Arxiu d'etiquetes: global warming

Disease outbreaks, another effect of climate change?

We know that many infectious diseases depend on climatic factors such as temperature. So, can climate change cause an increase of the outbreaks? Let’s find out!

HEALTH AND CLIMATE CHANGE

 According to some surveys conducted by the Pew Research center, 54% of respondents believe that climate change is a serious problem and their major concerns include drought, intense rainfall and heat. If you are interested in to learn more about this survey, you can find them in the following article.

These changes have a negative effect on human health. The World Health Organization (WHO) expected that between 2030 and 2050 climate change will cause some 250,000 additional deaths a year. The effects can be very varied: deaths by  heat, floods, increase in respiratory diseases, stress etc. One of the important health effects is an increase in the transmission of infectious diseases.

climate_change_health_impacts600w
Graphic of impacts of climate change on human health (Photo: CDC)

Infectious diseases are closely related to  environment’s characteristics (such as temperature and humidity). In some cases, these diseases are transmitted by vectors (bats, arthropods, snails, rodents, ticks…). A  temperaturerising  will modified its geographical distribution, seasonality and population size. An example is  the presence of the mosquito Aedes albopictus, known as mosquito tigre, in Spain.

On the other hand, changes in the use of the soil, overcrowding of cities, poor hygienic habits and other socio-economic factors also have an effect in the transmission of certain diseases. For example, deforestation and poor hygiene of the population increases the breeding sites of the mosquitoes, causing an increase in the probability of malaria transmission.

tabla_cambioshumanos_
Human activities may effect diseases transmission rate. (Photo: OMS)

VECTOR DISEASES

Vector diseases are those that are transmitted through a vector animal (whether a mosquito, rodent, tick, snail, bat…). These diseases may be zoonotic (animal to human, as rabies) or antroponotic (among humans, such as malaria or dengue). If you want to know more about the effects of climate change on vector, feel free to access this article.

Sin título
Different types of vector diseases. (Photo: OMS)

There are many vector diseases which should be monitored in the coming years, as for example the malaria, dengue fever chikungunya, Boutonneuse etc. Let’s look at the two best known infectious diseases.

MALARIA

This disease is caused by parasites of the genus Plasmodium, which is transmitted by the bite of mosquitoes of the genus Anopheles. There are four different types of malaria, but the most deadly is that caused by the species Plasmodium falciparum.

p_falci_cdc
Plasmodium falciparum gametocyte. (Photo: CDC)

The WHO estimates that in the year 2013, 198 million people were infected,  584,000 of which died. It is expected that these numbers will increase due to climate change. Temperature rise leads to an increase in the infective period of the mosquito and the modification of vector’s geographical distribution. Possibly in the next few years, if the trend does not change, there will be an increase in the spread of the disease in endemic areas  and will probably resurface in other areas (red areas on the map).

global_warming_climate_change__malaria
Estimation of the spread of malaria in 2050 (Photo: Randolph Rogers)

In Spain, the autochthonous malaria was eradicated in 1964. Currently, the spanish cases of malaria are imported from countries with indigenous malaria. Even so, note the geographic situation of our country, the rising temperatures, the presence of a competent vector and the presence of imported parasit, significantly increase the likelihood of disease’s transmission.

DENGUE FEVER

This is a viral disease (caused by viruses of the genus Flavivirus) that is transmitted by the bite of mosquitoes of the Aedes genus (including the Tiger mosquito). Dengue fever is a widespread disease in tropical countries, although its suffering geographical changes due to changes in temperature, precipitation and a demographic overcrowding of the cities.

dengue
Structure of dengue fever virus (Photo: César Cabezas)

Before 1970, only nine countries had experienced serious dengue epidemic episodes. In recent decades, the cases have increased sharply. According to WHO estimates, each yerar are produced about 390 million infections,  23%  of which are clinically manifested.

12889_2014_6968_Fig3_HTML
forecast of the spread of dengue fever in Europe during the twenty-first century. Expressed in nº of cases /100.000 habitants. (Photo: Moha Bouzid)

As in the case of malaria, current climatic variations alter the geographical distribution of the vector. As we can see in the previous map, the predictions for this century, if conditions do not change, are a significant dengue fever cases increase in Northern Europe (lighter areas are potential sites of infection). As we see in the case of Spain, the Mediterranean would be the region that would have more cases of dengue fever.

