Arxiu d'etiquetes: gametogénesis

Hybrids and sperm thieves: amphibian kleptons

In biology a hybrid is the result of the reproduction of two parents of genetically different species, although in most cases hybrids are either unviable or sterile. Yet in some species of amphibians, sometimes hybrids are not only viable, but also become new species with special characteristics. In this entry we’ll show you two cases of amphibian hybrids that form what is known as a klepton and that make the definition of species a little less clear.


A klepton (abbreviated kl.) is a species which requires another species to complete its reproductive cycle. The origin of the word klepton comes from the Greek word “kleptein” which means “to steal”, as the klepton “steals” from the other species to reproduce. In the case of amphibians, kleptons have originated from hybridation phenomena. The amphibian’s potent sexual pheromones and the multispecies choirs in the case of anurans, causes some males and females of different species to try to mate together. Yet hybrids are only viable between closely related species.

Among the different klepton species we can encounter two different methods depending on the type of conception: zygokleptons, in which there’s fusion between the egg and the sperm’s genetic material, and gynokleptons, in which the egg needs the stimulation from the sperm but doesn’t include its genetic material.

The different amphibian kleptons are usually constituted entirely by females (there are usually few or no males) that use the sperm of another species to perpetuate the klepton. As some kleptons depend on various related species, this can promote the creation of “species complexes” in which various similar species present hybridization areas and very complicated relationships among them. Below you’ll find two klepton examples, one in European anurans and the other in American urodeles.


The European water frogs (Pelophylax genus) form what is known as a “hybridogenetic complex” in which the hybrids from different species form kleptons which can’t reproduce among each other but, which must reproduce with a member of one of the parental species, “stealing” or “parasitizing” its sperm in order to survive.

Photo by Bartosz Cuber of two edible frogs (Pelophylax kl. esculentus) in amplexus. This is the best known hybrid both because of its wide distribution, and for being considered a delicacy in France.

In the hybridogenesis of water frogs the genetic material of both parents combines to form the resulting hybrid (zygoklepton). This hybrids (almost always females) will have half their genome from one species and half from the other. Yet, not being able to reproduce with a similar hybrid, during gametogenesis the hybrids eliminate the genetic material from one of the parent species. This way, when reproducing with an individual from the species whose genetic material has been deleted, they will form another hybrid.

Scheme of the genetic composition of the different Pelophylax kleptons. In this hybridogenetic complex four “natural” species intervene: the marsh frog (Pelophylax ridibundus, RR genome), the pool frog (Pelophylax lessonae, LL genome), the Iberian waterfrog (Pelophylax perezi, PP genome)  and the Italian pool frog (Pelophylax bergeri, BB genome).

The edible frog (Pelophylax kl. esculentus, RL genome) comes from the hybridization between the marsh frog and the pool frog. The Italian edible frog (Pelophylax kl. hispanicus, RB genome) stems from a hybrid between the marsh frog and the Italian pool frog. Finally, the Graf’s hybrid frog (Pelophylax kl. grafi, RP genome) originated from the hybridization between the edible frog (in which the DNA of the pool frog is eliminated from their gametes) and the Iberian waterfrog.

Schemes by Darekk2 of the hybridogenetic processes in the different European water frog’s kleptons. The bigger circles represent the individual’s genome and the smaller circles the gametes’ genetic material.

As we can see, the genetic information of the marsh frog is the only one present in all three kleptons. These kleptons delete the genetic material of the species with which they share their habitat from their gametes but keep the genetic material of the marsh frog (R). So for example, the edible frog (P. kl esculentus) deletes form its eggs the DNA of the pool frog (L) with which it encounters and breeds in its natural range, resulting in more edible frogs (RL). The marsh frog seldom reproduces with some of its hybrids and if it does, they produce normal marsh frogs.


The salamanders of the Ambystoma genus, usually known as mole salamanders, are a genus endemic of North America and are the only living representatives of the Ambystomatidae family. Five of these species form what is known as the “Ambystoma complex”, in which these species contribute to the genetic composition of a unisexual lineage of salamanders which reproduce by gynogenesis (gynoklepton). Based on the mitochondrial DNA of the unisexual populations, it is thought that this complex originated from a hybridization event of about 2.4-3.9 million years ago.

ambystomert complexx
This complex consists of the five following species: the blue-spotted salamander (Ambystoma laterale LL genome, photo by Fyn Kynd Photography), the Jefferson salamander (Ambystoma jeffersonianum JJ genome, photo by Vermont Biology), the small-mouthed salamander (Ambystoma texanum TT genome, photo by Greg Schechter), the streamside salamander (Ambystoma barbouri BB genome, photo by Michael Anderson) and the tiger salamander (Ambystoma tigrinum TiTi genome, photo by Carla Isabel Ribeiro).

