Arxiu d'etiquetes: Hawaii

Islands as natural laboratories for evolution

Islands are natural laboratories where we can study evolution in vivo. Whether from volcanic or continental origin, the fact that islands being isolated from the mainland by the sea makes that island biota present spectacular adaptations, sometimes originating giant or dwarf species in comparison with their mainland relatives. In this article, we describe the evolutionary mechanisms behind this phenomenon and talk about some striking examples.

Islands can have a volcanic origin, involving the emergence of virgin lands that will be colonized involving new adaptations to the new conditions. Islands can also have a continental origin, involving the separation of the mainland by tectonic processes and isolation of fauna and flora before connected.

Volcanic conus aspect in Hawaii. Source: Steve Juverston, via Flickr.


Generation of new species caused by the emergence of a geographic barrier, such as the emergence of a range, changes in sea level or emergence of new islands by tectonic movements is a process known as allopatric speciation and is the main process acting on islands. We can described two kinds of allopatric speciation:

  1. Vicariant speciation: when two populations are separated by a geographic barrier, for example when a piece of land separated from the mainland. An example is the island of Madagascar, that when separated from Africa left the biota of the island isolated from the continent by the sea.
  2. Peripatric speciation: a new population establishes and gets isolated in a new environment by a very small number of individuals from a larger population. This is the case of the colonization of a sterile land, such as oceanic islands. In this case, the individuals that colonize the new environment may not represent the genetic pool of the original population and with time and reproductive isolation; may originate a new species (founder effect).

The great British naturalist and creator of the theory of evolution, Charles Darwin, insipirated on their findings into the volcanic archipelago of the Galapagos to develop his great theory, paradigm of modern science.

Oceanic islands are formed by exploding volcanoes or movements of the mid-ocean ridge. Due to this volcanic activity, groups of islands are formed, each island having its own history, climate, topography and geology. This creates a perfect scenário to observe how evolution works because each population reaching a new island is affected by different environmental pressures and may never come in contact again with other islands populations, forming unique species, endemic to each island. Many naturalists and scientists have studied the evolution in vivo in volcanic origin archipelagos such as the Hawaiian Islands, Seychelles, Mascarene Islands, Juan Fernandez archipelago or Canary Islands. One of the last islands appeared in the Atlantic Ocean is the Suerty Island, emerged at 1963 30 km southwards of Iceland. Since then, life advent has been studied to understand ecological and evolutionary mechanisms acting in island colonization.

Suerty Island in eruption, in the south of Island. Source: Wikimedia.


Often oceanic islands, present no predators and this triggers the appearance of very curious adaptations. One of the most surprising processes is gigantism in animals or woodiness acquisition in plants.

Woodiness acquisition in islands by herbaceous plants on the continent has been documented in several families and islands around the world. The cause of this phenomenon would be the absence of herbivores and competitors in sterile islands, which would allow developing a greater height willing to reach sunlight.

For example, in Hawaii we found the alliance of the Hawaiian silverswords. It comprises 28 species in three genus (Argyroxiphium, Dubautia and Wilkesia), all woody members of the Asteraceae family or sunflowers. Their closest relatives are perennial herbs in North America.

Hawaiian silversword aspect from Argyroxiphium genus (left) and their closest relatives in mainland (right), from Raillardella genus. Source: Wikimedia.

In the Canary Islands, there are many examples of this phenomenon. Echium genus of Boraginaceae or borage and forget-me-not family contains about 60 species, of which 27 are located in different islands of volcanic origin in the Macaronesia (Canary Islands, Madeira and Cape Verde). Almost all members of this genus found in Macaronesia are bushes, forming an inflorescence that can reach up to three meters high, being the symbol of the Teide National Park (called tajinastes) while his nearby relatives are Eurasians herbs such as blueweed (Echium vulgare).

Echium wildpretii (left) in Tenerife and one of its closest relative from mainland (Echium vulgare) on the right. Source: Wikimedia.

Also in the Macaronesia, we find another example in the Euphorbiaceae family. Euphorbia mellifera, endemic to the Canary Islands and Madeira and E. stygiana endemic to Azores are endangered or critically endangered trees according to the IUCN, which can grow up to 15 meters high, being part of the laurisilva vegetation, a subtropical humid forest typical from Macaronesia. Their nearest relatives are Mediterranean herbaceous species.

