Arxiu d'etiquetes: Hymenoptera

What are parasitoid insects and what are they useful for?

Almost everybody could explain you more or less accurately what both parasites and predators are. But could everybody say you what a parasitoid is?

Animals (and especially insects) set up a lot of different symbiotic relationships, but often we find organisms whose relationship is somewhere between one and another (this is not a matter not of black or white!). In the case of parasitoid insects, we talk about organisms that establish a symbiotic relationship with traits of both predator-prey relationships and a parasitic ones.

Read this article to find out what parasitoid insects are, which is their origin and which kind of parasitoid insects exist. They are more useful than they seem to be!

Parasites, parasitoids and predators

Parasitoids are not exclusively insects, but the greater part of parasitoids belong to the subphyllum Hexapoda. For this reason, I will focus my explanation on parasitoid insects.

Before giving you further explanations, we must make the differences between parasitoids, parasites and predators clear.

In a parasitic relationship, parasites benefit at the expense of other organisms, the hosts, which are damaged in result. But despite of hurting it, parasites try to keep their hosts alive as long as possible in order to keep on benefiting from them, so parasites rarely kill their hosts.

Aedes albopictus female (tiger mosquito or forest mosquito) biting its host (Public domain).

In a predator-prey relationship, predators feed on a lot of organisms (the prey) throughout their life cycle in order to keep on developing. Unlike parasite organisms, predators don’t try to keep their prey alive so long, because the purpose of preying on other organisms is to obtain energy as faster as possible (for example, mantids, dragonflies…).

Mantis eating a prey (Picture by Avenue, CC).

Finally, between parasitism and predation we find parasitoid organisms: insects with a parasitic larval stage that develop by feeding on a single host, which is usually another insect or arthropod. In contrast with parasites, parasitoids larvae kill their hosts to complete their life cycle; so, in which sense are they different from predators? The answer is that parasitic larvae only need to feed on a single host to reach adulthood. While parasitoid larvae are a parasitic life form, parasitoid adults tend to be herbivores or predators.

common awl parasitoids 001a
Caterpillar of the lepidopteran species Hasora badra surrounded by wasp cocoons of the family Braconidae (Picture by SoonChye ©).

Origin and diversity of parasitoids

Parasitoid insects are present in many insect orders (Coleoptera, Diptera..), but the greater part of them is located in the Hymenoptera order (bees, wasps and ants). Because of that, in this section I will focus on talking only about the origin and diversity of hymenopteran parasitoids.

The most important and also evolved group of hymenopterans is the suborder Apocrita, which includes wasps, bees and ants. In turn, the suborder Apocrita is divided in two artificial groups:

  • Aculeata: they don’t have a parasitic larval stage. The ovopositor (an organ that females use to lay their eggs) has been transformed into a sting that inoculates venom (organisms of this group are also called “stinging wasps and bees”).
Sting_Apparatus
Sting of a female bee (Apidae) (Public domain).
  • “Parasitica”: they have a parasitic larval stage. Adult females of the group Parasitica have a long and sharp ovopositor they stab into different surfaces (wood, another insect…) so they can lay their eggs inside. In contrast with Aculeata, Parasitic hymenopterans don’t sting (they’re not venomous).
Parasitoid female bee of the species Megarhyssa macrurus, family Ichneumonidae, with its long and sharp ovopositor she use to lay their eggs (Picture by Bruce Marlin, CC).

About 77% (66.000 species more or less) of parasitoid insects known nowadays belong to the Parasitica group, and most of them are wasps.

Origin of hymenopteran parasitoids

To understand the origin of certain morphological, anatomical or conductual traits of an organism, we often have to study the traits of a “sister taxon” or “sister group”, i.e. a group more closely related to the group in question than any other group (they share the most recent common ancestor).

The sister group of Apocrita is the family Orussidae (from the Symphyta suborder), which is also considered the most ancient groups of hymenopterans.

Orussus coronatus (Fam. Orussidae) (Public domain).

