Arxiu d'etiquetes: generalist

Metal hyperaccumulation in plants

During million years the evolution leaded plants to develop different strategies to defence from natural enemies, giving rise to an evolutionary weaponry war in which the survival of ones and others depends into the ability to beat the other’s adaptations. It is in that scenario where the high-level accumulation of heavy metals in plants plays an important role.

INTRODUCTION

Boyd (2012) commented that plant defences can be grouped in different categories:

  • mechanic: thorns, coverage, etc.
  • chemical: different organic and inorganic components.
  • visual: crypsis and mimicry .
  • behavioural: related with phenology’s modification.
  • and associative: symbiosis with other organisms, such is the case of the genus Cecropia, which has stablished a symbiotic relationship with ants of the genus Azteca, who protects these plants – to know more: Plants and animals can also live in marriage-.
espinas-karyn-christner-flickr
Mechanic defence with thorns (Author: Karyn Christner, Flickr, CC).

It is known that chemical defence is ubiquitous, and thus, a lot of interactions among organisms can be explained for this reason. In this sense, some plants contains high levels of certain chemical elements, frequently metals or metallic components, which plays an important role in the defence, these plants are the heavy metal hyperaccumulating plants.

Heavy metal hyperaccumulating plants and their main characteristics

This plants belong to several families, thus hyperaccumulation is an independent acquisition occurring different times during the evolution. In all cases, hyperaccumulation allowed the ability to grow soils with high levels of heavy metals and to accumulate extraordinary amounts of heavy metals in aerial organs. It is known that the concentration of these chemical elements in hyperaccumulating plants can be 100 – 1000 times higher than in non-hypperaccumulating plants.

Generally, chemistry describes heavy metal as transition metals with atomic mass higher than 20 and with a relative density around 5.  But, from a biological point of view, heavy metals or metalloids are elements which can be toxic in a low concentration. Even though, hyperaccumulating plants has become tolerant, i.e., they hypperacumulate this heavy metals without presenting phytotoxic effects (damage in plant tissues due toxicity).

In this sense, there are three main characteristics typically present in all hyperaccumulating plants:

  • Increased absorption rate of heavy metals.
  • Roots that perform translocation more quickly.
  • Great ability to detoxify and accumulate heavy metals in sheets.

Thus, hyperaccumulating plants are prepared to assimilate, translocate and accumulate high-levels of heavy metals in vacuoles or cellular wall. In part, it is due to the overexpression of genes codifying for membrane transporters.

The threshold values that allow to differentiate a hyperaccumulating plant from a non-hyperaccumulating one are related to the specific phytotoxicity of each heavy metal. According to this criterion, hyperaccumulating plants are plants that when grown on natural soils accumulate in the aerial parts (in grams of dry weight):

  • > 10 mg·g-1 (1%) of Mn or Zn,
  • > 1 mg·g-1 (0,1%) of As, Co, Cr, Cu, Ni, Pb, Sb, Se or Ti
  • or > 0,1 mg·g-1 (0,01%) of Cd.
minuartia-verna-cu-candiru-flickr
Minuartia verna, copper hyperacumulating plant (Autor: Candiru, Flickr, CC).

THE ORIGIN OF HYPERACCULATING PLANTS AND THEIR IMPLICATIONS

Till the moment, several hypothesis has been proposed to explain why certain plants can hyperaccumulate heavy metals:

  • Tolerance and presence of metals in soils.
  • Resistance to drought.
  • Interference with other neighbouring plants.
  • Defence against natural enemies.

The most supported hypothesis is “Elemental defence”, which indicates that certain heavy metals could have a defensive role against natural enemies, such as herbivores and pathogens. So, in the case these organisms consume plants, they should present toxic effects, which would lead them to die or at least to reduce the intake of this plant in future. Even though heavy metals can act through their toxicity, this does not guarantee plants will not be damaged or attacked before the natural enemy is affected by them. For this reason, it is still necessary a more effective defence which allow to avoid the attack.

In contrast, according to a more modern hypothesis, the “Joint effects”, heavy metals could act along with other defensive organic components giving rise to a higher global defence. The advantages of inorganic elements, including heavy metals, are that they are not synthetized by plants, they are absorbed directly from the soil and thus a lower energetic cost is invested in defence, and also they cannot be biodegraded. Even though, some natural enemies can even avoid heavy metal effects by performing the chelation, i.e., using chelators (substances capable of binding with heavy metals to reduce their toxicity) or accumulating them in organs where their activity would be reduced. This modern hypothesis would justify the simultaneous presence of several heavy metals and defensive organic components in the same plant, with the aim to get a higher defence able to affect distinct natural enemies, which would be expected to do not be able to tolerate different element toxicity.

SONY DSC
Thlaspi caerulescens, zinc hyperaccumulating plant (Autor: Randi Hausken, Flickr, CC).

On the other hand, it has been shown that certain herbivores have the ability to avoid the intake of plants with high levels of heavy metals, doing what is called “taste for metals“. Although this is known to occur, the exact mechanism of this alert and avoidance process is still uncertain.

solanum-nigrum-cd-john-tann-flickr
Solanum nigrum, cadmium hyperaccumulating plant (Autor: John Tann, Flickr, CC).

Additionaly, even tough heavy metal concentration in plant are really high, some herbivores manage to surpass this defense by being tolerant, i.e., their diet allows them to intake high dosis of metals and, thus, consume the plant. This could lead to think some herbivores could become specialist in the intake of hyperaccumulating plants, and, thus, this type of defence would be reduced to organisms with varied diets, which are called generalists. It has been demonstrated to not be true, as generalists herbivores sometimes present a higher preference and tolerance for hyperaccumulating plants than specialist organisms.

For all these reasons, it can be said that evolution is still playing an important role in this wonderful weaponry war.

Difusió-anglès

 REFERENCES

  • Boyd, R., Davis, M.A., Wall, M.A. & Balkwill K. (2002). Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12, p. 91–97.
  • Boyd, R. (2007). The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant soil 293, p. 153-176.
  • Boyd, R. (2012). Elemental Defenses of Plants by Metals. Nature Education Knowledge 3 (10), p. 57.
  • Laskowski, R. & Hopkin, S.P. (1996). Effect of Zn, Cu, Pb and Cd on Fitness in Snails (Helix aspersa). Ecotoxicology and environmentak safety 34, p. 59-69.
  • Marschner, P. (2012). Mineral Nutrition of Higher Plants (3). Chennai: Academic Press.
  • Noret, N., Meerts, P., Tolrà, R., Poschenrieder, C., Barceló, J. & Escarre, J. (2005). Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytologist 165, p. 763-772.
  • Prasad, A.K.V.S.K. & Saradhi P.P. (1994).Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39, p. 45-47.
  • Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Science 180 (2),p. 169-181.
  • Shiojiri, K., Takabayashi, J., Yano, S. & Takafuji, A. (2000) Herbivore-species-specific interactions between crucifer plants and parasitic wasps (Hymenoptera: Braconidae) that are mediated by infochemicals present in areas damaged by herbivores. Applied Entomology and Zoology 35, p. 519–524.
  • Solanki, R. & Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66 (2), p. 195-204.
  • Verbruggen, N., Hermans, C. & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181 (4), p. 759–776.
  • Wenzel, W.W. & Jockwer F. (1999). Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental pollution 104, p. 145-155.