Arxiu d'etiquetes: higuera

Plantas y animales también pueden vivir en matrimonio

Cuando pensamos en la vida de las plantas se hace difícil imaginarla sin la interacción con los animales, puesto que estos día a día establecen diferentes relaciones simbióticas con ellas. Entre estas relaciones simbióticas encontramos la herbívora, o el caso contrario, el de las plantas carnívoras. Pero, hay muchas otras interacciones súper importantes entre plantas y animales, como la que lleva a estos organismos a ayudarse los unos a los otros y a convivir juntos. Por eso, esta vez os quiero presentar el mutualismo entre plantas y animales.

Y ¿qué es el mutualismo? Pues es la relación que se establece entre dos organismos en la que ambos se benefician de la convivencia en conjunto, es decir, los dos consiguen una recompensa cuando viven en compañía. Esta relación consigue aumentar su eficacia biológica (fitness) por lo que existe una tendencia de los dos organismos a convivir siempre juntos.

Según esta definición tanto polinización como dispersión de semillas a través de animales son casos de mutualismo. Veámoslo.

POLINIZACIÓN POR ANIMALES

Muchas plantas reciben visitas a sus flores por parte de animales que pretenden alimentarse del néctar, del polen o de otros azúcares que éstas producen y a cambio transportan polen hacia otras flores, permitiendo que este llegue al estigma de una manera muy eficaz. Así, la planta obtiene el beneficio de la fecundación con un coste de producción menor de polen que el que supondría dispersarlo por el aire (el cual llegaría con menor probabilidad al estigma de otras flores). Y los animales a cambio obtienen como recompensa el alimento. Se establece así una verdadera relación de mutualismo entre los dos organismos.

 “Video:The Beauty of Pollination” – Super Soul Sunday – Oprah Winfrey Network (www.youtube.com)

El caso extremo de mutualismo se da cuando estas especies evolucionan una dependiendo de la otra, es decir, cuando se da coevolución. Entendemos por coevolución esas adaptaciones evolutivas que permiten a los dos o más organismos establecer una relación de simbiosis estrecha, ya que las adaptaciones evolutivas de uno influyen en las adaptaciones evolutivas del otro organismo. Por ejemplo esto se da entre varías orquídeas  y sus polinizadores, como es el conocido caso de la Orquídea de Darwin. Pero hay muchas otras plantas que también han coevolucionado con sus polinizadores, como la higuera  o la yuca.

De ninguna manera esto se debe confundir con el engaño que algunas plantas producen sobre sus polinizadores, los cuales no obtienen ningún beneficio directo. Por ejemplo, algunas orquídeas también atraen a sus polinizadores a través de olores (feromonas) y de sus curiosas formas que se asemejan a las hembras del polinizador, haciendo que éste se acerque a ellas para copularlas y quede impregnado de polen que será transportado a otras flores gracias al mismo engaño.

14374841786_121feb4632_o.jpg
Orquídea abejera (Ophrys apifera) (Autor: Bernard DUPONT, flickr).

DISPERSIÓN DE SEMILLAS POR ANIMALES

La dispersión de semillas por animales se considera que ha tenido lugar gracias a un proceso coevolutivo entre los animales y los mecanismos de dispersión de las semillas en el cual tanto plantas como animales obtienen un beneficio. Lo más probable es que este proceso se iniciara en el Carbonífero (~300MA), donde ya se cree que algunas plantas como las cícadas desarrollaban unos falsos frutos carnosos que podrían ser consumidos por reptiles primitivos que actuarían de agentes dispersores de semillas. Este proceso se habría intensificado con la diversificación de las plantas con flores (Angiospermas) y de pequeños mamíferos y aves durante el Cretácico (65-12MA), hecho que permitió la diversificación de los mecanismos de dispersión y de las estructuras del fruto.

El mutualismo se puede dar de dos maneras dentro de la dispersión de semillas por animales.

El primer caso la llevan a cabo los dispersores que ingieren semillas o frutos que expulsaran posteriormente, sin ser digeridos, por defecación o regurgitación. Los frutos y semillas preparados para este caso son portadores de recompensas o señuelos, con los que a la vez atraen a sus agentes dispersantes, ya que los frutos suelen ser carnosos, dulces y a menudo tienen colores vistosos o emiten olores para atraer a los animales.