It’s believed that the common ancestor of Apocrita and Orussidae had first developed a parasitic life form among hymenopterans. This conclusion is based on the studies about ecologic traits of current Orussidae specimens: some of these organisms establish a positive relationship with some symbiotic xylophagus fungi (i.e. fungi that feed primarily on wood); these fungi usually develop inside a sort of tiny baskets located over the surface of ovopositors, so they can be inoculated inside the wood the Orussidae feed on when laying. Thus, fungi process wood to obtain a product that can be digested by Orussidae. However, there exist Orussidae specimens which don’t establish this kind of symbiotic relationship and parasite other specimens instead (especially the ones that possess symbiotic fungi). Thus, these parasitic Orussidae obtain nutrients by feeding on other Orussidae members and obtain more energy in result.

So, this being an ancient group it’s believed that the observed behavior in some current Orussidae members could be a reflection of the ancient origin of parasitism and parasitoids among the Hymenoptera order.

Types of parasitoids

Even if there are many ways to classify parasitoids, we can divide these organisms mainly into two groups: the ones that stop host’s development when laying inside it and the ones that don’t stop host’s development. Let’s talk about these two groups:

Idiobionts

Idiobiont parasitoids paralyze or prevent further development of hosts when laying, so parasitoid larvae could have a reliable and immobile source of food at their birth.

Usually, idiobionts attack hosts that are concealed in plant tissues (for example, wood) or exposed hosts that possess other kinds of physical protections, so female parasitoids have developed long and sharp ovopositors that allow them to pierce these barriers.

CNCHYM_015657+1343847606
Liotryphon caudatus female (Hymenopteran of the family Ichneumonidae, superfamily Ichneumonidea) with her long and sharp ovopositor (Picture by CNC/BIO Photography Group, Biodiversity Institute of Ontario, CC).

Idiobiont parasitoids can be both ectoparasitoids and endoparasitoids (i.e. if larvae attack hosts from outside or inside host’s body), although mostly are ectoparasitoids. Moreover, parasitoid larvae feed on hosts only on the last development stages until the moment they reach adulthood.

Ectoparasitoid idiobiont females first inject venom into the host, to induce temporary or permanent paralysis, and then ovoposits on or near the immobilized host. In some cases, females that have just layed their eggs stay near the lay to protect it and also to prevent host to be eaten by other organisms.

15050169230_7ca3bda2a7_c
Femella d’un himenòpter de la subfam. Pimplinae (fam. Hymenopteran female from the subfamily Pimplinae (family Ichneumonidae) stabbing her ovopositor in a trunk surface to lay eggs (Picture by Cristophe Quintin on Flickr, CC).

Generally, idiobiont adult females don’t have any preference when looking for a place to proceed on egg laying, so larvae feed on a wide variety of organisms.

Koinobionts

Most of parasitoid insects (and especially hymenopterans, dipterans and coleopterans) are koinobionts.

Unlike idiobionts, almost all koinobionts are endoparasitic and lay their eggs directly inside the host, which can be both exposed and concealed. However, the trait that truly differentiates koinobiont parasitoids from idiobiont parasitoids is the fact that koinobionts allow the host to continue its development while feeding on it. Thus, the parasitic larvae feed on the host while growing inside host’s body without causing it any damage…until the moment larvae reach the adulthood, when they emerge from the body of the host, causing its death.

url
Aleiodes indiscretus female (Hymenopteran from the family Braconidae, superfamily Ichneumonoidea) inoculating eggs inside the body of a gypsy moth larvae (Lymantria dispar) (Foto de domini públic).

Once the parasitic larvae are inside host’s body begin to grow to reach the pupal stage. Until this moment, larvae use different mechanisms to avoid or block the immune response of the host (for example, by placing eggs in hosts tissues where immune system doesn’t work). So, larvae can develop by feeding on host’s nutrients until the moment they metamorphose, when adult parasitoids emerge from inside the body of the host, killing it consequently.

Due to the close relationship established by parasitoids and hosts, koinobiont parasitoids tend to be less generalist than idiobionts when looking for a suitable host.

