. Además, la evapotranspiración también ayuda aumentar las precipitaciones locales.

Biophysical effects of landcover
Efectos biofísicos de diferentes usos del suelo y su acción sobre el clima local. (Imagen de Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Por lo tanto es un efecto ambiguo y en determinados ambientes pesa más el efecto de enfriamiento, mientras que en otros tiene más relevancia el de calentamiento.

MITIGACIÓN

Hoy en día hay varias propuestas para reducir el cambio climático, pero ¿cómo pueden ayudar las plantas?

Las comunidades vegetales pueden actuar como sumideros, reservas de carbono, ya que a través de la asimilación de COayudan a compensar las emisiones. Un manejo adecuado de los ecosistemas agrarios y los bosques puede ayudar a la captación y almacenamiento del carbono. Por otro lado, si se lograra reducir la deforestación y aumentar la protección de hábitats naturales y bosques, se reducirían las emisiones y se estimularía este efecto sumidero. Aun así, existe el riesgo de que estos sumideros puedan convertirse en fuentes de emisión; por ejemplo, debido a incendios.

Finalmente, presentar los biocombustibles: estos, a diferencia de los combustibles fósiles (como el petróleo), son recursos renovables, ya que se trata de cultivos de plantas destinados al uso como combustibles. Aunque no logran retirar CO2 de la atmosfera ni reducen emisiones de carbono, evitan el incremento de este en la atmosfera. Por este motivo no llegaría a ser una medida del todo mitigadora, pero mantienen el balance de emisión y captación neutro. El problema es que pueden generar efectos colaterales a nivel social y ambiental, como el incremento de precios de otros cultivos o la deforestación para instaurar estos cultivos, cosa que no debería suceder.

800px-Canaviais_Sao_Paulo_01_2008_06
Cultivo de caña de azucar (Saccharum officinarum) en Brasil para producir biocombustible (Imagen de Mariordo).

Difusió-castellà

REFERENCIAS