Por ejemplo, Acacia cyclops forma unas vainas que contienen semillas rodeadas por eleosomas (sustancias muy nutritivas formadas normalmente por aceites) que son mucho más grandes que la propia semilla. Esto supone un coste elevado de energía por parte de la planta, ya que no solo tiene que hacer las semillas sino que también tiene que formar esta recompensa. Pero a cambio, la cacatúa Galah (Eolophus roseicapillus) transporta a larga distancia sus semillas, ya que al alimentarse de este eleosoma ingiere las semillas que serán transportadas por su vuelo a larga distancia hasta que sean expulsadas por defecación en otros lugares.

Cacatua_Acacia.jpg
Izquierda, Cacatúa Galah (Eolophus roseicapillus) (Autor: Richard Fisher, flickr) ; Derecha, Vainas de Acacia cyclops (semillas negras, eleosoma rosa) (Autor: Sydney Oats, flickr).

Y el otro tipo de dispersión de semillas por animales que establece una relación de mutualismo es aquel donde las diásporas son recogidas por el animal en época de abundancia y las entierra para disponer de ellas como alimento cuando tenga necesidad. Pero no todas son comidas y algunas germinan.

3748563123_eeb32302cf_o.jpg
Ardilla recogiendo frutos (Autor: William Murphy, flickr)

Pero no todo acaba aquí, puesto que hay otros ejemplos bien curiosos y menos conocidos que de alguna manera han hecho que tanto animales como plantas vivan juntos en un perfecto “matrimonio”.  Veamos un par de ejemplos:

Azteca y Cecropia

Las plantas del género Cecropia viven en los bosques tropicales húmedos de Centroamérica y Sudamérica, siendo unas grandes luchadoras. Su estrategia por conseguir alzarse y captar luz evitando la competencia con otras plantas ha sido la firme relación que mantienen con las hormigas del género Azteca.

Las plantas proporcionan nidos a las hormigas, puesto que sus tallos terminales son normalmente huecos y septados (con separaciones) lo que les permite a las hormigas habitarlas por dentro, y además las plantas también producen cuerpos müllerianos, que son pequeños cuerpos alimenticios ricos en glicógeno de los cuales las hormigas se alimentan. A cambio, las hormigas protegen a Cecropia de lianas o bejucos, otorgando un gran éxito como planta pionera.

Ant Plants: CecropiaAzteca Symbiosis (www.youtube.com)

Marcgravia y murciélagos

Hace pocos años se ha descubierto que una planta de Cuba polinizada por murciélagos ha evolucionado dando pie a hojas modificadas que actúan como antena parabólica para la ecolocalización (radar) de los murciélagos. Es decir, su forma facilita que los murciélagos la localicen rápidamente lo que les permite recolectar néctar de manera más eficaz y a las plantas ser polinizadas con mayor éxito, ya que los murciélagos se desplazan rápidamente visitando cientos de flores cada noche para alimentarse.

6762814709_6dfaf49fff_o.jpg
Marcgravia (Autor: Alex Popovkin, Bahia, Brazil, Flickr)

 

En general, vemos que la vida de las plantas depende mucho de la vida de los animales, ya que estos están conectados de una forma u otra. Toda estas interacciones que hemos presentado forman parte de un conjunto aún mayor que hacen de la vida una más compleja y peculiar, en la que la vida de uno no se explica sin la vida del otro. Por este motivo, podemos decir que la vida de algunos animales y algunas plantas se asemeja a un matrimonio.