WATERBORNE DISEASES

Climate change also affects the water cycle. The news about weather disasters (floods, strong drought, torrential rains, hurricanes…) never cease to appear in the media. These climatic variations affect those diseases that are spread by water, either by contamination of the flows, by human migration and low hygiene that exist in certain places of overcrowded cities.

The most known diseases associated with floods and droughts are infections of Cryptosporidium or cholera. Let’s look at this last example.

CHOLERA

Vibrio cholerae is a bacilar bacteria that causes this disease. It is a diarrheal infection that suffer every year between 1.4 and 4.3 million people, 142,000 which end up dying. The transmission of this Bacillus is closely linked to environmental mismanagement. Heavy rains or flooding can cause water pollution, and extreme drought increases the bacterial charge of the existing flows.

vibrio colerae
Microphoto of Vibrio cholerae (Photo: Louisa Howard).

During the 19th century, cholera spread across the world from Ganges (India). The last cholera epidemic began, as we can see in the map, in the South of Asia in 1961. Now cholera has been distributed worldwide due above all to human migrations (bacillus carriers), the agglomeration of people in suburban areas without hygiene habits and climate disasters. The WHO estimates that by 2030 there will be 10% more cases due to climate change.

0291-choleraspread-EN
evolution of last epidemic of cholera (1961-2004). (Photo: IPCC)

It may not be possible to quantify in that measure climate change can affect the transmission of these diseases, since these depend on many other factors (demographic dynamics, immunization, etc.). Is worth mentioning, that the provisions set out in this article are assumptions obtained from current data. That means, that if the mechanisms for the reduction of global climate change works and environmental conditions improve, these data would no longer have any statistical value

·

Remember that it is better to be safe than sorry!

Cares for the environment: the Earth is your home. 

REFERENCES

Maribel-anglès

Anuncis

54% of world population considers climate change a very serious problem

Climate change (or global change if we consider that it doesn’t affect only climate) is a very recurrent topic these days. The reason is that on November 30 started the COP21 in Paris, in which more than 190 nations have gathered, and will finish on December 11. Here, instead of talking about the climate evolution or its possible effects, we are going to talk about the results of a survey made by the Pew Research Center about the world population’s opinion on global change. 

ABOUT THE SURVEY

The survey was carried out from March 25 to May 27, 2015, at 45,435 people from 40 countries around the world.

GENERAL CONCERN

The majority of the people surveyed in all 40 nations consider that climate change is a serious problem. In concrete, 54% consider it a very serious problem. Latin America (mainly Brasil, Chile and Peru) and Africa (principally Burkina Faso, Uganda and Ghana) are even more worried than the global average. However, 85% say global change is a serious problem to some extend.

Moreover, 51% hold that this worldwide issue is harming people now (being Latin America, Europe and Africa more concerned than the global median) and another 40% are very worried that climate change will harm them personally in the future (specially in Latin America). 

Harm personally
Percentage of people very concerned that global climate change will harm them personally (Picture: Pew Research Center, 2015).

What attracts attention is the fact that USA and China, the two countries in the world that produce more dioxide carbon, are among the least concerned. Generally, people from countries that produce more carbon dioxide per capita are less anxious about the climate change. 

WHICH ARE THE BIGGEST FEARS?

In general, 44% of the respondents consider water shortages the major concern and, in fact, is the biggest fear in all regions, followed by sever weather (such as floods or intense storms, 25%), hot weather (14%) and sea level rise (6%).

drought climate change
Droughts are the biggest concern in all polled nations (Picture: Weather Wiz Kids).

Latin America, Africa and USA are more worried by water shortages than the average, while Asia/Pacific and Europe surpass the average of the concern in severe weather.

Climate change concerns
Regional medians of most concerning effects of global climate change (Picture: Pew Research Center, 2015).

HAVE THE PERCEPTIONS CHANGED OVER TIME?

In general, there have been a very little increase in the perception that climate change is a very serious problem. While in 2010 47% of the respondents considered it a very serious problem, in 2015 they are a 49%.

