Arxiu d'etiquetes: gall wasps

Bees and wasps: some myths and how to tell them apart

Despite being part of the same order of insects (Hymenoptera), bees and wasps have well differentiated traits and habits; however, it is very common for people to confuse them. In this post, we will give some simple clues to differentiate between them, and deny some of the most common myths that revolve around these organisms.

Bees and wasps: how to tell them apart

Before differentiating them visually, we should start by classifying them.

Both bees and wasps are part of the Hymenoptera order, which are characterized by two pairs of membranous wings that remain coupled during the flight thanks to a series of tiny hooks (hamuli); in addition, they usually present antennae more or less long, of 9-10 segments at minimum, and an ovopositor that, in certain groups, has evolved to become a sting. Within this order, both bees and wasps are classified within the Apocrita suborder, which are characterized by having a “waist” that separates the thorax from the abdomen.

As for Apocrita, this suborder is traditionally divided in two groups: “Parasitica” and “Aculeata”, which we’ve already mentioned in the postWhat are parasitoid insects and what are they useful for?:

  • Parasitica”: very abundant superfamilies of wasps that parasite arthropods (chalcidoidea, ichneumonoidea, cynipoidea, etc.), except for the family Cynipidae (gall wasps), which parasite plants. None of these wasps have a sting, so no worries!
  • Aculeata”: includes most of the so-called wasps and bees (as well as ants), most of which have stings.

So far, we can see that there are a large number of parasitic wasps that differ clearly from the rest of bees and wasps with sting. If we continue to deepen, within the “Aculeata” we typically distinguish three superfamilies:

  • Chrysidoidea: group formed by parasite wasps (many of them kleptoparasites) and parasitoids. The Chrysididae family (cuckoo wasps) is very popular due to its metallic coloration.
  • Apoidea: includes bees and bumblebees, as well as the formerly known as “sphecoid wasps”, most of which have become part of another family of Apoidea (Crabronidae)
  • Vespoidea: mostly formed by the typical stinged wasps (eg Vespidae family) and ants.
Cuckoo wasp (Chrysididae). Author: Judy Gallagher on Flickr, CC.

Simple keys to differentiate

After this review, many will think that this separation of wasps and bees is not so simple; and those of you who do will be right. While bees and bumblebees belong to a monophyletic lineage (this is, a group that includes the most recent common ancestor and all their descendants) and their characters are quite clear, the concept of wasp is somewhat vaguer.

Here are some basic morphological and behavioral traits to differentiate the most common wasps and bees. These traits are easy to spot in a simple way, and in the eyes of expert entomologists, they may be very general (there are many other complex characters that make it possible to differentiate them); however, they can be useful when you do not have much experience:

  • Bees (and specially bumblebees) tend to be more robust and hairy than wasps. Wasps do not show “hair” and tend to be slender, with thorax and abdomen more widely separated.
Left: western honey bee (Apis mellifera); author: Kate Russell on Flickr, CC. Right: wasp from the genus Polistes; author: Daniel Schiersner on Flickr, CC.
  • Most of bees present corporal adaptations for the collection of pollen, which they receive the name of scopa. In most, these are limited to the presence of many hairs on the hind legs. However, there are special cases: in the western honey bee (Apis mellifera), in addition to having pilosities, the tibias of the hind legs are very widened, forming a kind of blades with which they collect the pollen; on the other hand, the solitary bees of the Megachilidae family do not have pilosities on the hind legs, but a series of hairs on the ventral side of the abdomen.
Left: western honey bee (Apis mellifera) with the hind legs full of pollen; author: Bob Peterson on Flickr, CC. Right: Megachile versicolor, with the scopa in the ventral side of the abdomen; author: janet graham on Flickr, CC.
  • Most wasps have chewing mouthparts (jaws retain their function), while in most bees mouthparts are lapping type, as we explained in the post “Evolutionary adaptations of feeding in insects”.
  • Some wasps, especially certain parasites and parasitoids, present a much simpler wing venation, represented by a few marginal veins. This is the case, for example, of the families Chalcidoidea and Cynipidae.
Halticoptera flavicornis male, Chalcidoidea (a parasitoid wasp); author: Martin Cooper on Flickr, CC.
  • If you see a slender hymenopteran with a very long “sting”, do not be afraid: it is probably the female of a parasitoid (eg a member of the family Ichneumonidae), and that long “sting” its ovipositor.
Ichneumonidae female of the species Rhyssa persuasoria; author: Hectonichus, CC.
  • Many wasps fly with legs more or less extended because, with rare exceptions, they are hunters.
  • As we approach a plant with flowers, we will observe a large number of insects flying and perching on them. Almost certainly, most hymenopterans we will observe will be bees, since all adults and almost all larvae are phytophagous (they feed on plant products), namely nectar and pollen.
Western honey bee. Public domain (Zero-CC0).
  • If you’ve ever left food in the open, you must have seen a hymenopteran come to it. The larvae of most wasps are carnivorous, so adults take the least opportunity to catch prey for their offspring … or bits of something that you are eating.
Author:, CC.

