Arxiu d'etiquetes: genetic code

Pharmacogenetics: a drug for each person

Sometimes, some people say that the medications prescribed by doctors are not good. Can this be true? Not all drugs work for the same population. Keep reading and discover the secrets of pharmacogenetics.


The same that happens with nutrients, happens with drugs. Another objective of personalized medicine is to make us see that not all medicines are for everyone. However, it does not come again because around 1900, the Canadian physician William Osler recognized that there was an intrinsic and specific variability of everyone, so that each one reacts differently to a drug. This is how, years later, we would define pharmacogenetics.

It is important to point out that it is not the same as pharmacogenomics, which studies the molecular and genetic bases of diseases to develop new treatment routes.

First, we need to start at the beginning: what is a drug? Well, a drug is any physicochemical substance that interacts with the body and modifies it, to try to cure, prevent or diagnose a disease. It is important to know that drugs regulate functions that our cells do, but they are not capable of creating new functions.

Apart from knowing if a drug is good or not for a person, you also have to take into account the amount that should be administered. And we still do not know the origin of all diseases, that is, we do not know most of the real molecular and genetic causes of diseases.

The classification of diseases is based mainly on symptoms and signs and not on molecular causes. Sometimes, the same group of pathologies is grouped, but among them there is a very different molecular basis. This means that the therapeutic efficacy is limited and low. Faced with drugs, we can manifest a response, a partial response, that produces no effect or that the effect is toxic (Figure 1).

efectivitat i toxicitat
Figure 1. Drug toxicity. Different colours show possible responses (green: drug not toxic and beneficial; blue: drug not toxic and not beneficial; red: drug toxic but not beneficial; yellow: drug toxic but beneficial) (Source: Mireia Ramos, All You Need is Biology)


Drugs usually make the same journey through our body. When we take a drug, usually through the digestive tract, it is absorbed by our body and goes to the bloodstream. The blood distributes it to the target tissues where it must take effect. In this case we talk about active drug (Figure 2). But this is not always the case, but sometimes it needs to be activated. That’s when we talk about a prodrug, which needs to stop in the liver before it reaches the bloodstream.

Most of the time, the drug we ingest is active and does not need to visit the liver.

active and prodrug
Figure 2. Difference between prodrug and active drug (Source: Agent of Chemistry – Roger Tam)

Once the drug has already gone to the target tissue and has interacted with target cells, drug waste is produced. These wastes continue to circulate in the blood to the liver, which metabolizes them to be expelled through one of the two routes of expulsion: (i) bile and excretion together with the excrement or (ii) purification of the blood by the kidneys and the urine.


A clear example of how according to the polymorphisms of the population there will be different response variability we find in the transporter genes. P glycoprotein is a protein located in the cell membrane, which acts as a pump for the expulsion of xenobiotics to the outside of the cell, that is, all chemical compounds that are not part of the composition of living organisms.

Humans present a polymorphism that has been very studied. Depending on the polymorphism that everyone possesses, the transporter protein will have normal, intermediate or low activity.

In a normal situation, the transporter protein produces a high excretion of the drug. In this case, the person is a carrier of the CC allele (two cytokines). But if you only have one cytosine, combined with one thymine (both are pyrimidine bases), the expression of the gene is not as good, and the expulsion activity is lower, giving an intermediate situation. In contrast, if a person has two thymines (TT), the expression of the P glycoprotein in the cell membrane will be low. This will suppose a smaller activity of the responsible gene and, consequently, greater absorption in blood since the drug is not excreted. This polymorphism, the TT polymorphism, is dangerous for the patient, since it passes a lot of drug to the blood, being toxic for the patient. Therefore, if the patient is TT the dose will have to be lower.

This example shows us that knowing the genome of each individual and how their genetic code acts based on it, we can know if the administration of a drug to an individual will be appropriate or not. And based on this, we can prescribe another medication that is better suited to this person’s genetics.


The applications of these disciplines of precision medicine are many. Among them are optimizing the dose, choosing the right drug, giving a prognosis of the patient, diagnosing them, applying gene therapy, monitoring the progress of a person, developing new drugs and predicting possible adverse responses.

The advances that have taken place in genomics, the design of drugs, therapies and diagnostics for different pathologies, have advanced markedly in recent years, and have given way to the birth of a medicine more adapted to the characteristics of each patient. We are, therefore, on the threshold of a new way of understanding diseases and medicine.

And this occurs at a time when you want to leave behind the world of patients who, in the face of illness or discomfort, are treated and diagnosed in the same way. By routine, they are prescribed the same medications and doses. For this reason, the need has arisen for a scientific alternative that, based on the genetic code, offers to treat the patient individually.