However, in some countries the perception have changed. In some key economies, such as Turkey (reduction of 37%), China (-23%), South Korea (-20%) or Japan (-13%); the number of people saying that climate change is a very serious problem has reduced. On the other side, in Nigeria (an increase of 18%), France (+10%) and in USA (+8%) the concern is now higher.

WHAT SHOULD BE DONE TO DEAL WITH IT?

In 39 of 40 countries (the exception is Pakistan), people consider that their countries should do something to fight against the problem. In specific, 78% of the polled people support the fact that their country should limit greenhouse gas emissions, specially in Europe (a median of 87%) and Latin America (83%).

But this would not be enough. 67% say that people will have to change their lifestyle (mainly Latin Americans and Europeans), while 22% think that thanks to technology the problem will be solved. Probably, a combination of both will be the solution.

Which countries should do more? 54% find that rich countries should do more than the developing ones because they have produced most of the greenhouse gas emissions, while a 38% consider that developing countries should do just as much because they will produce more in the future.

REFERENCES

Difusió-anglès

Evolution for beginners 2: coevolution

After the success of Evolution for beginners, today we’ll continue  knowing the basics of biological evolution. Why  exist insects that seem orchids and vice versa? Why gazelles and cheetahs are almost equally fast? Why your dog understands you? In other words, what is coevolution?

WHAT IS COEVOLUTION?

We know that it is inevitable that living beings establish symbiotic relationships between them. Some depend on others to survive, and at the same time, on elements of their environtment as water, light or air. These mutual pressures between species make that evolve together, and as one evolve as a species, in turn it forces the other to evolve. Let’s see some examples:

POLLINATION

The most known process of coevolution is pollination. It was actually the first co-evolutionary study (1859) by Darwin, although he didn’t use that term. The first to use the word coevolution were Ehrlich and Raven (1964).

Insects existed long before the appearance of flowering plants, but their success was due to the discovery that nectar is a good reserve of energy. In turn, the plants found in the insects another way more effectively to carry pollen to another flower. Pollination by the wind (anemophily) requires more production of pollen and a good dose of luck to at least fertilize some flowers of the same species. Many plants have developed flowers that trap insects until they are covered with pollen and then set them free. These insects have hairs in their body to enable this process. In turn some animals have developed long appendages (beaks of hummingbirds, butterflies’ proboscis…) to access the nectar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Darwin’s moth (Xantophan morganii praedicta). Photo by Minden Pictures/Superstock

It is the famous case of the Darwin’s moth (Xanthopan morganii praedicta) of which we have already talked about. Charles Darwin, studying orchid Christmas (Angraecum sesquipedale) saw that the nectar was 29 cm inside the flower. He sensed that there should exist an animal with a proboscis of this size. Eleven years later, Alfred Russell Wallace reported him that the Morgan’s sphinxs had proboscis over 20 cm long, and a time later they were found in the same area where Darwin had studied that species of orchid (Madagascar). In honor of both it was added “praedicta” to the scientific name.

There are also bee orchids that mimic female insects to ensure their pollination. To learn more about these orchids and the Christmas one, do not miss this post by Adriel.

Anoura fistulata, murcielago, bat
The bat Anoura fistulata and its long tongue. Photo by Nathan Muchhala

But many plants not only depend on insects, also some birds (like humming birds) and mammals (such as bats) are essential to pollination. The record for the longest mammal tongue in the world is for a bat from Ecuador (Anoura fistulata); its tongue measures 8 cm (150% of the length of its body). It is the only who pollinates one plant called Centropogon nigricans, despite the existence of other species of bats in the same habitat of the plant. This raises the question of whether evolution is well defined, and occurs between pairs of species or it is diffuse due to the interaction of multiple species.