In the gynogenesis of this all-female lineage, the egg needs activation by a sperm to start division and development but, it first has to duplicate its genetic material by endomitosis to avoid the formation of an unviable haploid (with half the genetic information) zygote. Yet, as in parthenogenetic reptiles, in the long term the lack of genetic recombination can take its toll on the individuals. That’s why this lineage of unisexual salamanders has the capacity of occasionally incorporating the whole genome from the males of four of the species which constitute the complex (currently the reproduction of streamside salamanders with members of the unisexual lineage hasn’t been documented).

Scheme from Bi, Bogart & Fu (2009) in which we can see the different paths that the gynogenetic mole salamanders can take while reproducing.

These individuals don’t mix the newly acquired genome, they add it. Therefore, among the members of this lineage we can find diploid, triploid, tetraploid and even pentaploid individuals (even if as the ploidy increases the individuals are less apt to survive) depending on how many different genomes the previous generations had incorporated.

mes ibrids
Among the klepton, the most common genome combination is that of triploids based on the blue-spotted salamander and the Jefferson salamander, with the genomes LLJ (left, image by David Misfud) and JJL (right, image by Nick Scobel), even though the number of combinations is incredibly large. For this reason why scientists haven’t been able to decide a valid scientific name for this group of hybrid origins.

Unlike the water frogs, it is very difficult to define a scientific name for the klepton inside Ambystoma, as the genomes of the different species can be found in different combinations and proportions in different unisexual individuals.


The following sources have been consulted during the elaboration of this entry:


Híbridos y ladrones de esperma: cleptones anfibios

En biología un híbrido es el resultado de la reproducción de dos progenitores de especies genéticamente diferentes, aunque en la mayoría de casos los híbridos o no son viables o son estériles. Pero a veces, en algunas especies de anfibios los híbridos no sólo son viables, sino que además forman nuevas especies con características especiales. En esta entrada os ponemos dos casos de híbridos de anfibios que forman lo que se conoce como un cleptón y que ponen en duda el concepto tradicional de especie.


Un cleptón o kleptón (abreviado kl.) es una especie que depende de otra especie para completar su ciclo reproductivo. El origen de la palabra cleptón viene del griego “kleptein” que significa “robar”, ya que el cleptón “roba” a otra especie para poder reproducirse. En el caso de los anfibios, los cleptones se han originado por fenómenos de hibridación. Las potentes feromonas sexuales de los anfibios y los coros de múltiples especies en el caso de los anuros, provocan que a veces machos y hembras de diferentes especies intenten aparearse. Aun así los híbridos sólo son viables entre especies muy emparentadas.

Dentro de las diferentes especies cleptón podemos encontrar dos métodos diferentes según el tipo de concepción: los zigocleptones, en los que hay una fusión del material genético del óvulo y del espermatozoide, y los ginocleptones, en los que el óvulo necesita estimulación por parte del espermatozoide pero no incorpora su material genético.

Los diferentes cleptones de anfibios suelen estar constituidos por hembras (hay pocos machos o ninguno) que utilizan el esperma de otra especie para perpetuar el cleptón. Como los cleptones de anfibios a veces dependen de varias especies emparentadas, esto puede hacer que se creen “complejos de especies” donde varias especies muy parecidas presenten zonas de hibridación y relaciones muy complicadas entre ellas. A continuación os ponemos dos ejemplos de cleptones, uno en anuros europeos y otro en urodelos americanos.


Las ranas verdes europeas (género Pelophylax) forman lo que se conoce como “complejo hibridogenético” en el cual los híbridos de distintas especies forman cleptones que no se pueden reproducir entre sí, sino que han de reproducirse con un miembro de la especie progenitora, “robando” o “parasitando” su esperma para sobrevivir.

Foto de Bartosz Cuber de dos ranas comestibles (Pelophylax kl. esculentus) en amplexo. Este híbrido es el más conocido tanto por su amplia distribución, como por ser considerado una delicia en Francia.

En la hibridogénesis de las ranas verdes, el material genético de ambos progenitores se combina para formar el híbrido resultante (zigocleptón). Estos híbridos (normalmente siempre hembras) tendrán la mitad del genoma de una especie y la mitad de la otra. Aun así, al no poder reproducirse con otros híbridos similares, durante la gametogénesis se elimina el material genético de una de las especies progenitoras. Así, al aparearse con un individuo de la especie cuyo material genético ha eliminado, volverán a formar un híbrido.