Ecological function of parasitoids

Parasitoids, like predators or parasites, perform an important ecological role because they act as natural regulators of other organisms populations. So, parasitic larvae kill a lot of organisms that could damage the environment or even other organisms if their populations grow excessively. Thus, the disappearance of parasitoids (just like predators or parasites) could entail an excessive increase of some animal populations (especially other insects populations).

For that reason, parasitoids are considered as a great biological control agent against different plagues in gardens and crops.

parasitoidWaspLarvae
Tobacco hornworm (Manduca sexta) being attacked by a parasitoid wasp of the superfamily Braconidae. In this picture, the larvae of the wasp have reached the pupal stage (white rice-shaped cocoons) and, at the end of pupation, adults will emerge, killing the hornworm. Tobacco hornworm is considered a harmful plague for plants of the family Solanaceae (like tobacco, tomato and potato) (Foto de R.J Reynolds Tobacco Company Slide Set).

.       .        .

References

  • Notes from the subject “Biology and Biodiversity of Arthropods” taken during my Biology studies at Universitat  Autònoma de Barcelona (UAB).
  • Timothy M. Goater, Cameron P. Goater, Gerald W. Esch (2013). Parasitism: The Diversity and Ecology of Animal Parasites. Ed. 2. Cambridge University Press.
  • Vincent H. Resh, Ring T. Cardé (2009). Encyclopedia of Insects. Ed.2. Academic Press.
  • Donald L. J. Quicke (2014). The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics, Evolution and Ecology. John Wiley & Sons.
  • http://bugs.bio.usyd.edu.au/learning/resources/Entomology/internalAnatomy/imagePages/parasitoidWaspLarvae.html

Main image by Ton Rulkens (Flickr, CC).

Difusió-anglès

Flying made insects more diverse

The appearance of insect wings represented an adaptive improvement in the evolutionary history of these organisms, since they allowed them to spread and diversify across all kind of habitats. It is precisely for these events that wings are very diverse organs which have undergone a lot of changes.

In the following article, I will talk about the appearance of wings as elements that have ensured the diversification of insects, and also about the evolution of these organs and about their subsequent changes.

Introduction

Insects form the most diverse and successful group among the current fauna, and they’re also the unique invertebrates capable to fly. Even though they almost haven’t change since their appearance during the Devonian era (395-345Ma), the appearance of wings and of the ability to fly (alongside with other events that took place at the same time) allowed them to diversify rapidly.

Línea-geológica
Timeline of geological eras. Hexapoda and also insects appeared during the Devonian era (Picture from buglady.org).

Nowadays, there are almost 1 million of species of insects identified, and it’s known that there are lots of them waiting to be identified.

When winged insects appeared?

As you probably know, not all insects worldwide have wings: there are apterous insects (that is, insects without wings), which form the Apterygota group, and winged insects or Pterygota (is interesting to say that some organisms of this group have lost their wings later).

The most ancient winged insect is probably Delitzchala bitterfeldensis, an organism from the Palaeodictyoptera group dated from early Carboniferous in Germany (50Ma after the appearance of insects during the Devonian era, more or less).

Approximated representation of a Palaeodictyoptera. In contrast with current insects, these ones had three pair of wings instead of only one or two (the first one was probably a couple of little lobes located near the head) (Picture from Zoological excursions on Lake Baikal).

However, the fossil remains of the most ancient insect known nowadays, Rhyniognatha hirsti (dated from the early Devonian in Scotland, which was found in the “Rhynie Chert” sedimentary deposit), which has no wings, reveal that this insect shares some traits with winged insects (Pterygota). According to this, the origin of insect wings could be more ancient (probably from the Devonian or even more ancient).

We are still far from knowing the exact moment when the appearance of winged insects took place. But, despite of this, we can affirm that the ability to fly allowed them to reach new habitats, looking for more and better food and also run away from predators more easily. These events have provided a huge evolutionary advantage to insects and allowed them to diversify.

How did wings appeared?