PREDATOR-PREY RELATIONSHIPS

The cheetah (Acinonyx jubatus) is the fastest vertebrate on land (up to 115 km/h). Thomson’s gazelle (Eudorcas thomsonii), the second (up to 80 km/h). Cheetahs have to be fast enough to catch a gazelle (but not all, at risk of disappearing themselves) and gazelles fast enough to escape almost once and reproduce. The fastest gaelles survive, so nature selects in turn faster cheetahs, which are who eat to survive. The pressure from predators is an important factor that determines the survival of a population and what strategies should follow the population to survive. Also, the predators will find solutions to possible new ways of life of their prey to succeed.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi
Cheetah hunting a Thomson’s gazelle in Kenya. Photo by Federico Veronesi

The same applies to other predator-prey relationships, parasite-host relationships, plants-herbivores, improving their speed or other survival strategies like poison, spikes…

HUMAN AND DOGS … AND BACTERIA

Our relationship with dogs since prehistoric times, it is also a case of coevolution. This allows, for example, to create bonds with just looking at them. If you want more information, we invite you to read this post where we talk about the issue of the evolution of dogs and humans in depth.

Another example is the relationship we have established with the bacteria in our digestive system, essential for our survival. Or with pathogens: they have co-evolved with our antibiotics, so using them indiscriminately has favored these species of bacteria to develop resistance to antibiotics.

THE IMPORTANCE OF COEVOLUTION

Coevolution is one of the main processes responsible for the great biodiversity of the Earth. According to Thompson, is responsible for the millions of species that exist instead of thousands.

The interactions that have been developed with coevolution are important for the conservation of species. In cases where evolution has been very close between two species, if one become extint will lead to the extinction of the other almost certainly. Humans constantly alter ecosystems and therefore biodiversity and evolution of species. Just declining one species, we are affecting many more. This is the case of the sea otter (Enhydra lutris), which feeds on sea urchins.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Sea otter (Enhydra lutris) eating sea urchins. Photo by Vancouver Aquarium

Being hunted for their fur, urchins increased number, devastated entire populations of algae (consumer of CO2, one of the responsible of global warming), seals who found refuge in the algae nonexistent now were more hunted by killer whales… the sea otter is therefore a key species for the balance of this ecosystem and the planet, as it has evolved along with urchins and algae.

Coevolutive relations between flowers and animals depend on the pollination of thousands of species, including many of agricultural interest, so we must not lose sight of the seriousness of the issue of the disappearance of a large number of bees and other insects in recent years. A complex case of coevolution that directly affects us is the reproduction of fig.

TO SUMMARIZE

As we have seen, coevolution is the evolutionary change through natural selection between two or more species that interact reciprocally.

It is needed:

  • Specificity: the evolution of each feature of a species is due  to selective pressures of the feature of the other species.
  • Reciprocity: features evolve together.
  • Simultaneity: features evolve simultaneously.

REFERENCES

MIREIA QUEROL ALL YOU NEED IS BIOLOGY

How do temperature and global warming affect the sex of reptiles?

In most animals the sex of an individual is determined at the moment of fertilization; when the egg and the sperm fuse together it is fixed if that animal will be male or female. Yet in many reptilian groups sex determination is established later during incubation, and the determinant external factor is the incubation temperature of the eggs. In reptiles, this means that the environment plays a crucial role in determining the sex ratio emerging from an egg clutch, and that these animals are very susceptible to alterations in temperature caused, for example, by climate change.

SEXUAL DETERMINATION: GSD VS TSD

In the majority of animal species, sexual differentiation (the development of ovaries or testes) is determined genetically (GSD). In these cases, the sex of an individual is determined by a specific chromosome, gene or allele which will cause the differentiation to one sex or the other. In vertebrates there exists two main types of GSD, the XX/XY system in mammals (in which XX is a female and XY is a male) and the ZW/ZZ system in birds and some fishes (ZW corresponds to a female and ZZ to a male).

Types_of_sex_determinationExamples of different types of genetic sexual determination systems found in vertebrates and invertebrates, by CFCF.

In the case of reptiles, there is a great variety of sexual determination mechanisms. Some present GSD models; many snakes follow the ZW/ZZ system and some lizards the XX/XY. Still, in many groups the sex of the offspring is determined mainly by the egg incubation temperature (TSD), and therefore the environment plays an important role in the proportion of males and females found in a population.

Eastern_Bearded_Dragon_defenceThe eastern bearded dragon (Pogona barbata) is an example of a reptile with GSD, but which is also affected by incubation temperature. Photo by Trent Townsend.

