¿Quién no ha escuchado a alguien quejarse de que los medicamentos recetados por los médicos no le hacen nada? ¿Puede ser cierto esto? No todos los fármacos sirven para la misma población. Sigue leyendo y descubre los secretos de la farmacogenética.
INTRODUCCIÓN
Lo mismo que sucede con los nutrientes, pasa con los fármacos. Otro de los objetivos de la medicina personalizada es hacernos ver que no todos los medicamentos sirven para todas las personas. Sin embargo, no nos viene de nuevo porque hacia 1900, el médico canadiense William Osler reconoció que existía una variabilidad intrínseca y propia de cada individuo, de forma que cada uno reacciona de forma diferente ante un fármaco. Es así como años más tarde definiríamos la farmacogenética.
Es importante señalar que no es lo mismo que la farmacogenómica, la cual estudia las bases moleculares y genéticas de las enfermedades para desarrollar nuevas vías de tratamiento.
Antes de todo necesitamos empezar por el principio: ¿qué es un fármaco? Pues bien, un fármaco es toda sustancia fisicoquímica que interactúa con el organismo y lo modifica, para tratar de curar, prevenir o diagnosticar una enfermedad. Es importante saber que los fármacos regulan funciones que hacen nuestras células, pero no son capaces de crear nuevas funciones.
A parte de conocer si un fármaco es bueno o no para una persona, también se tiene que tener en cuenta la cantidad que se debe administrar de él. Y es que todavía no conocemos el origen de todas las enfermedades, es decir, desconocemos la mayoría de las causas moleculares y genéticas reales de las enfermedades.
La clasificación de las enfermedades se basa principalmente en síntomas y signos y no en las causas moleculares. A veces, un mismo grupo de patologías es agrupado, pero entre ellos existe una base molecular muy diferente. Esto comporta que la eficacia terapéutica sea limitada y baja. Frente a los fármacos, podemos manifestar una respuesta, una respuesta parcial, que no nos produzca ningún efecto o que el efecto sea tóxico (Figura 1).

LOS FÁRMACOS EN NUESTRO CUERPO
Los fármacos acostumbran a hacer el mismo recorrido por nuestro cuerpo. Cuando nos tomamos un fármaco, normalmente por vía digestiva, éste es absorbido por nuestro cuerpo y va a parar al torrente sanguíneo. La sangre lo distribuye a los tejidos diana donde tiene que hacer efecto. En este caso hablamos de fármaco activo (Figura 2). Pero esto no siempre es así, sino que a veces necesita activarse. Es entonces cuando hablamos de profármaco, el cual necesita hacer escala en el hígado antes de aterrizar al torrente sanguíneo.
La mayoría de las veces, el fármaco que ingerimos es activo y no necesita pasar a visitar al hígado.

Una vez el fármaco ya ha ido al tejido diana y ha interactuado con las células en cuestión, se producen desechos del fármaco. Estos desechos continúan circulando por la sangre hasta llegar al hígado, quien los metaboliza para expulsarlos por una de las dos vías de expulsión: (i) la bilis y excreción junto con los excrementos o (ii) la purificación de la sangre por los riñones y la orina.
LA IMPORTANCIA DE LA FARMACOGENÉTICA
Un claro ejemplo de cómo según los polimorfismos de la población habrá diferente variabilidad de respuesta lo encontramos en los genes transportadores. La glicoproteína P es una proteína situada en la membrana de las células, que actúa como bomba de expulsión de xenobióticos hacia el exterior de la célula, es decir, todos los compuestos químicos que no formen parte de la composición de los organismos vivos.
Los humanos presentamos un polimorfismo que ha sido muy estudiado. Dependiendo del polimorfismo que posea cada individuo, la proteína transportadora tendrá una actividad normal, intermedia o baja.
En una situación normal, la proteína transportadora produce una excreción bastante alta del fármaco. En este caso, la persona es portadora del alelo CC (dos citosinas). Pero si sólo tiene una citosina, combinada con una timina (ambas son bases pirimidínicas), la expresión del gen no es tan buena y la actividad de expulsión es menor, dando una situación intermedia. En cambio, si una persona presenta dos timinas (TT), la expresión de la glicoproteína P en la membrana de la célula será baja. Esto supondrá una menor actividad del gen responsable y, consecuentemente, mayor absorción en sangre ya que el fármaco no es excretado. Este polimorfismo, el polimorfismo TT, es peligroso para el paciente, ya que pasa mucho fármaco a la sangre, resultando tóxico para el paciente. Por lo tanto, si el paciente es TT la dosis tendrá que ser menor.
Este ejemplo nos demuestra que conociendo el genoma de cada individuo y cómo actúa su código genético en base a él, podemos saber si la administración de un fármaco a un individuo será la adecuada o no. Y en base a esto, podemos recetar otro medicamento que se adapte mejor a la genética de esta persona.
APLICACIONES DE LA FARMACOGENÉTICA
Las aplicaciones de estas disciplinas de la medicina de precisión son muchas. Entre ellas se encuentran optimizar la dosis, escoger el fármaco adecuado, dar un pronóstico del paciente, diagnosticarlos, aplicar la terapia génica, monitorizar el progreso de una persona, desarrollar nuevos fármacos y predecir posibles respuestas adversas.
Los progresos que han tenido lugar en la genómica, el diseño de fármacos, terapias y diagnósticos para las diferentes patologías, han avanzado notablemente en los últimos años, y ha dado paso al nacimiento de una medicina más adaptada a las características de cada paciente. Nos encontramos, por lo tanto, en el umbral de una nueva manera de entender las enfermedades y la medicina.
Y esto se produce en una época en la que se quiere dejar atrás el mundo de pacientes que ante una dolencia o malestar son atendidos y diagnosticados de la misma forma. Por rutina, se les prescriben los mismos medicamentos y dosis. Por este motivo ha surgido la necesidad de una alternativa científica que, basada en el código genético, ofrece tratar al enfermo de manera individualizada.
REFERENCIAS
- Goldstein, DB et al. (2003) Pharmacogenetics goes genomic. Nature Review Genetics 4:937-947
- Roden, DM et al. (2002) The genetic basis of variability in drug responses. Nature Reviews Drug Discovery 1:37-44
- Wang, L (2010) Pharmacogenomics: a system approach. Syst Biol Med 2:3-22
- Ramos, M. et al. (2017) El código genético, el secreto de la vida. RBA Libros
- Foto portada: Duke Center for Applied Genomics & Precision Medicine