Euphorbia mellifera in Maderia (left) and one of his closest relatives from the Mediterraneum basin (right, E. palustris). Source: left Laia Barres González and right Wikimedia.

In the animal kingdom, we also find peculiar adaptations. Herbivorous inhabiting islands usually have no predators or competitors, triggering appearance of larger species than in the mainland, where large carnivores avoid this characteristics incompatibles with hiding or escaping.

One of the most famous examples of island gigantism are the Galapagos giant tortoises (Chelonoidis nigra complex), including about 10 different species, many endemic to a single island of the archipelago. This turtles are the most long-lived and largest in the world. They can reach two meters in length and 450 kg in weight and can live more than 100 years.

Galapagos giant tourtle. Source: Wikipedia.

Also among the reptiles, there are the Gallotia giant lizards of the Canary Islands. There are several single island endemic species: G. auaritae in La Palma, believed extinct until the discovery of several individuals in 2007, G. bravoana in La Gomera, G. intermedia in Tenerife, G. simonyi in El Hierro and G. stehlini in Gran Canaria, among others. Among the giant lizards of the Canary Islands there is the extinct Gallotia goliath, reaching up to 1 m length and currently being included in the G. simony circumscription.

Gallotia stehlini in Gran Canaria. Source: El coleccionista de instantes Fotografía & Vídeo via Flickr.

Another example is Flores island in Indonesia, where we found a giant rat (Papagomys armandvillei) doubling the common rat in size. Interestingly, hominid fossils having experiences the contrary process were also found in this island, since it was dwarf primate compared to the Homo sapiens current size. It is Homo floresiensis, who was only 1 meter tall and weighed 25 kg. It became extinct about 50,000 years and coexisted with Homo sapiens.

Giant rat (Papagomys armandvillei) from Flores. Source: Wikimedia.

Dwarfism is another evolutionary process that may occur on islands caused by the lack of resources in some islands, compared to mainland.

Unfortunately, islands holds a peculiar and unique biota that is suffering from of exploitation and extinction. The islands conservation biology helps to understand and preserve this natural heritage so rich and unique.



Barahona, F.; Evans, S. E.; Mateo, J.A.; García-Márquez, M. & López-Jurado, L.F. 2000. Endemism, gigantism and extinction in island lizards: the genus Gallotia on the Canary Islands. Journal of Zoology 250: 373-388.

Böhle, U.R., Hilger, H.H. & Martin, W.F. 2001. Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proceedings of the National Academy of Sciences 93: 11740-11745.

Carlquist, S.J. 1974. Island biology. New York: Columbia University Press.

 Foster, J.B. 1964. The evolution of mammals on islands. Nature 202: 234–235.

Whittaker, R.J. & Fernández-Palacios, J.M. 2007. Island biogeography: ecology, evolution, and conservation, 2nd edn. Oxford University Press, Oxford.

Les illes com a laboratori de l’evolució

Les illes són laboratoris naturals on estudiar l’evolució en viu. Ja siguin d’origen volcànic o continental, el fet d’estar aïllades del continent pel mar fa que molts dels éssers vius que s’hi desenvolupen presentin adaptacions espectaculars, de vegades originant-se espècies gegants o nanes en comparació amb els seus congèneres continentals. En aquest article, descrivim quins són els mecanismes evolutius que expliquen aquest fenomen i posem alguns exemples ben sorprenents.

L’origen de les illes pot ser volcànic, que implica l’aparició de terres verges les quals que poden ser colonitzades per uns pocs individus i produir-se noves adaptacions a les noves condicions, o bé continental, que implica la separació del continent per processos tectònics, amb el que la fauna i flora abans connectada, s’aïlla i acaba diferenciant-se amb els pas de les generacions.

Aspecte d’un con volcànic a Hawaii. Font: Steve Juverston, via Flickr.