Nevertheless, the genetic and temperature sexual determination are not mutually exclusive. Reptiles with TSD have a genetic base for the ovarian and testicular differentiation which is regulated by temperature. Similarly, it’s been observed that in reptiles with DSG, such as the eastern bearded dragon (Pogona barbata), high temperatures during incubation causes genetically male individuals (ZZ chromosomes) to develop functionally as females. This proves that in reptiles, there is no strict division between GSD and TSD.

TEMPERATURE AND SEX

The incubation period during which the sex of an individual is determined is called thermosensitive period and usually corresponds to the second third of the incubation period, during which temperature must be maintained constant. This critical incubation period usually lasts between 7 and 15 days, depending on the species. After this period the sex of an individual usually cannot be reversed (all or nothing mechanism).

Audobon Zoo, New Orleans, LouisianaKomodo dragon baby (Varanus komodoensis) hatching. Photo by Frank Peters.

Temperature during the critical incubation period affects the functioning of the aromatase, a hormone which converts androgens (masculinizing hormones) to estrogens (feminizing hormones). At male-producing temperatures, the activity of the aromatase is inhibited, while at female-producing temperatures the activity of the aromatase is maintained.

AromatassssssaGraphics of the aromatase’s activity related to gonadal hormones on European pond turtle’s embryos (Emys orbicularis) at 25oC (males) and at 30oC (females), during the critical incubation period, from Pieau et al. 1999.

The TSD is found in all reptile groups except snakes (which have the ZW/ZZ system). In lizards and turtles we can find both genetic-based and temperature-based sexual determination, while in tuataras and crocodilians sex is determined exclusively by temperature. Currently, different patterns of temperature sex determination are known.

PATTERN I

This pattern is the simplest one, in which higher incubation temperatures produce one sex and lower incubation temperatures produce the other sex. Intermediate temperatures usually produce individuals of both sexes and very rarely, intersex individuals. This pattern can be further divided in:

  • Pattern Ia TSD, in which eggs incubated at warmer temperatures produce high female percentages and eggs incubated at cooler temperatures produce high male percentages. This pattern is found in many species of turtles.
Emys_orbicularis_portraitPhoto of a European pond turtle (Emys orbicularis), species that follows the pattern Ia TSD; at 25oC or less during incubation only males are born, while at 30oC or more only females are born. Photo by Francesco Canu.
  • Pattern Ib TSD, in which the contrary occurs; high temperatures produce males and low temperatures produce females. We find this pattern in some lizards with TSD and in the tuataras.
TuataraThe tuatara (Sphenodon punctatus) is one of the reptiles that follows the pattern Ib TSD; the pivotal temperature is between 21-22oC, above which males will be born and below which females will be born.

PATTERN II

This pattern is a bit more complex than the previous one. In this one, embryos incubated at extreme temperatures (very high or very low) will differentiate to one sex, while the ones incubated at intermediate temperatures will differentiate to the other sex.

CrocnestPhoto of different aged American alligators (Alligator mississippiensis). These reptiles follow the pattern II TSD; at about 34oC males are born, and at higher and lower temperatures, females are born.

This pattern appears in crocodilians, some turtles and in many lizards. Recent phylogenetic studies indicate that this is the ancestral TSD model in reptiles. Some people even argue that all the TSD cases belong to the pattern II, but that in nature temperatures never reach both extremes, although this is yet to be proved.

TEMPERATURE DETERMINED SEX: PROS AND CONS

Even today the evolutionary advantages of the sex determination by temperature are not fully understood. The case of the reptiles is pretty curious because birds, mammals and amphibians determine their sex genetically in most cases, while in reptiles there is a bit of everything.

Currently, there are studies which are being conducted to see if certain temperatures improve the health of males and if other temperatures the health of females. In one of these studies, it was observed that snapping turtles incubated at intermediate temperatures (which produced both males and females) were more active than the ones incubated at temperatures producing only one sex, making them more vulnerable to be attacked by sight-based predators. Currently, there isn’t enough evidence that indicates to what extent these discoveries could be applied. It is possible that reptiles with TSD are able to manipulate the sex of its offspring, altering the proportion of sexual hormones based on the temperature of their nesting site.