This is not over yet: myth busting

Now that we know how to differentiate them roughly, let’s confirm or deny some of the most common myths around bees and wasps:

  • “Wasps do not pollinate plants

False. It is true that bees play a very important role in pollination: their feeding based on the intake of nectar and pollen makes them visit many flowers and, in addition, they present many pilosities in which it is adhered. However, most adult wasps also ingest nectar, in addition to other foods. Although they do not present as many pilosities as bees, the mere fact of visiting flowers causes that their body comes in contact with pollen and part of it is adhered.

There is also the opposite case: some bees such as Hylaeus and Nomada (the latter known as cuckoo bees, kleptoparasite bees whose larvae feed on pollen stored in nests of other solitary bees) do not have adaptations for pollen transport, and their appearance is closer to that of a wasp.

Left: Hylaeus signatus male; author: Sarefo, CC. Right: solitary bee of the genus Nomada; author: Judy Gallagher, CC.
  • All bees are herbivorous, and all wasps carnivorous

False. Although almost all bee larvae feed on pollen and nectar, while wasp larvae do on prey that adults hunt or parasite, there are exceptions. The larvae of gall wasps (Cynipidae family) feed on the plant tissue of the gall itself where they develop, whereas the larvae of a small group of bees of the Meliponini tribe (genus Trigona), present in the Neotropics and in The Indo-Australian region, feed on carrion, the only bees are known non-herbivorous.

  • Bees form colonies, and wasps are solitary

False. There are both colonial and solitary wasps and bees. Honey bees are the most typical colonial bee, but there is an enormous diversity of solitary bees that build small nests in pre-established cavities or ones they dig. In the same way, there are also colonial wasps, like some of the genus Polistes (paper wasps) that build hives in which certain hierarchical roles are established (although they are usually smaller than those of bees).

  • All bees and wasps can sting

False. The bees of the Meliponini tribe, also called stingless bees, have a sting so small that it lacks a defensive function, so they present other methods to defend themselves (biting with their jaws). In addition, females of some bees (eg Andrenidae family) do not present sting. Of course, all male bees and wasps have no sting, as that it is the modified ovipositor.

  • “Bees die when they sting; wasps can sting several times”

Partly true. In honey bees of the species Apis mellifera, the surface of the sting is covered with a series of beards that give it the look of a saw, so that when removed, the sting is nailed to the surface of its victim, dragging behind it all the abdominal content to which the sting is adhered. In wasps, solitary bees and bumblebees, on the other hand, the surface of the sting is almost smooth or the beards are very small, being able to retract them and thus remove the sting without problems.

Sting of Apis mellifera; author: Landcare Research, CC.
  • “Wasps are more aggressive than bees

It depends. Wasps commonly nest anywhere, so people and other animals are more likely to come into contact with them. By contrast, bees often have preferences for certain places, usually more protected, not being so exposed. However, this is not always how it happens: the african bees, to which we dedicated a post, can nest almost anywhere and they are very aggressive!

  • Wasps are more colorful than bees

False. In fact, partially false. Having no apparent hair, the color of wasps is usually more striking in general terms. However, there are genera of bees, such as the solitary Anthidium (which present a very striking abdominal coloration) or the orchid bees, which look similiar to wasps. In the same way, there are wasps of dark coloration and less jazzy.

Anthidium florentium male; author: Alvesgaspar, CC.

.        .         .

Despite there are much more differences between bees and wasps, we hope these tips can help you to tell them apart…and to love them the same way!


Main images property of Kate Russell, CC (Left) and Daniel Schiersner, CC (Right).


Gall wasps: a miniature trophic net

Popular knowledge about trophic relations established among vertebrates tends to eclipse the existence of little systems sometimes way more complex than those observed either on mammals, reptiles or birds. This is the case of gall wasps or gallflies, a family of micro-wasps able to induce a wide variety of tumours known as galls in different groups of plants. Despite most people have sometimes heard about these organisms, they probably don’t know that there exists a frantic fight between different groups of insects inside these tumours.

Do you want to know more about the mysterious world inside gall wasps’ galls? Keep reading!

What are gall wasps?