Difusió-castellà

REFERENCIAS

  • Apuntes obtenidos en diversas asignaturas durante la realización del Grado de Biología Ambiental (Universidad Autónoma de Barcelona) y el Máster de Biodiversidad (Universidad de Barcelona).
  • Bascompte, J. & Jordano, P. (2013) Mutualistic Networks (Chapter 1. Biodiversity and Plant-Animal Coevolution). Princeton University Press, pp 224.
  • Dansereau, P. (1957): Biogeography: an Ecological Perspective. The Ronald Press, New York., pp. 394.
  • Fenner M. & Thompson K. (2005). The Ecology of seeds. Cambridge: Cambridge University Press, 2005. pp. 250.
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica ªEdición. McGraw-Hill, pp. 906.
  • Murray D. R. (2012). Seed dispersal. Academy Press. 322 pp.
  • Tiffney B. (2004). Vertebrate dispersal of seed plants through time. Annual Review of Ecology, Evolution and Systematics. 35:1-29.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, pp. 424.
  • National Geographic (2011). Bats Drawn to Plant via “Echo Beacon”. http://news.nationalgeographic.com/news/2011/07/110728-plants-bats-sonar-pollination-animals-environment/

Evolución para principiantes 2: la coevolución

Después del éxito de Evolución para principiantes, seguimos con un artículo para seguir conociendo aspectos básicos de la evolución biológica. ¿Por qué hay insectos que parecen orquídeas y viceversa? ¿Por qué gacelas y guepardos son casi igual de rápidos? ¿Por qué tu perro te entiende? En otras palabras, ¿qué es la coevolución?

¿QUÉ ES LA COEVOLUCIÓN?

Ya sabemos que es inevitable que los seres vivos establezcan relaciones de simbiosis entre ellos. Unos dependen de otros para sobrevivir, y a la vez, del acceso a elementos de su entorno como agua, luz o aire. Estas presiones mutuas entre especies hacen que evolucionen conjuntamente y según evolucione una especie, obligará a su vez a la otra a evolucionar. Veamos algunos ejemplos:

POLINIZACIÓN

El proceso más conocido de coevolución lo encontramos en la polinización. Fue de hecho el primer estudio coevolutivo (1859), a cargo de Darwin, aunque él no utilizara este término.  Los primeros en acuñarlo fueron Ehrlich y Raven (1964).

Los insectos ya existían mucho antes de la aparición de plantas con flor, pero su éxito se debió al descubrimiento de que el polen es una buena reserva de energía. A su vez, las plantas encuentran en los insectos una manera más eficaz de transportar al polen hacia otra flor. La polinización gracias al viento (anemofilia) requiere más producción de polen y una buena dosis de azar para que al menos algunas flores de la misma especie sean fecundadas. Muchas plantas han desarrollado flores que atrapan a los insectos hasta que están cubiertos de polen y los dejan escapar. Estos insectos presentan pelos en su cuerpo para permitir este proceso. A su vez algunos animales han desarrollado largos apéndices (picos de los colibríes, espiritrompas de ciertas mariposas…)  para acceder al néctar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock

Es famoso el caso de la polilla de Darwin (Xanthopan morganii praedicta) del que ya hemos hablado en una ocasión. Charles Darwin, estudiando la orquídea de Navidad (Angraecum sesquipedale), observó que el néctar de la flor se encontraba a 29 cm del exterior. Intuyó que debería existir un animal con una espiritrompa de ese tamaño. Once años después, el mismo Alfred Russell Wallace le informó que había esfinges de Morgan con trompas de más de 20 cm y un tiempo más tarde se encontró en la misma zona donde Darwin había estudiado esa especie de orquídea (Madagascar). En honor de ambos se añadió el “praedicta” al nombre científico.

También existen las llamadas orquídeas abejeras, que imitan a hembras de insectos para asegurarse su polinización. Si deseas saber más sobre estas orquídeas y la de Navidad, no te pierdas este artículo de Adriel.

Anoura fistulata, murcielago, bat
El murciélago Anoura fistulata y su larga lengua. Foto de Nathan Muchhala

Pero muchas plantas no sólo dependen de los insectos, también algunas aves (como los colibríes) y mamíferos (como murciélagos) son imprescindibles para su fecundación. El récord de mamífero con la lengua más larga del mundo y segundo vertebrado (por detrás del camaleón) se lo lleva un murciélago de Ecuador (Anoura fistulata); su lengua mide 8 cm (el 150% de la longitud de su cuerpo). Es el único que poliniza una planta llamada Centropogon nigricans, a pesar de la existencia de otras especies de murciélagos en el mismo hábitat de la planta. Esto plantea la pregunta si la evolución está bien definida y se da entre pares de especies o por contra es difusa y se debe a la interacción de múltiples especies.