Snapping_turtle_eggs_mdCommon snapping turtle (Chelydra serpentina) an American fresh-water chelonian, laying its eggs. Photo by Moondigger.

The disadvantages of the TSD are much easier to predict.  Any change in the environmental temperature of the nesting areas may affect negatively the populations of a determined species. If a previously shadowy forest is cut down or buildings are constructed in a previously sunny place, the microclimates of the egg clutches of any reptile nesting there will be changed.

Global change, or climate change, represents an additional threat to reptilians with TSD. The rise of the average temperature on the planet and the temperature fluctuation from one year to another, affect the number of males and females that are born in some species of reptiles. This phenomenon has been observed, for example, in painted turtles (Chrysemys picta), in which it has been predicted that a rise of 4oC in their habitat’s temperature could cause the extinction of the species, because only females would be born.

baby-painted-turtle-chrysemys-pictaBaby of a painted turtle (Chrysemys picta), species in which incubation temperatures between 23-27oC produce males, and temperatures above and below it produce females (pattern II). Foto de Cava Zachary.

REFERENCES

During the elaboration of this entry the following sources have been used:

Difusió-anglès

The plants and the climate change

Since a few years ago, we have heard about the climate change. Nowadays, it is already evident and also a concern. This not only affects to us, the humans, but to all kind of life. It has been talked enough about the global warming, but perhaps, what happens to the vegetation has not been much diffused. There are many things affected by climate change and vegetation is also one of them. In addition, the changes in this also affect us. But, what are these changes? how can the vegetation regulate them? And how we can help to mitigate them through plants?

CHANGES ON PLANTS

Biomes distribution

In general, due to climate change, an increase of precipitations in some parts of the world are expected, while in others a decrease is awaited. A global temperature increment is also denoted. This leads to an alteration in the location of the biomes, large units of vegetation (e.g.: savannas, tropical forests, tundras, etc.).

biomes
Biome triangle classified by latitude, altitude and humidity (Author: Peter Halasaz).

On the other hand, there is an upward trend in the distribution of species in the high latitudes and a detriment in the lower latitudes. This has serious associated problems; the change in the species distribution affects their conservation and genetic diversity. Consequently, the marginal populations in lower latitudes, which have been considered very important for the long-term conservation of genetic diversity and due their evolutionary potential, are threatened by this diversity loss. And conversely, the populations in high latitudes would be affected by the arrival of other competing species that could displace those already present, being as invasive.

Species distribution

Within the scenario of climate change, species have some ability to adjust their distribution and to adapt to this.

But, what type of species may be responding more quickly to this change? It appears that those with a faster life cycle and a higher dispersion capacity will be showing more adaptability and a better response. This could lead to a loss of some plants with slower rates.

Galactites tomentosa
The Purple milk Thistle (Galactites tomentosa) is a plant with a fast life cycle and high distribution capacity  (Author: Ghislain118).

One factor that facilitates adjustment in the distribution is the presence of wildlife corridors: these are parts of the geographical area that enable connectivity and movement of species from one population to another. They are important because they prevent that some species can remain isolated and because they can also allow the movement to new regions.

Another factor is the altitudinal gradient, which provides shelter for many species, facilitates the presence of wildlife corridors and permits redistribution of species along altitude. Therefore, in those territories where there is greater altitudinal range, the conservation is favored.

In short, the ability of species to cope with climate change depends on the plant characteristics and the territory attributes. And, conversely, the species vulnerability to climate change occurs when the speed to displace their distribution or adapt their lives is less than the climate change velocity.

At internal level

Climate change also affects the plant as an organism, as it causes changes in their metabolism and phenology (periodic or seasonal rhythms of the plant).

One of the effects that pushes the climate change is the carbon dioxide (CO2) concentration increase in the atmosphere. This could produce a fertilization phenomenon of vegetation. Due the COincrease in the atmosphere it also increases the uptake by plants, thus increasing the photosynthesis and allowing greater assimilation. But, this is not all advantages, because for this an important water loss occurs due that the stomata (structures that allow gas exchange and transpiration) remain open long time to incorporate CO2. So, there are opposing effects and fertilization will depend on the plant itself, but the local climate will also determine this process. Many studies have shown that various plants react differently to the COincrease, since the compound affects various physiological processes and therefore there are not unique responses. Then, we find a factor that alters the plant metabolism and we cannot predict what will be the effects. Furthermore, this fertilizer effect is limited by the nutrients amount and without them production slows.

fotosíntesi
Photosynthesis process (Author: At09kg).