  • Goldstein, DB et al. (2003) Pharmacogenetics goes genomic. Nature Review Genetics 4:937-947
  • Roden, DM et al. (2002) The genetic basis of variability in drug responses. Nature Reviews Drug Discovery 1:37-44
  • Wang, L (2010) Pharmacogenomics: a system approach. Syst Biol Med 2:3-22
  • Ramos, M. et al. (2017) El código genético, el secreto de la vida. RBA Libros
  • Main picture: Duke Center for Applied Genomics & Precision Medicine



Cracking the genetic code

In the same way that Alan Turing decoded Enigma, the encryption machine used by the German army in World War II, several scientists managed to decipher the genetic code. The solution to this framework has allowed us to understand how cells work and make genetic manipulation possible.


A code is a system of replacing the words in a message with other words or symbols, so that nobody can understand it unless they know the system. For example the genetic code.

Although it seems to be a lie, all living beings (except for some bacteria) biologically work in the same way. And it is that Jacques Monod already said, everything that is verified as true for E. coli must also be true for elephants.

From the cells of the blue whale, the largest animal on the planet, to the cells of a hummingbird, passing through humans, are the same. This is thanks to the genetic code, which allows the information of each gene to be transmitted to the proteins, the executors of this information.

This flow of information was named by Francis Crick, in 1958, as the central dogma of molecular biology (Figure 1). In it he claimed that information flows from DNA to RNA, and then from RNA to proteins. This is how genetic information is transmitted and expressed unidirectionally. However, later modifications were added. Crick claimed that only DNA can be duplicated and transcribed to RNA. However, it has been seen that the replication of its RNA also occurs in viruses and that it can perform a reverse transcription to generate DNA again.

Figure 1. Central dogma of molecular biology. Red arrows: Francis Crick’s way. Grey arrows: later modifications (Source: Quora)


Inside the cells three different languages ​​are spoken, but they can be related through the genetic code.

The one we already know is the language of deoxyribonucleic acid (DNA), wound in a double chain and composed of 4 letters that correspond to the nitrogenous bases: adenine (A), thymine (T), cytosine (C) and guanine (G).

Another language very similar to the latter is that of RNA. It differs from DNA mainly in three aspects: (i) it is composed of a single chain instead of being double-stranded, (ii) its sugars are ribose instead of deoxyribose (hence the name of ribonucleic acid) and (iii) it contains the base uracil (U) instead of T. Neither the change of sugar nor the substitution of U by T alters the pairing with base A, so that RNA synthesis can be performed directly on a DNA template.

The last language that remains for us to know is that of proteins, formed by 20 amino acids. The amino acids constitute each and every one of the proteins of any living organism. The order of the amino acids that form the chain of the protein determines its function (Figure 2).

Figure 2. Table of 20 amino acids (Source: Compound Interest)


As we have been saying, the genetic code is the rules that follow the nucleotide sequence of a gene, through the RNA intermediary, to be translated into an amino acid sequence of a protein. There are several types of RNA, but the one that interests us is the messenger RNA (mRNA), essential in the transcription process.
The cells decode the RNA by reading its nucleotides in groups of three (Figure 3). Since mRNA is a polymer of four different nucleotides, there are 64 possible combinations of three nucleotides (43). This brings us to one of its characteristics: it is degenerate. This means that there are several triplets for the same amino acid (synonymous codons). For example, proline is coded by the triplets CCU, CCC, CCA and CCG.

Figure 3. The genetic code with the table of 20 amino acids (Source: BioNinja)

The genetic code is not ambiguous since each triplet has its own meaning. All triplets make sense, either encode a particular amino acid or indicate read completion. Most amino acids are encoded by at least two codons. Methionine and tryptophan are the only amino acids that are codified only by a codon. But each codon codes only for an amino acid or stop sign. In addition, it is unidirectional, all triplets are read in the 5′-3′ direction.
The AUG codon serves as the start codon at which translation begins. There is only one start codon that codes for the amino acid methionine, while there are three stop codons (UAA, UAG and UGA). These codons cause the polypeptide to be released from the ribosome, where the translation occurs.
The position of the start codon determines the point where translation of the mRNA and its reading frame will begin. This last point is important because the same nucleotide sequence can encode completely different polypeptides depending on the frame in which it is read (Figure 4). However, only one of the three reading patterns of a mRNA encodes the correct protein. The displacement in the reading frame causes the message no longer to make sense.

Marco de Lectura
Figure 4. Possible frameshifts (Source:


As we said at the beginning, one of the main characteristics of the genetic code is that it is universal, since almost all living beings use it (with the exception of some bacteria). This is important because a genetic code shared by such diverse organisms provides important evidence of a common origin of life on Earth. The species of the Earth of today probably evolved from an ancestral organism in which the genetic code was already present. Because it is essential for cellular function, it should tend to remain unchanged in the species through the generations. This type of evolutionary process can explain the remarkable similarity of the genetic code in present organisms.