Discrepancies toward the origin and evolution of insect wings is not limited only to “when ” , but also “how”: How did they appeared? Which structures from ancient insects have been modified to become wings?

There exist 4 hypothesis that try to explain the way wings were formed from different ancient organs: branchial hypothesis, stigmatic hypothesis, parapodial hypothesis and paranotal hypothesis.

First of all, and in order to understand all these hypothesis way better, we need to know the basis of corporal structure of insects. Let’s see the body scheme of a cricket (Orhoptera order):

Body scheme of a generic insect. There are 3 principal segments: 1) Head, where central nervous system and feeding functions are located, 2) Thorax, which has a locomotor function (here we can find all the appendices, including wings in winged insects); it’s divided in three parts: prothorax, mesothorax and metathorax; 3) Abdomen, in this segment we can usually find all the visceral organs. Moreover, we can also find the spiraculi located at both soft sides of its body, that is, holes that connect with the tracheal system and through where the exchange of gases takes place (Picture from Asturnatura).

 

Representation of the tracheal or respiratory system of an insect. This system is branched into the organism (Picture by M. Readey, Creative Commons).

 

So now, which are these hypothesis?

1) Branchial hypothesis 

According to this hypothesis, ancient Pterygota insects were aquatic organisms that were derived from terrestrial insects that got adapted to live underwater. Those ancestors breathed, as current insects, through spiracles connected to a net of internal pipes or tracheas. During the adaptation process to aquatic environment, these insects developed branchial or gill sheets on those spiracles in order to breathe underwater. Then, when they migrated back from aquatic to terrestrial environment, these sheets lost their ancient function and became a kind of wings.

According to recent data, it’s considered one of the most plausible hypothesis.

2) Stigmatic hypothesis

In the thoracic region, that is, where legs and wings born, the respiratory spiracles tend to be closed. According to this hypothesis, wings could be tracheal pipes expeled to the outside of the body in the thoracic region.

3) Parapodial hypothesis

This is a very simple hypothesis: it tells us that wings were formed by modified legs.

4) Paranotal hypothesis

A few years ago it was considered the most  plausible hypothesis, but now it competes with the brancial hypothesis. This is the most accepted hypothesis about the origin of insect’s wings. According to this hypothesis, wings were formed by the expansions of the tegumentary membrane located at both sides of the body, that is, the space located between the dorsal and the ventral surface of the body.

The expansions are known as “paranotes” (these structures gave the name to the paranotal hypothesis).

Ancient vs modern: Paleoptera and Neoptera

Nowadays, mostly of insects presents only one or two pairs of wings located, respectively, in the mesothorax and in the metathorax (middle and posterior segments), and not three pairs, as ancient insects usually had.

The way the two pairs of wings are articulated with the thorax, together with their position, allow us to differentiate two main groups of winged insects or Pterygota: Paleoptera and Neoptera.

Paleoptera

Generally, the Paleoptera insects can’t fold up the wings over the abdomen (this is an ancient condition). Moreover, the two pairs of wings are similar both in size and function, and also in the disposition of the veins that travel under their surface. Inside this group we find organisms from the Ephemeroptera order (for more information, take a look to my article about bioindicators), from Odonata order and also from the Palaeodictyoptera group, now extinguished.

An specimen of Odonata with its four wings unfolded because it has no way to fold up them over the abdomen (Picture by Ana_Cotta on Flickr, Creative Commons).

Neoptera

This group contain the rest of winged insects. Contrary to the ones explained above, Neoptera insects possess articulations that allow them to fold up the wings over the abdomen. Moreover, their wings are not always equal , and they can develop another functions (and new ones as well).

The wings of many groups of Neoptera insects have undergone a lot of secondary modifications, which allowed flying insects to diversify even more. Next, I will talk you about these secondary modifications.

An specimen of Diptera with its wings folded over its abdomen thanks to their articulations (Picture by Sander van der Wel on Flickr, Creative Commons).

Secondary modification of Neoptera’s wings

Generally, one of the two pairs of wings assumes the flying function (the ‘main wings’) while the other pair subordinates to the main one. This subordination can be expressed in two ways: 1) without external modifications (the subordinated pair of wings is limited to assist the main pair during the flight), 2) with secondary modifications, so the modified wings assume a new function.

Some Neoptera insects have undergone drastic modifications in one of the two pairs of wings. Let’s see some examples:

COLEOPTERA (beetles): the forewings, known as elytra, are a very hard structures that protect the rest of the body when they’re folded up. In this case, the hind wings are the main ones, so they assume the function of flying.

An specimen of a longhorn coleopter taking off. In this picture we can appreciate the forewings transformed into elytrum and the hind ones assuming the flying function (Picture by Matthew Fang on Flickr, Creative Commons).

HETEROPTERA (greenflies, cicadas, bedbugs): the forewings, known as hemelytra, aren’t completely hardened as in the case of beetles: only de proximal part is hardened, while the distal part has a membrane texture.

2628904535_09cbc0efbb
An specimen of Kleidocerys reseda (Picture by Mick Talbot on Flickr, Creative Commons).

POLINEOPTERA: in both cases that I’ve explained above, the hardening process of the forewings entails the loss of their veins; in Polineoptera insects (for example, cockroaches), the forewings are harder than the hind ones, but they retain their veins.

American-cockroach_polineoptera
An specimen of Periplaneta americana (american cockroach). Its wings are plenty of veins (Picture by Gary Alpert, Creative Commons).

DIPTERA and HIMENOPTERA (flies and mosquitoes; wasps, bees and ants): in this case, the forewings assume the flying function; on the other hand, the hind wings get reduced or modified, and sometimes they don’t appear. The hind wings of flies became equilibrium organs, the halteres.

halterios_dípteros_moscas-y-mosquitos
An specimen of crane fly (Tipulidae). The halteres (red circle) are located behind the forewings (Public domain picture).

ALTRES MODIFICACIONS: we can also talk about the changes in the shape, color, presence of filaments or scales, or even about the variations according to sex, hierarchy or geography location (for example, thats the case of ants or termites).

.              .             .

The origin and evolution of insect wings is still a fact waiting to be solved. Even so, independently of the moment and the way this event took place, is undeniable that wings have become key organs for the evolution and diversification of insects.

REFERENCES

Top picture by USGS Bee Inventory and Monitoring Lab (Creative Commons).

Difusió-anglès

The secret life of bees

If we talk about bees, the first thing that comes to mind might be the picture of a well-structured colony of insects flying around a honeycomb made of perfectly constructed wax cells full of honey.

But the truth is that not all bees known nowadays live in hierarchical communities and make honey. Actually, most species of bees develop into a solitary life-form unlike the classical and well-known honey bees (which are so appreciated in beekeeping).

Through this article, I’ll try to sum up the different life-forms of bees in order to shed light on this issue.

INTRODUCTION

Bees are a large diverse group of insects in Hymenoptera order, which also includes wasps and ants. To date, there are up to 20,000 species of bees known worldwide, although there could be more unidentified species. They can be found in most habitats with flowering plants located in every continent of the world (except for the Antarctica).

Bees pick up pollen and nectar from flowers to feed themselves and their larvae. Thanks to this, they contribute on boosting the pollination of plants. Thus, these insects have an enormous ecological interest because they contribute to maintain and even to enhance flowering plant biodiversity on their habitats.

Specimen of Apis mellifera or honey bee (Picture by Leo Oses on Flickr)

However, even though the way they feed and the sources of food they share could be similar, there exist different life-forms among bees which are interesting to focus on.

BEE LIFE-FORMS

SOLITARY BEES (ALSO KNOWN AS “WILD BEES”)

Most species of bees worldwide, contrary to the common knowledge, develop into a solitary life-form: they born and grow alone, they mate once when groups of male and female bees meet each other and, finally, they die alone too. Some solitary bees live in groups, but they never cooperate with each other.