On the other hand, we must not forget that climate change also alters the weather and that this affects the vegetation growth and its phenology. This can have even an impact on a global scale; for example, could produce an imbalance in the production of cultivated plants for food.

PLANTS AS CLIMATE REGULATORS

Although one cannot speak of plants as regulators of global climate, it is clear that there is a relationship between climate and vegetation. However, this relationship is somewhat complicated because the vegetation has both effects of cooling and heating the weather.

The vegetation decreases the albedo; dark colours absorb more solar radiation and, in consequence, less sunlight is reflected outward. And besides, as the plants surface is usually rough, the absorption is increased. Consequently, if there is more vegetation, local temperature (transmitted heat) intensifies.

But, on the other hand, by increasing vegetation there is more evapotranspiration (set of water evaporation from a surface and transpiration through the plant). So, the heat is spent on passing the liquid water to gas, leading to a cooling effect. In addition, evapotranspiration also helps increase local rainfall.

Biophysical effects of landcover
Biophysical effects of different land uses and its consequences on the local climate. (From Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Therefore, it is an ambiguous process and in certain environments the cooling effect outweighs, while in others the heating effect has more relevance.

MITIGATION

Nowadays, there are several proposals to reduce climate change, but, in which way can the plants cooperate?

Plant communities can act as a sinks, carbon reservoirs, because through CO2 assimilation, they help to offset carbon emissions. Proper management of agricultural and forest ecosystems can stimulate capture and storage of carbon. On the other hand, if deforestation were reduced and protection of natural habitats and forests increased, emissions would be diminished and this would stimulate the sink effect. Still, there is a risk that these carbon sinks may become emission sources; for example, due to fire.

Finally, we must introduce biofuels: these, unlike fossil fuels (e.g. petroleum), are renewable resources, since they are cultivated plants for use as fuels. Although they fail to remove CO2 from the atmosphere or reduce carbon emissions, they get to avoid this increase in the atmosphere. For this reason, they may not become a strict mitigation measure, but they can keep neutral balance of uptake and release. The problem is that they can lead to side effects on social and environmental level, such as increased prices for other crops or stimulate deforestation to establish these biofuel crops, what should not happen.

800px-Canaviais_Sao_Paulo_01_2008_06
Sugarcane crop (Saccharum officinarum) in Brazil to produce biofuel (Author: Mariordo).

Difusió-anglès

REFERENCES

 

Whale migration is changing due to global change

Results of a research that took place from 1984 to 2010 in the Gulf of St. Lawrence (Canada, North Atlantic Ocean) about changes in migration patters of whales due to global change have been published this March on Plos One. In this post, you are going to find a summary of this article.

INTRODUCTION

Global change (wrongly called climate change) is a planetary-scale change in the Earth climate system. Despite of being a natural process, in the last decades the reason of the changes is human because we have produced an increase of the carbon dioxide’s realise due to fossil fuel burning.

MIGRATION OF WHALES

Global change is a challenge for migratory species because the timing of seasonal migration is important to maximise exploitation of temporarily abundant preys in feeding areas, which, at the same time, are adapting to the warming Earth. Other driving forces are the use of resources like mates or shelter. This is the case of fin whale (Balaenoptera physalus) and humpback whale (Megaptera novaeangliae), which feed on a wide variety of zooplankton and schooling fish. This zooplankton grows due to an increase of phytoplankton, which grows for the increasing light and nutrients during summer. Remember that in this post you can read about the feeding behaviour of humpback whales. This is not the first time that it has been reported changes in migration species’ home ranges in both summer and wintering areas and alterations of the timing.

Fin whale (Balaenoptera physalus) (Picture from Circe).
Fin whale (Balaenoptera physalus) (Picture from Circe).
Humpback whale (Megaptera novaengliae) (Picture from Underwater Photography Guide).
Humpback whale (Megaptera novaeangliae) (Picture from Underwater Photography Guide).