La generació de noves espècies provocada per l’aparició d’una barrera geogràfica, com pot ser l’aparició d’una serralada, canvis en el nivell del mar o creació de noves illes per moviments tectònics, s’anomena especiació al·lopàtrica i és el principal procés que actua en illes. Pot ser de dos tipus:

  1. Especiació vicariant: quan dues poblacions de la mateixa espècie són separades en el nostre cas per separació d’un tros de terra del continent. Un exemple d’aquest cas és l’illa de Madagascar, que quan es va separar del continent africà va deixar la biota de l’illa desconnectada de la del continent pel mar.
  1. Especiació peripàtrica: quan una petita població d’una espècie es separa de la població original per l’aparició d’una barrera geogràfica. És el cas de la colonització d’una terra verge com són les illes oceàniques. En aquest cas, els individus que colonitzen el nou ambient poden no representar l’espècie ancestral i amb el pas del temps i l’aïllament reproductiu, originar-se una espècie nova pel que s’anomena efecte fundador.

El gran naturalista britànic i creador de la teoria de l’evolució, Charles Darwin, va inspirar-se en les seves troballes a l’arxipèlag d’origen volcànic de les illes Galàpagos, per desenvolupar la seva gran teoria, paradigma de la ciència actual.

Les illes oceàniques es formen per explosió de volcans submarins o moviments de la dorsal oceànica. Degut a l’activitat volcànica, es formen conjunts d’arxipèlags, on cada illa té una història pròpia, amb un clima, relleu i geologia diferenciat. Això crea un escenari perfecte per observar com funciona l’evolució, ja que cada població que arriba a una nova illa es veu afectada per pressions ecològiques diferents i potser mai més entrarà en contacte amb les poblacions d’altres illes, formant-se espècies úniques, endèmiques de cada illa. Molts naturalistes i científics han estudiat l’evolució en viu en arxipèlags d’aquestes característiques, com les illes de Hawaii, Seychelles, Illes Mascarenyes, arxipèlag de Juan Fernández o les nostres Illes Canàries. Una de les últimes illes aparegudes a l’oceà Atlàntic és l’illa de Suerty que es va formar l’any 1963 30 km al sud d’Islàndia i des de llavors l’arribada de vida hi ha estat documentada i estudiada per comprendre una mica més els mecanismes ecològics i evolutius que hi actuen.

Illa de Suerty en erupció, al Sud d’Islàndia. Font: Wikimedia


Moltes vegades, les illes oceàniques, al ser verges, no tenen depredadors i això desencadena l’aparició d’adaptacions ben curioses. Un dels processos més sorprenents és el gigantisme, en animals o adquisició de condició llenyosa, en plantes.

L’adquisició de llenyositat en illes per part de plantes herbàcies al continent ha estat força documentat en diverses famílies i arxipèlags d’arreu del món. La causa d’aquest fenomen seria l’absència d’herbívors i competidors en illes, que permetria un desenvolupament major en alçada en la busca de llum.

Per exemple, a Hawaii trobem l’exemple de l’aliança de les espases platejades de Hawaii. Compren 28 espècies en tres gèneres (Argyroxiphium, Dubautia i Wilkesia), tots membres llenyosos de la família dels gira-sols o Asteraceae. Els seus parents més propers són herbes perennes de Nord Amèrica.

Aspecte d’una espasa platejada del gènere Argyroxiphium (esquerra) i els seus parents més proers al continent (dreta), del gènere Raillardella. Font: Wikimedia.

A les Illes Canàries trobem molts exemples d’aquest fenomen. El gènere Echium de la família de les borratges o Boraginaceae, conté unes 60 espècies, de les quals 27 es troben a diferents arxipèlags d’origen volcànic de la Macaronèsia (Canàries, Madeira i Cap Verd). Gairebé tots els membres d’aquest gènere que trobem a la Macaronesia són arbusts, que formen una inflorescència que pot arribar fins als 3 m d’alçada i són el símbol del Parc Natural del Teide (els coneguts tajinastes), mentre que els seus parents més propers, euroasiàtics, són herbes, com per exemple la llengua de bou (Echium vulgare).

Aspecte d’un tajinaste vermell (esquerra) a Tenerife i els seu parent continental (Echium vulgare) a la dreta. Font: Wikimedia.