Gall wasps or gallflies (Family Cyinipidae, Order Hymenoptera) are a family of plant parasitic micro-wasps that barely reach a few millimetres length. They belong to the Parasitica group inside Hymenoptera order, so females haven’t their ovipositor transformed into a sting like other wasps. In this case, this organ preserves its exclusively reproductive original function.

Hembra de Periclistus brandtii y detalle del ovopositor (Foto extraída del Catàleg de microhimenòpters de Ponent).
Periclistus brandtii female; ovopositor is marked in red (Image from the Catàleg de microhimenòpters de Ponent).

Female gall wasps use their long ovipositors for laying eggs inside host plant tissues (usually oaks and other species from the genus Quercus).

Gall wasps are phytophagous insects, that is, they feed on vegetable tissues only. So, this takes them away from most of wasps, which are usually carnivorous or parasitoids of other insects.

But the most distinctive trait of these organisms is, without a doubt, their capacity to induce tumour or gall development on plants.

The galls

What are galls?

The same way birds construct nests or beavers construct dikes, some gall wasps ‘construct’ their own galls. But unlike nests or dikes, galls aren’t actively constructed by gall wasps but induced as a consequence of their activity and interaction with plant tissues.

Despite there are more arthropods able to induce galls formation, gall wasps are the ones that induce the most diverse, complex and evolved typologies of galls known until the date, especially on Quercus (oaks and relatives).

There exists a wide variety of gall morphologies: 1, 2 & 3 – gall wasps’ galls on Quercus (Images by Irene Lobato); 4 – Neuroterus numismalis gall on Quercus (Public domain); 5 – Diplopedis rosae gallo on a Rosidae (Image by Lairich Rig, CC); 6 – Andricus quercuscalicis galls on Quercus robur (Image by Peter O’Connor en Flickr, CC).

Moreover, there exists a close relation between galls wasps and plants, so almost every species or genus induces a specific gall typology. Because of this, in the same way as nests and dikes galls are considered an extended phenotype of gall wasps (that is, a characteristic trait of an organism that manifests outside its body but that allows its identification).

How are they formed and what is their function?

Galls are result of a totally or partially deformation and an extreme growth of different plant tissues, such as leafs, leaf nerves, stem or fruits.

Usually, gall formation doesn’t necessarily affect plant production and growing, except when they undergo a massive developing on plants surface that causes serious damages on their tissues. In these cases, gall wasps can become terrible pests (e.g. the chestnut gall wasp, Dryocosmus kuriphilus, a species native of Asia that has become a pest on chestnuts from Europe).

Chestnut gall wasp female (Image by Gyorgy Csoka, CC) and its galls, which causes deformation and drying of leafs (Foto de Irene Lobato).

Molecular basis driving gall formation are currently unknown. However, it’s known that this process begins at the time females inoculate their eggs inside plant tissues.

Female of a gall wasp laying eggs inside plant tissue (Public domain).

From this moment on, galls begin to grow more and more around the eggs until they get enclosed inside one or different chambers. Inside these chambers, larvae feed on nutritious tissues from the gall while being protected from external damages. The movement and activity of larvae promote gall growth.

Larval chambers and chestnut gall wasps larvae (Dryocosmus kuriphilus), at left (Image by Irene Lobato); the inside of a gall with a single larval chamber on Quercus, at right (Image by chickeninthewoods, CC).

Once adults are completely developed, they travel through the gall tissue to reach its surface. This process can take them a lot of time and a big waste of energy. Usually, adults don’t feed and dedicate their short life to mate.

Gall with emergency holes, through which adults reach the surface of the gall (Image by Irene Lobato).

A miniature and complex trophic net

Usually, galls harbour a rich variety of arthropods besides the wasps that have induced their development. Some of them feed on nutritious tissues induced by other gall wasps to complete their life cycle; others live as parasitoids of different species of gall wasps and cause their death; besides, there are some of them that develop only during the late states of galls life.

So, the inside of galls is the scenario of a miniature and complex trophic net and that of a survival battle between different groups of arthropods:

True gall wasps

These group of gall wasps are able to induce galls formation de novo. They usually have a strong body, the radial cell of the anterior wings opened in its upper margin and the abdomen with well differentiated segments (typical characters of the tribu Cynipini, one of the most abundant groups of true gall wasps).

Andricus kollari female: 1 – detail of the opened radial cell; 2 – segmented abdomen (original image by TristramBrelstaff, CC).

Inquiline gall wasps

Some gall wasps have lost their ability to induce the formation of galls. These are known as inquilines, and their larvae develop inside other gall wasps’ galls while feeding on their tissues. So, inquiline females lay eggs inside galls in formation. Despite inquilines aren’t able to induce galls formation de novo, they can alter its development.