It is observed a general pattern in migratory species: they use high-latitude summer regions to take advantage of high productivity and abundance of their preys and some of them reproduce during this period. Generally, long-distant migrants seem to adapt less well to climate change than short-distant migrants.

humpback whale migration
The case of humpback whale (Megaptera novaeangliae) migration. (Picture from NOAA).

Most baleen whales begin seasonal migrations from few hundreds to thousands of kilometres, alternating between low-latitude winter breeding grounds to high-latitude summer feeding grounds. The response of marine mammals to global change has been predicted:

  • More pole-ward distribution and more beforehand arrival in feeding areas to follow changing prey distribution.
  • Longer residency time in higher latitudes in response to enhanced productivity.

HOW IS GLOBAL CHANGE AFFECTING WHALE MIGRATION?

The article’s results show that fin and humpback whales arrived earlier in the study area over the 27 years of the study. Nevertheless, the rate of change of more than 1 day per year is undocumented. Both species also left the area earlier, as observed in other species. Humpback whale departure changed at the same rate as arrival, so it keeps a constant residency time. On the other hand, fin whales have increased the residency time from 4 days to 20 days. However, that increase is subject to small sample bias in the first two years and there is only weak evidence that fin whales increased their residency time.

Mean first and last sighting date in fin whale (Balaenoptera physalus) and humpback whale (Megaptera novaengliae) (Data from Ramp C. et al. 2015).
Mean first and last sighting date in fin whale (Balaenoptera physalus) and humpback whale (Megaptera novaeangliae) (Data from Ramp C. et al. 2015).

In addition, the results suggest that the region represents only a fraction of the potential summer range for both populations and both species just spend a part of the summer. What is clear is that both species showed the same behavioural adaptation and advanced their temporal occurrence in the area by one month.

Other studies have reported that gray whales (Eschrichtius robustus) have probably ceased to migrate annually in Alaska (Stafford K et al. 2007).

WHY ARE WHALES SHIFTING THEIR MIGRATION PATTERNS?

It seems that fin whale arrival in the Gulf follows the shift in the date of the ice break up and the sea surface temperature (SST) serves as a signal to the whales that it is time to move back into the Gulf. There was a time delay of 13-15 weeks between when this area became totally ice-free and their arrival. This has also seen in Azores, where fin and humpback whales arrive 15 weeks after the start of the spring bloom to feed on it when en route to high latitude summer feeding grounds.

The influence of SST in January in the Gulf may have triggered an earlier departure of humpback whales from the breeding grounds and thus earlier arrival in the Gulf.

These two species of whales are generalist feeders and their arrival in the Gulf is related to the arrival of their prey. The improvement of the temperature and light conditions and earlier ice break-up (together with higher SST) leads to an earlier bloom of phytoplankton followed by the earlier growth of zooplankton. Therefore, the earlier arrival of fin and humpback whales enables timely feeding on these prey species. A 2-weeks time lag between the arrival of fin and humpback whales lets humpback whales fed at a higher trophic level compared to fin whales, what reduces competition.

CONCLUSION

Global change shifted the date of arrival of fin whales and humpback whales in the Gulf of St. Lawrence (Canada) at a previously undocumented rate of more than 1 day per year earlier (over 27 years) thus maintaining the approximate 2-week difference in arrival of the two species and enabling the maintenance of temporal niche separation. However, the departure date of both species also shifted earlier but at different rates resulting in increasing temporal overlap over the study period indicating that this separation may be starting to erode. The trend in arrival was strongly related to earlier ice break-up and rising sea surface temperature, likely triggering earlier primary production.

REFERENCES

This post is based on the article:

  • Ramp C, Delarue J, Palsboll PJ, Sears R, Hammond PS (2015). Adapting to a Warmer Ocean – Seasonal Shift of Baleen Whale Movements over Three Decades. PLoS ONE 10(3): e0121374. doi: 10.1371/journal.pone.0121374

If you enjoyed this article, please share it on social networks to spread it. The aim of the blog, after all, is to spread science and reach as many people as possible. Feel free to give your comments. 

This publication is licensed under a Creative Commons:

Llicència Creative Commons