Although the human being itself continues to be an enigma for science, the revolution of the deciphering of the genetic code has allowed us to delve into the functioning of our body, specifically that of our cells, and cross borders to genetic manipulation.



  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Gotta Love Cells
  • BioNinja
  • Main picture:


Why I look similar to my parents?

The reason of the similitude with our parents is genetics. This science studies the inheritance; it means how offspring resemble their parents, the diseases that are transmitted from generation to generation… It is biology’s discipline growing quickly and it affects biology, healthy and society in general. In this article I am going to talk about what is genetics and the DNA’s discovery.


The genetic information is inherited to the offspring by genes, which are the storage unit of this information. They are located inside the chromosomes and they occupy specific positions. The number of chromosomes is constant inside species, but different between other species.

In humans the number of chromosomes is 46. In each cell we have 46 chromosomes, which 44 are autosomal, i.e., not a chromosome sexual and 2 chromosomes sexual. The total of 46 chromosomes is the human genome.

Our genome consist of 2 sets of 23 chromosomes counterparts. This means that each set have the same characteristics respect the other set and one comes from our mother by ovum and the other one comes from our father by sperm (Figure 1). Inherit each set of our progenitor is the reason why we resemble they, but also is via that we inherit some genetic diseases.

Figure 1. Human female karyotype, i.e., the graphical representation of chromosomes. They are placed in pairs sorted and size, from the largest to the pair smaller, plus the sex chromosomes (Source: Mireia Ramos, Cerba Internacional SAE)


Genes are parts of DNA (deoxyribonucleic acid), comprising by the join of small molecules that called nucleotide. These nucleotides contain a pentose (compound of 5 carbon), a phosphate and a nucleobase (organic compound with an atom of nitrogen) (Figure 2). There are 4 nucleobase: two purines (adenine and guanine) and two pyrimidines (thymine and cytosine). These nucleobases distinguish each nucleotide and their arrangement constitutes the genetic code.

Sin título1
Figure 2. Details of the chemistry of DNA (Source: Eduredes: Los ácidos nucleicos)

But all knowledge about DNA and genes is recent. The structure of DNA was discovered by James Watson and Francis Crick in 1953 in Cambridge (Figure 3). Previously, other scientists had done studies to try to determine the similarity between relatives, but it was not until this discovery it was understood that there was chemistry behind it.

Figure 3. Francis Crick (right) and James Watson (left) with the construction of the structure of DNA (Source: The DNA store)


Watson, an American 23 year-old biologist, and Crick, an English 35 year-old physicist, worked in the Cavendish Laboratory in Cambridge. They spent many months building models of molecules and comparing them to the information they had, but still they couldn’t find the correct structure of DNA.

In the King’s College of London, the physicist Maurice Wilkins and Rosalind Franklin, another physicist with knowledge in crystallography. She took X-ray pictures of DNA (Figure 4).

Figure 4. The four people who contributed to the discovery of DNA (Source: Biology: The people responsible for the discovery of DNA)

Watson and Crick, after present a wrong model of the triple helix, told Maurice Wilkins about what they were trying to do and he showed them a new and better X-ray picture of DNA, which had been taken by Rosalind Franklin, without her permission. This was the picture number 51 to help them solve the mystery (Figure 5).

photo 51 explanation
Figure 5. Explanation of picture 51 that used Watson and Crick (Source: Seguramente estaré equivocado: La “fotografía 51”)

When the university’s Cavendish Laboratory was still at its old site at nearby Free School Lane, the pub was a popular lunch destination for staff working there. Thus, it became the place where Francis Crick interrupted patrons’ lunchtime on 28th February 1953 to announce that he and James Watson had “discovered the secret of life” after they had come up with their proposal for the structure of DNA. This day is called for someone the 8th day of Creation.

The 25th April 1953 it published their article with 900 words in Nature (Figure 6). Three years earlier had published law Chargaff, which was one of the foundations to apply the theory of the double helix of DNA. This law establishes the complementarity of the bases in DNA, i.e., adenine (A) pairs with thymine (T) and the same with guanine (G) and cytosine (C) (Figure 2). So the amount of purine (A and G) is equal to the amount of the pyrimidine (T and C).

Figure 6. Article published in the journal Nature, which shows the picture 51 (Source: The DNA store)


It has been argued that the discovery of DNA as well as our understanding of its structure and function may well be the most important discovery of the last century. The effect of the discovery of DNA on scientific and medical progress has been enormous, whether it involves the identification of the genes that trigger major diseases or the creation and manufacture of drugs to treat these devastating diseases. In fact, the identification of these genes and their subsequent analysis in terms of therapeutic treatment has ultimately influenced science and will continue to do so in the future.

While the discovery of DNA has been a significant one in the twentieth century, it will continue to revolutionize medicine, agriculture, forensics, paternity and many other important fields in society today. DNA research encompasses an evolving area of progress and continued funding and interest in its relevance will likely fuel new discoveries in the future.