Hembra adulta del inquilino mexicano Synergus equihuai, descubierta por Irene Lobato y Juli Pujade durante la elaboración del trabajo de final de máster de la primera: 1 - celda radial cerrada (puede ser abierta en inquilinos); 2 - gran placa que cubre el resto de segmentos abdominales (Foto realizada por Marcos Roca-Cusachs).
Synergus equihuai female, a new species recorded from Mexico by Irene Lobato & Juli Pujade during Master’s degree final project: 1 – closed radial cell (it could either be opened); 2 – a big tergite covers the rest of the segments (Image taken by Marcos Roca-Cusachs).

Relation between inquilines and true gall wasps is a specific type of cleptoparasitism known as agastoparasitism, because inquilines larvae “steals” the nutritious tissues from the gall they occupy. Inquilinism of gall wasps is an obligatory relationship for inquilines, because they need other gall wasps’ galls to complete their life cycle.

Usually, this relationship doesn’t affect neither negatively nor positively true gall wasps, except when larval chambers of both groups are near from each other. In this case, the faster development of inquilines and their competition for food could finish with true gall wasps’ life. If this happens, the only adults that would emerge from galls would be that of inquilines (lethal inquilines).


Parasitoids form one of the main groups of arthropods that develop inside galls. The most of them belongs to the family Chalcidoidea (order Hymenoptera), that is totally made up of parasitoid wasps.

Torymus aceris female (Image from the Natural History Museum_ Hymenoptera Section on Flickr, CC).

Parasitoids from galls inoculate their eggs inside larvae of different gall wasps using their long ovipositors. So, it’s expected that the only adults that will emerge from a gall attacked by parasitoids will be the parasitoids themselves.

Nowadays, there exist programs for managing gall wasps’ pests which contemplate the use of parasitoids, such as Torymus sinensis to fight against the chestnut gall wasp.

Secondary entomofauna

This category includes a wide variety of different arthropods that develop inside galls at the late stages of its lifespan, acting as secondary successors: beetles, butterflies, flies, thrips, etc. These organisms usually develop once all gall wasps have emerged from galls.

.              .              .

Sometimes, nature can be more complex than we could imagine, and the case of galls is only an example. From now on, when you go out for a walk, remember that even in the tiniest spaces, there exist very complex and developed systems plenty of rich and diverse relations.


Most of the information has been extracted from my Master’s degree final project (University of Barcelona, 2015-2016), titled “Separation and identification of inquilines from the genus Synergus (Fam. Cynipidae, Hymenoptera) from galls developed on Mexican species of Quercus”.

Some of the most remarkable studies consulted were the ones that follow:

  • Ashmead, W. H. (1899). The largest oak-gall in the world and its parasites. Entomological News, 10: 193-196.
  • Askew, R. R. (1984). The Biology of Gall Wasps, en: Biology of gall insects (ed. T.N. Ananthakrishnan). Edward Arnold, London, pp. 223–271.
  • Bozsó, M., Penzes, Z., Bihari, P., Schwéger, S., Tang, C. T., Yang, M. M., Pujade-Villar, J. & Melika, G. (2014). Molecular phylogeny of the inquiline cynipid wasp genus’ Saphonecrus’ Dalla Torre and Kieffer, 1910 (Hymenoptera: Cynipidae: Synergini). Plant Protection Quarterly, 29(1): 26.
  • Nieves-Aldrey, J. L. (1998). Insectos que inducen la formación de agallas en las plantas: una fascinante interacción ecológica y evolutiva. Boletín de la Sociedad Entomológica Aragonesa, 23: 3-12.
  • Nieves-Aldrey, J. L. (2001). Hymenoptera, Cynipidae, en: Fauna Ibérica, Vol. 16 (ed. M. A. Ramos). Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp. 1–636.
  • Pujade-Villar, J., Equihua-Martínez, A., Estrada-Venegas, E. G. & Chagoyán-García, C. (2009). Status of the knowledge of the Cynipini (Hymenoptera: Cynipidae) in Mexico: perspectives for future studies. Neotropical entomology, 38(6): 809-821.
  • Ronquist, F. (1994). Evolution of parasitism among closely related species: phylogenetic relationships and the origin of inquilinism in gall wasps (Hymenoptera, Cynipidae). Evolution, 48(2): 241-266.
  • Shorthouse, J. D., & Rohfritsch, O. (1992). Biology of insect-induced galls. Oxford University Press, New York, Oxford, 285 pp.

Main image property of Beentree (Wikimedia Commons).