Esquema sobre la dotación genética de los diferentes cleptones de Pelophylax. En este complejo hibridogenético intervienen cuatro especies “naturales”: la rana europea común (Pelophylax ridibundus, genoma RR), la rana de Lessona (Pelophylax lessonae genoma LL), la rana verde ibérica (Pelophylax perezi, genoma PP) y la rana italiana (Pelophylax bergeri, genoma BB).

La rana comestible común (Pelophylax kl. esculentus, genoma RL) proviene de la hibridación entre la rana común europea y la rana de Lessona. La rana comestible italiana (Pelophylax kl. hispanicus, genoma RB) proviene de un híbrido entre la rana común europea y la rana italiana. Finalmente la rana de Graf (Pelophylax kl. grafi, genoma RP) proviene de la hibridación de la rana comestible común (en la cual se elimina el ADN de la rana de Lessona de los gametos) y la rana verde ibérica.

Esquemas de Darekk2 sobre los procesos hibridogenéticos de los diferentes cleptones de ranas europeas. Los círculos grandes indican el genoma de los individuos y los círculos pequeños el material genético de los gametos.

Como vemos, la dotación genética de la rana común europea es la que se encuentra en los tres cleptones. Estos cleptones eliminan el material genético de la especie con la que comparten el hábitat de sus gametos y mantienen el de la rana común europea (R). Así por ejemplo, la rana comestible (P. kl esculentus) elimina de sus óvulos el ADN de la rana de Lessona (L), con la cual se encuentra en su distribución natural y se reproduce, dando lugar a más ranas comestibles (RL). La rana común europea raramente se reproduce con alguno de los híbridos y si lo hace, salen ranas comunes europeas normales.


Las salamandras del género Ambystoma, generalmente conocidas como salamandras topo, son un género endémico de América del Norte y son los únicos representantes actuales de la familia Ambystomatidae. Cinco de estas especies forman el llamado “complejo Ambystoma, en el cual estas especies contribuyen a la composición genética de un linaje unisexual de salamandras que se reproducen por ginogénesis (ginocleptón). Basándose en el ADN mitocondrial de las poblaciones unisexuales, se cree que este complejo proviene de un fenómeno de hibridación de hace unos 2,4-3,9 millones de años.

ambystomert complexx
Este complejo está formado por las siguientes cinco especies: la salamandra de puntos azules (Ambystoma laterale de genoma LL, foto de Fyn Kynd Photography), la salamandra de Jefferson (Ambystoma jeffersonianum de genoma JJ, foto de Vermont Biology), la salamandra de boca chica (Ambystoma texanum de genoma TT, foto de Greg Schechter), la salamandra de riachuelo (Ambystoma barbouri de genoma BB, foto de Michael Anderson) y la salamandra tigre (Ambystoma tigrinum de genoma TiTi, foto de Carla Isabel Ribeiro).

En la ginogénesis de este linaje compuesto únicamente por hembras, el óvulo necesita la activación por parte de un espermatozoide para empezar a dividirse y desarrollarse, aunque antes debe duplicar su material genético mediante un proceso de endomitosis para evitar la formación de zigotos haploides (con la mitad de información genética) inviables. Aun así, como con los reptiles partenogenéticos, a la larga la falta de recombinación genética puede pasar factura a los individuos. Es por esto que este linaje unisexual de salamandras tiene la capacidad de incorporar ocasionalmente el genoma entero de los machos de cuatro de las especies que forman el complejo (actualmente no se ha visto que la salamandra de riachuelo se aparee con ningún individuo unisexual).

Esquema de Bi, Bogart & Fu (2009) en el que vemos las diferentes vías que puede tomar la reproducción ginogenética de las salamandras topo.

Estos individuos no mezclan el genoma adquirido, sino que lo suman al suyo. Esto provoca que dentro de este linaje podamos encontrar individuos diploides, triploides, tetraploides e incluso hasta pentaploides (aunque cuanto más aumenta la ploidía menos viables son los individuos), dependiendo de la cantidad de genomas diferentes que hayan ido incorporando las generaciones anteriores.

mes ibrids
Dentro del cleptón, la combinación más común son los triploides basados en la salamandra de puntos azules y la de Jefferson, con los genomas LLJ (izquierda, imagen de David Misfud) y JJL (derecha, imagen de Nick Scobel), aunque el número de combinaciones es increíblemente grande, motivo por el cual los científicos no han podido asignar un nombre científico válido a este grupo de origen híbrido.

A diferencia de las ranas verdes, resulta muy difícil definir un nombre científico dentro de este cleptón de Ambystoma, ya que los genomas de las diferentes especies se pueden encontrar en diferentes combinaciones y proporciones en los diferentes individuos unisexuales.


Durante la elaboración de esta entrada se han utilizado las siguientes fuentes: