Arxiu d'etiquetes: hoja

Plantas y animales también pueden vivir en matrimonio

Cuando pensamos en la vida de las plantas se hace difícil imaginarla sin la interacción con los animales, puesto que estos día a día establecen diferentes relaciones simbióticas con ellas. Entre estas relaciones simbióticas encontramos la herbívora, o el caso contrario, el de las plantas carnívoras. Pero, hay muchas otras interacciones súper importantes entre plantas y animales, como la que lleva a estos organismos a ayudarse los unos a los otros y a convivir juntos. Por eso, esta vez os quiero presentar el mutualismo entre plantas y animales.

Y ¿qué es el mutualismo? Pues es la relación que se establece entre dos organismos en la que ambos se benefician de la convivencia en conjunto, es decir, los dos consiguen una recompensa cuando viven en compañía. Esta relación consigue aumentar su eficacia biológica (fitness) por lo que existe una tendencia de los dos organismos a convivir siempre juntos.

Según esta definición tanto polinización como dispersión de semillas a través de animales son casos de mutualismo. Veámoslo.

POLINIZACIÓN POR ANIMALES

Muchas plantas reciben visitas a sus flores por parte de animales que pretenden alimentarse del néctar, del polen o de otros azúcares que éstas producen y a cambio transportan polen hacia otras flores, permitiendo que este llegue al estigma de una manera muy eficaz. Así, la planta obtiene el beneficio de la fecundación con un coste de producción menor de polen que el que supondría dispersarlo por el aire (el cual llegaría con menor probabilidad al estigma de otras flores). Y los animales a cambio obtienen como recompensa el alimento. Se establece así una verdadera relación de mutualismo entre los dos organismos.

 “Video:The Beauty of Pollination” – Super Soul Sunday – Oprah Winfrey Network (www.youtube.com)

El caso extremo de mutualismo se da cuando estas especies evolucionan una dependiendo de la otra, es decir, cuando se da coevolución. Entendemos por coevolución esas adaptaciones evolutivas que permiten a los dos o más organismos establecer una relación de simbiosis estrecha, ya que las adaptaciones evolutivas de uno influyen en las adaptaciones evolutivas del otro organismo. Por ejemplo esto se da entre varías orquídeas  y sus polinizadores, como es el conocido caso de la Orquídea de Darwin. Pero hay muchas otras plantas que también han coevolucionado con sus polinizadores, como la higuera  o la yuca.

De ninguna manera esto se debe confundir con el engaño que algunas plantas producen sobre sus polinizadores, los cuales no obtienen ningún beneficio directo. Por ejemplo, algunas orquídeas también atraen a sus polinizadores a través de olores (feromonas) y de sus curiosas formas que se asemejan a las hembras del polinizador, haciendo que éste se acerque a ellas para copularlas y quede impregnado de polen que será transportado a otras flores gracias al mismo engaño.

14374841786_121feb4632_o.jpg
Orquídea abejera (Ophrys apifera) (Autor: Bernard DUPONT, flickr).

DISPERSIÓN DE SEMILLAS POR ANIMALES

La dispersión de semillas por animales se considera que ha tenido lugar gracias a un proceso coevolutivo entre los animales y los mecanismos de dispersión de las semillas en el cual tanto plantas como animales obtienen un beneficio. Lo más probable es que este proceso se iniciara en el Carbonífero (~300MA), donde ya se cree que algunas plantas como las cícadas desarrollaban unos falsos frutos carnosos que podrían ser consumidos por reptiles primitivos que actuarían de agentes dispersores de semillas. Este proceso se habría intensificado con la diversificación de las plantas con flores (Angiospermas) y de pequeños mamíferos y aves durante el Cretácico (65-12MA), hecho que permitió la diversificación de los mecanismos de dispersión y de las estructuras del fruto.

El mutualismo se puede dar de dos maneras dentro de la dispersión de semillas por animales.

El primer caso la llevan a cabo los dispersores que ingieren semillas o frutos que expulsaran posteriormente, sin ser digeridos, por defecación o regurgitación. Los frutos y semillas preparados para este caso son portadores de recompensas o señuelos, con los que a la vez atraen a sus agentes dispersantes, ya que los frutos suelen ser carnosos, dulces y a menudo tienen colores vistosos o emiten olores para atraer a los animales.

Por ejemplo, Acacia cyclops forma unas vainas que contienen semillas rodeadas por eleosomas (sustancias muy nutritivas formadas normalmente por aceites) que son mucho más grandes que la propia semilla. Esto supone un coste elevado de energía por parte de la planta, ya que no solo tiene que hacer las semillas sino que también tiene que formar esta recompensa. Pero a cambio, la cacatúa Galah (Eolophus roseicapillus) transporta a larga distancia sus semillas, ya que al alimentarse de este eleosoma ingiere las semillas que serán transportadas por su vuelo a larga distancia hasta que sean expulsadas por defecación en otros lugares.

Cacatua_Acacia.jpg
Izquierda, Cacatúa Galah (Eolophus roseicapillus) (Autor: Richard Fisher, flickr) ; Derecha, Vainas de Acacia cyclops (semillas negras, eleosoma rosa) (Autor: Sydney Oats, flickr).

Y el otro tipo de dispersión de semillas por animales que establece una relación de mutualismo es aquel donde las diásporas son recogidas por el animal en época de abundancia y las entierra para disponer de ellas como alimento cuando tenga necesidad. Pero no todas son comidas y algunas germinan.

3748563123_eeb32302cf_o.jpg
Ardilla recogiendo frutos (Autor: William Murphy, flickr)

Pero no todo acaba aquí, puesto que hay otros ejemplos bien curiosos y menos conocidos que de alguna manera han hecho que tanto animales como plantas vivan juntos en un perfecto “matrimonio”.  Veamos un par de ejemplos:

Azteca y Cecropia

Las plantas del género Cecropia viven en los bosques tropicales húmedos de Centroamérica y Sudamérica, siendo unas grandes luchadoras. Su estrategia por conseguir alzarse y captar luz evitando la competencia con otras plantas ha sido la firme relación que mantienen con las hormigas del género Azteca.

Las plantas proporcionan nidos a las hormigas, puesto que sus tallos terminales son normalmente huecos y septados (con separaciones) lo que les permite a las hormigas habitarlas por dentro, y además las plantas también producen cuerpos müllerianos, que son pequeños cuerpos alimenticios ricos en glicógeno de los cuales las hormigas se alimentan. A cambio, las hormigas protegen a Cecropia de lianas o bejucos, otorgando un gran éxito como planta pionera.

Ant Plants: CecropiaAzteca Symbiosis (www.youtube.com)

Marcgravia y murciélagos

Hace pocos años se ha descubierto que una planta de Cuba polinizada por murciélagos ha evolucionado dando pie a hojas modificadas que actúan como antena parabólica para la ecolocalización (radar) de los murciélagos. Es decir, su forma facilita que los murciélagos la localicen rápidamente lo que les permite recolectar néctar de manera más eficaz y a las plantas ser polinizadas con mayor éxito, ya que los murciélagos se desplazan rápidamente visitando cientos de flores cada noche para alimentarse.

6762814709_6dfaf49fff_o.jpg
Marcgravia (Autor: Alex Popovkin, Bahia, Brazil, Flickr)

 

En general, vemos que la vida de las plantas depende mucho de la vida de los animales, ya que estos están conectados de una forma u otra. Toda estas interacciones que hemos presentado forman parte de un conjunto aún mayor que hacen de la vida una más compleja y peculiar, en la que la vida de uno no se explica sin la vida del otro. Por este motivo, podemos decir que la vida de algunos animales y algunas plantas se asemeja a un matrimonio.

Difusió-castellà

REFERENCIAS

  • Apuntes obtenidos en diversas asignaturas durante la realización del Grado de Biología Ambiental (Universidad Autónoma de Barcelona) y el Máster de Biodiversidad (Universidad de Barcelona).
  • Bascompte, J. & Jordano, P. (2013) Mutualistic Networks (Chapter 1. Biodiversity and Plant-Animal Coevolution). Princeton University Press, pp 224.
  • Dansereau, P. (1957): Biogeography: an Ecological Perspective. The Ronald Press, New York., pp. 394.
  • Fenner M. & Thompson K. (2005). The Ecology of seeds. Cambridge: Cambridge University Press, 2005. pp. 250.
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica ªEdición. McGraw-Hill, pp. 906.
  • Murray D. R. (2012). Seed dispersal. Academy Press. 322 pp.
  • Tiffney B. (2004). Vertebrate dispersal of seed plants through time. Annual Review of Ecology, Evolution and Systematics. 35:1-29.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, pp. 424.
  • National Geographic (2011). Bats Drawn to Plant via “Echo Beacon”. http://news.nationalgeographic.com/news/2011/07/110728-plants-bats-sonar-pollination-animals-environment/

Plantas carnívoras

El carnivorismo es un tipo de nutrición que normalmente se asocia a los animales, al mundo de los heterótrofos. Pero se ha visto que hay plantas que también son capaces de alimentarse de otros organismos. Éstas son las denominadas plantas carnívoras y sus estrategias para capturar a las presas son bien diferentes y curiosas.

¿QUÉ ES UNA PLANTA CARNÍVORA?

Una planta carnívora es aquella planta que aun siendo autótrofa obtiene un suplemento nutritivo gracias a que se alimenta de animales, sobretodo insectos.

Para que una planta sea carnívora debe cumplir tres requisitos básicos:

  • Tiene que atraer a la presa para capturar y matarla. Para llamar su atención normalmente presentan coloración rojiza y secretan néctar. Y para capturar a las presas disponen de trampas, adaptaciones morfológicas y anatómicas que permiten retener y matarla.
  • También deben ser capaces de digerir y absorber los nutrientes liberados por la presa que han capturado.
  • Y finalmente tiene que extraer un beneficio significativo de todo el proceso.

Dionaea muscipula
Venus atrapamoscas (Dionaea muscipula) (Autor: Jason).

¿DÓNDE VIVEN?

Las carnívoras resultan poco competitivas en ambientes normales y además suelen presentar un sistema radicular pequeño, por ello requieren de esta especialización que les permite crecer más rápidamente. Generalmente se encuentran en lugares con poca mineralización, pero alta concentración de materia orgánica y zonas soleadas y de humedad elevada, ya que todas las carnívoras realizan la fotosíntesis.

Normalmente también son plantas calcífugas, es decir, no están bien adaptadas a suelos alcalinos y prefieren ambientes ácidos dónde la fuente de calcio es la presa. También tienden a vivir en ambientes reductores, por lo tanto aparecen en suelos con poco oxígeno y cargados de agua. Algunas incluso son acuáticas y viven flotando o sumergidas pero cerca de la superficie.

TIPO DE TRAMPAS Y EJEMPLOS

El sistema de captura es bastante diverso, pero se puede clasificar según si hay movimiento o no. Consideramos activas aquellas que tienen movimiento mecánico o por succión. En segundo lugar están las semiactivas; éstas tienen movimiento y disponen de pelos adhesivos. Y finalmente hay las pasivas, es decir, que capturan sin movimiento gracias a pelos adhesivos o estructuras de caída como los cartuchos o las urnas. A continuación veremos las estrategias a través de algunos ejemplos.

TRAMPAS ACTIVAS

Venus atrapamoscas

En el caso de esta planta las trampas son mecánicas y están formadas por dos valvas unidas a un eje central. Estas valvas son el resultado de la transformación de las hojas, las cuales ya no son fotosintéticas. En consecuencia el tallo es el encargado de actuar como peciolo y de hacer la fotosíntesis; por ello se encuentra engrosado, aumentando su superficie facilita el proceso. Por otro lado, las valvas constan de glándulas de néctar que atraen a la presa y además están rodeadas en su perímetro por dientes que ayudan al cierre, ya que quedan superpuestas para encajar perfectamente y evitar que el animal escape.

Pero, ¿qué acciona el cierre? los encargados son una serie de pelos disparadores que se encuentran en el interior de la valva. Cuando la presa se sitúa sobre la trampa y mueve dos veces el mismo pelo o dos de distintos en menos de 20s las valvas se cierran inmediatamente.

A continuación podemos ver un vídeo dónde se explica este proceso. El vídeo es originario de un reportaje emitido en La 2 de TVE (Canal de Youtube: Luis Estévez):

Utricularia, la succionadora

Esta planta conocida como col de vejigas (Utricularia) vive sumergida cerca de la superficie y consta de vejigas o utrículos que actúan como trampas. Las vejigas se caracterizan por tener en la entrada unos pelos sensitivos que activan el mecanismo de succión de la presa hacía el interior, ya que en consecuencia la vejiga genera una presión interna muy fuerte. De este modo succionan agua y arrastran al animal hacía la trampa. En el momento que entra agua en la vejiga, ésta puede llegar a aumentar un 40% su volumen. La presión interna es tan grande que cuando el animal es capturado se escucha la succión.

En el siguiente vídeo podemos ver en acción a la col de vejigas. El vídeo es originario de un reportaje emitido en La 2 de TVE (Canal de Youtube: Schoolbox):

TRAMPAS SEMIACTIVAS

Cuando te coja ya no podrás escapar

La presencia de pelos adhesivos no es exclusiva de plantas carnívoras, muchas plantas los utilizan como una defensa o para evitar pérdidas de agua. Pero algunas carnívoras, como el rocío del Sol (Drosera), los usan para capturar animales.

Los pelos adhesivos o glándulas que presenta Drosera en sus hojas están formados por un  pie y una célula apical que libera mucilago. Esta substancia atrae a las presas por su olor y gusto. Cuando la presa se sitúa en las hojas, las gotas de mucilago se van uniendo entre ellas hasta formar una masa viscosa que acaba lubricando toda la presa haciendo imposible que pueda escapar. Debemos remarcar que las glándulas tienen cierta movilidad y se desplazan para ponerse en contacto con el animal. Además, esto provoca el cierre de la hoja, facilitando la posterior digestión.

El siguiente vídeo muestra el funcionamiento de este mecanismo (Canal de Youtube: TheShopofHorrors):

TRAMPAS PASIVAS

¡Cuidado que te enganchas! 

El caso de Drosophyllum es muy similar al de Drosera, pero esta vez los pelos adhesivos no tienen movilidad y en consecuencia la hoja tampoco. El insecto queda atrapado simplemente porque se engancha y no se puede liberar.

Drosophyllum
Insectos atrapados por los pelos adhesivos de Drosophyllum (Autor: incidencematrix).

¡Vigila que caes!

Finalmente vemos las trampas pasivas de caída, los cucuruchos y las urnas. Éstos a veces presentan una tapa inmóvil que no forma parte del mecanismo de captura, pero que protege del exceso de agua, evitando que se llene. Los cucurucho y urnas pueden estar formados por la propia hoja o bien ser una estructura adicional originada por el nervio foliar. Éste baja hasta la altura del suelo y después forma la trampa.

Nepenthes
Urna de Nepenthes (Autor: Nico Nelson).

Las presas se sienten atraídas hacia estos engaños debido a las glándulas de néctar situadas en el interior. ¡Una vez dentro salir se vuelve complicado! Las paredes de estas trampas pueden ser viscosas, presentar pelos orientados hacia abajo que dificultan la salida o bien tener tacas translucidas que hacen pensar al animal que hay una salida, pero que en realidad no lo es y entonces el animal cae rendido al fondo intentando escapar. Otras además liberan sustancias que aturden a la presa impidiendo la huida.

Heliamphora
Cucuruchos de Heliamphora (Autor: Brian Gratwicke).

Debe decirse que los animales grandes que suelen caer en estas trampas es porque están enfermos o porque su desarrollo no les permite distinguir la trampa, aunque las hay que llegan a medir hasta 20cm de largo.

FALSAS CARNÍVORAS

Hay algunas plantas que parece que en un futuro podrían llegar a ser carnívoras, pero que no lo son porque no tienen un mecanismo especializado, es decir, no cumplen uno o más requisitos necesarios.

Es el caso de Dipsacus fullonum. Esta especie consta de unas hojas que almacenan agua alrededor del tallo. Esto evita que los insectos no voladores puedan subir y al mismo tiempo actúa como una trampa potencial de caída. De tal modo que algunos insectos pueden morir ahogados en el agua. Por lo tanto, en un futuro podría ser carnívora, ya que podría capturar los insectos y a partir de esa agua absorber los nutrientes.

Dipsacus fullonum
Acumulación de agua con insectos muertos en las hojas de  Dipsacus fullonum (Autor: Wendell Smith).

Difusió-castellà

REFERENCIAS

Las Reinas del Jardin; flores con corona

Si creías que las coronas eran solo para los reyes y las reinas, estabas bien equivocado. En este articulo podrás ver que algunas flores, como los narcisos, también son portadoras de coronas ¡y son muy dignas de ello! Además no todas llevan la misma, sino que hay de muy distintas, de todos los tamaños y colores. Y son estas estructuras tan peculiares las que han ocasionado que muchas de estas plantas sean cultivadas para los jardines. 

INTRODUCCIÓN

En primer lugar, tenemos que presentar las amarilidóideas (Subfamilia Amaryllidoideae, Fam. Amaryllidaceae) porque es donde encontraremos a estas flores reales portadoras de corona.

Los miembros de esta subfamilia son plantas herbáceas perennes o bienales con bulbos o raramente con rizoma (tallos subterráneos habitualmente alargados y de crecimiento horizontal, similares a raíces y que normalmente almacenan sustancias de reserva). Estas acostumbran a presentar hojas alargadas y estrechas, que envuelven una parte del tallo, con los nervios paralelos, sin pelos, caducas, planas y con el margen entero, liso.

Narcís
Foto de un narciso (Narcissus) como ejemplo de un miembro de Amaryllidoideae.

SUS FLORES

Ahora que ya nos hacemos una idea de como son las plantas, tenemos que conocer las características de las flores. Es decir, como son:

  • Hermafroditas: contienen órganos reproductores tanto masculinos como femeninos.
  • Bracteadas: cada flor consta de una hoja especializada que la acompaña y que se origina en su axila.
  • Pueden crecer solitarias o en conjunto.
  • Sin diferenciación entre sépalos y pétalos. Por lo tanto, en este caso no se diferencia entre corola y cáliz, sino que se trata de un perianto formado por dos verticilos de tépalos petaloides. En cada verticilo encontramos 3 tépalos y en total 6 por flor. Estos pueden estar libres o unidos entre ellos. Cuando esto último ocurre pueden formar coronas, tal y como se explica en el siguiente apartado.

característiques florals
Partes de la flor: 1. tépalo petaloide ; 2. corona; 3. bráctea floral (Modificación foto de Miguel Ángel García).

DIVERSIDAD DE CORONAS

El grupo Amaryllidaceae se compone de 59 géneros diferentes. Pero no todos son dignos de llevar corona. Y, a continuación, podrás ver cuales si que lo son y donde aparecen.

PARACOROLAS

En Europa, región mediterránea y al oeste de Asia encontramos unas de las flores con corona más conocidas. Se trata del narciso (Narcissus), una de las plantas más utilizada en jardinería y seguramente la reina del jardín más habitual. Este género consta de una corona larga con forma de copa o embudo. Su origen es petaloide, es decir, parte de los tépalos se fusiona para dar lugar a esta estructura. A este tipo de corona se la denomina paracorola.

Narcissus
Narcissus (Autor: Blondinrikard Fröberg).

CORONAS ESTAMINALES

Por otro lado, dentro del mismo territorio encontramos el género Pancratium. Pero este luce una corona totalmente diferente; en este caso el origen es estaminal, es decir, las bases de los estambres se ha ensanchado y fusionado entre ellas para formar el embudo.

Pancratium illyricum
Pancratium illyricum (Autor: Tigerente).

Desde el centro al este de Asia y en Australia aparecen los géneros Calostemma y Proiphys, los cuales llevan corona estaminal (como en el caso anterior).

Calostemma_luteum
Calostemma luteum (Autor: Melburnian).

Proiphys_amboinensis
Proiphys amboinensis (Autor: Tauʻolunga).

ALTRES CORONES

Además, dentro de la misma distribución que los dos ejemplos anteriores, aparece Lycoris. Pero, este luce una corona más pequeña, ya que esta formada solo por la unión de la base de los 6 tépalos que dan lugar a un pequeño tubo.

Lycoris_aurea
Lycoris aurea (Public Domain).

Finalmente en América es donde encontramos una gran variedad de géneros y de coronas bien diversas, formadas de diferentes maneras; algunas como en los casos anteriores. Los miembros de este territorio son: Clinanthus, Pamianthe, Paramongaia, Hieronymiella, Placea, Hymenocallis, Ismene, Leptochiton, Eucrosia, Mathieua, Phaedranassa, Rauhia y Stenomesson

Pamianthe peruviana
Pamianthe peruviana (Autor: Col Ford and Natasha de Vere).

Placea amoena
Placea amoena (Autor: Dick Culbert).

Phaedranassa tunguraguae
Phaedranassa tunguraguae (Autor: Michael Wolf).

Ismene amancaes
Ismene amancaes (Autor: Mayta).

Hymenocallis caribaea
Hymenocallis caribaea (Autor:Tatters ❀).

Eucrosia bicolor
Eucrosia bicolor (Autor: Raffi Kojian – http://www.gardenology.org).

Clinanthus_variegatus
Clinanthus variegatus (Autor: Melburnian)

Ahora que ya conoces las diferentes coronas reales, ¿cual seria la reina de tu jardín?  

Difusió-castellà

REFERENCIAS

  • Aguilella & F. Puche. 2004. Diccionari de botànica. Col·leció Educació. Material. Universitat de València: pp. 500.
  • Bolòs, J. Vigo, R. M. Masalles & J. M. Ninot. 2005. Flora manual dels Països catalans. 3ed. Pòrtic Natura, Barcelona: pp. 1310.
  • Guía de Consultas Diversidad Vegetal. FACENA (UNNE).Monocotiledoneas- Asparagales: Amaryllidaceae.
  • W. Byng. 2014. The Flowering Plants Handbook: A practical guide to famílies and genera of the world. Plant Gateway Ltd., Hertford, UK.
  • Apuntes de Fanerógamas, Grado de Biología Ambiental, UAB.
  • Guía de Consultas Diversidad Vegetal. FACENA (UNNE).Monocotiledoneas- Asparagales: Amaryllidaceae.