També a la Macaronèsia, trobem un un altre exemple dins la família de les Euphorbiaceae o lleterasses. És el cas de les espècies Euphorbia mellifera, endèmica de Canàries i Madeira i E. stygiana, endèmica de Azores. Es tracta d’arbres en perill d’extinció o críticament amenaçats, segons la IUCN, que poden arribar a fer fins a 15 m d’alçada i que formen part de la vegetació de laurisilva, el bosc subtropical humit típic macaronèsic. Els seus ancestres més propers són plantes herbàcies del Mediterrani.

Euphorbia mellifera a Maderia (esquerra) i un dels seus parents més propers herbàcies del Mediterrani (dreta, E. palustris). Font: esquerra Laia Barres González i dreta Wikimedia.

Dins el regne dels animals, també trobem adaptacions peculiars en illes Els animals herbívors que habiten illes no solen tenir grans depredadors ni competidors i això facilita que apareguin espècies de dimensions més grans que al continent, on la presència de grans carnívors evitaria l’aparició d’aquest tipus de característiques per la incompatibilitat amb amagar-se o fugir de la presa.

Un dels exemples més famosos de gigantisme insular és el cas de les tortugues gegants de les Galàpagos (complex Chelonoidis nigra), que engloba unes 10 espècies diferents, moltes endèmiques de una única illa de l’arxipèlag. Són les tortugues més grans i longeves del món. Poden arribar als 2 m de llarg i als 450 kg de pes i poden viure més de 100 anys.

Tortuga gegant de les Galàpagos. Font: Wikipedia.

D’entre els rèptils, també hi ha el cas dels llangardaixos gegants del gènere Gallotia de les Illes Canàries. Són diverses espècies endèmiques de cada una de les illes: G. auaritae de La Palma, que es creia extinta fins el descobriment de diversos individus l’any 2007, G. bravoana de La Gomera, G. intermedia de Tenerife, G. simonyi d’El Hierro i G. stehlini de Gran Canaria, d’entre d’altres. D’entre els llangardaixos gegants de les Canàries hi ha l’extint Gallotia goliath, que podia arribar fins a 1 m de llarg i del qual actualment es pensa que s’inclou dins la circumscripció de G. simony.

Gallotia stehlini de Gran Canaria. Font: El coleccionista de instantes Fotografía & Vídeo via Flickr.

Un altre exemple el trobem a l’illa de Flores, a Indonèsia, on existeix una espècie de rata gegant (Papagomys armandvillei) que arriba a fer el doble que una rata comú. Curiosament, en aquesta illa es van trobar fòssils d’un homínid que va experimentar el procés contrari, ja que es tractava de primats enans, en comparació amb les mides actuals del ser humà. Es tracta de l’Homo floresiensis, que només feia 1 m d’alçada i pesava 25 kg. Es va extingir fa uns 50000 anys i va conviure amb l’Homo sapiens.

Rata gegant (Papagomys armandvillei) de l’illa de Flores. Font: Wikimedia.

El nanisme és un altre dels processos evolutius que es poden donar en illes. Provocat per l’absència de recursos en algunes illes, en comparació al continent d’on provenen les poblacions originals.

Malauradament, les illes, per albergar una biota tan peculiar i exclusiva, són també testimonis de molts casos de sobreexplotació i extinció d’espècies. La biologia de la conservació en illes ens ajuda a entendre i conservar aquest patrimoni natural tan ric i únic.



Barahona, F.; Evans, S. E.; Mateo, J.A.; García-Márquez, M. & López-Jurado, L.F. 2000. Endemism, gigantism and extinction in island lizards: the genus Gallotia on the Canary Islands. Journal of Zoology 250: 373-388.

Böhle, U.R., Hilger, H.H. & Martin, W.F. 2001. Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proceedings of the National Academy of Sciences 93: 11740-11745.

Carlquist, S.J. 1974. Island biology. New York: Columbia University Press.

Foster, J.B. 1964. The evolution of mammals on islands. Nature 202: 234–235.

Whittaker, R.J. & Fernández-Palacios, J.M. 2007. Island biogeography: ecology, evolution, and conservation, 2nd edn. Oxford University Press, Oxford.