RELACIONES DEPREDADOR-PRESA

El guepardo (Acinonyx jubatus) es el vertebrado más rápido sobre la tierra (hasta 115 km/h).  La gacela de Thomson (Eudorcas thomsonii), el segundo (hasta 80 km/h). Los guepardos tienen que ser lo suficientemente rápidos para capturar alguna gacela (pero no todas, a riesgo de desaparecer ellos mismos) y las gacelas suficientemente rápidas para escapar alguna vez y reproducirse. Sobreviven las más veloces, así que a su vez la naturaleza selecciona los guepardos más rápidos, que son los que sobreviven al poder comer. La presión de los depredadores es un factor importante que determina la supervivencia de una población y qué estrategias deberá seguir la población para sobrevivir. Así mismo, los depredadores deberán encontrar soluciones a las posibles nuevas formas de vida de sus presas para tener éxito.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi
Guepardo persiguiendo una gacela de Thomson en Kenya. Foto de Federico Veronesi

Lo mismo sucede con otras relaciones depredador-presa, parásito-hospedador o herbívoros-plantas, ya sea con el desarrollo de la velocidad u otras estrategias de supervivencia como venenos, pinchos…

HUMANOS Y PERROS… Y BACTERIAS

Nuestra relación con los perros, que data de tiempos prehistóricos, también es un caso de coevolución. Esto nos permite, por ejemplo, crear lazos afectivos con sólo mirarlos. Si quieres ampliar la información, de invitamos a leer este artículo pasado donde tratamos el tema de la evolución de perros y humanos en profundidad.

Otro ejemplo es la relación que hemos establecido con las bacterias de nuestro sistema digestivo, indispensables para nuestra supervivencia. O también con las patógenas: han coevolucionado con nuestros antibióticos, por lo que al usarlos indiscriminadamente, se ha favorecido la resistencia de estas especies de bacterias a los antibióticos.

IMPORTANCIA DE LA COEVOLUCIÓN

La coevolución es uno de los principales procesos responsables de la gran biodiversidad de la Tierra. Segun Thompson, es la responsable que existan millones de especies en lugar de miles.

Las interacciones que se han desarrollado con la coevolución son importantes para la conservación de las especies. En los casos donde la evolución ha sido muy estrecha entre dos especies, la extinción de una llevará a la otra casi con seguridad también a la extinción. Los humanos alteramos constantemente los ecosistemas y por lo tanto, la biodiversidad y evolución de las especies. Con sólo la disminución de una especie, afectamos muchas más. Es el caso de la nutria marina, que se alimenta de erizos.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium

Al ser cazada por su piel, el siglo pasado los erizos aumentaron de número, arrasaron poblaciones enteras de algas (consumidoras de CO2, uno de los responsables del calentamiento global), las focas que encontraban refugio en las algas ahora inexistentes, eran más cazadas por las orcas… la nutria es pues una especie clave para el equilibrio de ese ecosistema y del planeta, ya que ha evolucionado conjuntamente con los erizos y algas.

De las relaciones coevolutivas entre flores y animales depende la polinización de miles de especies, entre ellas muchas de interés agrícola, por lo que no hay que perder de vista la gravedad del asunto de la desaparición de un gran número de abejas y otros insectos en los últimos años. Un complejo caso de coevolución que nos afectaría directamente es la reproducción de la higuera.

EN RESUMEN

Como hemos visto, la coevolución es el cambio evolutivo entre dos o más especies que interactúan, de manera recíproca y gracias a la selección natural.

Para que haya coevolución se debe cumplir:

  • Especificidad: la evolución de cada carácter de una especie se debe a presiones selectivas del carácter de la otra especie.
  • Reciprocidad: los caracteres evolucionan de manera conjunta.
  • Simultaneidad: los caracteres evolucionan al mismo tiempo.

REFERENCIAS

Mireia Querol Rovira