Female of solitary life-form bees build a nest without the help of other bees. Normally, this kind of nest is composed by one or more cells, which are usually separated by partition walls made of different materials (clay, chewed vegetal material, cut leaves…). Then, they provide these cells with pollen and nectar (the perfect food for larvae) and, finally, they lay their eggs inside each cell (normally one per cell). Contrary to hives, these nests are often difficult to find and to identify with naked eyes because of its discreetness.

The place where solitary bees build their nest is highly variable: underground, inside twisted leaves, inside empty snail shells or even inside pre-established cavities made by human or left behind by other animals.

These bees don’t make hives nor honey, so these are probably the main reasons because of what they are less popular than honey bees (Apis mellifera). Although solitary bees are the major contributors on pollination due to their abundance and diversity (some of them are even exclusive pollinators of a unique plant species, which reveals a close relation between both organisms), most of the studies related with bees are focused on honey bees, because of what studies and protection of these solitary life-forms still remain in the background.

There exists a large diversity of solitary bees with different morphology:

3799308298_ff9fbb1bcc_n7869021238_a811f13aa4_n1) Specimen of Andrena sp. (Picture by kliton hysa on Flickr). 
2) Specimen of Xylocopa violacea or violet carpenter bee (Picture by Nora Caracci fotomie2009 on Flickr).
3) Specimen of Anthidium sp. (Picture by Rosa Gambóias on Flickr).

There are also parasite life-forms among solitary bees, that is, organisms that benefit at the expense of another organism, the host; as a result, the host is damaged in some way. Parasitic bees take advantage of other insects’ resources and even resources from other bees causing them some kind of damage. This is the case of Nomada sp. genus, whose species lay their eggs inside other bee nests (that is, their hosts), so when they hatch, parasite larvae will eat the host’s resources (usually pollen and nectar) leaving them without food. Scientists named this kind of parasitism as cleptoparasitism (literally, parasitism by theft) because parasitic larvae steal food resources from the host larvae.

PSEUDOSOCIAL BEES

From now on, we are going to stop talking about solitary bees and begin to introduce the pseudosocial life-forms, that is, bees that live in relatively organized and hierarchical groups which are less complex than truly social life-forms, also known as eusocial life-forms (which is the case of Apis mellifera).

Probably, the most famous example is the bumblebee (Bombus sp.). These bees live in colonies in which the queen or queens (also known as fertilized females) are the ones who survive through the winter. Thus, the rest of the colony dies due to cold. So is thanks to the queen (or queens) that the colony can arise again the next spring.

5979114946_9d491afd84_nSpecimen of Bombus terrestris or buff-tailed bumblebee(Picture by Le pot-ager "Je suis Charlie" on Flickr).

EUSOCIAL BEES

Finally, the most evolved bees known nowadays in terms of social structure complexity are eusocial bees or truly social bees. Scientist have identified only one case of eusocial bee: the honey bee or Apis mellifera.

Since the objective of this article was to refute the “all bees live in colonies, build hives and make honey” myth, I will not explain further than the fact these organisms form complex and hierarchical societies (this constitutes a strange phenomenon which has also been observed in thermites and ants) normally led by a single queen, build large hives formed of honeycombs made of wax, and make honey, a very energetic substance highly appreciated by humans.

Specimens of Apis mellifera on a honeycomb full of honey (Picture by Nicolas Vereecken on Flickr).

As we have been seeing, solitary bees play an important role in terms of pollination, because of what they must be more protected than they currently are. However, honeybees, and not solitary bees, still remain being on the spotlight of most scientists and a great part of society because of the direct resources they provide to humans.

REFERENCES

  • Notes taken during my college practices at CREAF (Centre de Recerca Ecològica i d’Aplicacions Forestals – Ecological Research and Forest Applications Centre). Environmental Biology degree, UAB (Universitat Autònoma de Barcelona).
  • O’toole, C. & Raw A. (1999) Bees of the world. Ed Blandford
  • Pfiffner L., Müller A. (2014) Wild bees and pollination. Research Institute of Organic Agriculture FiBL (Switzerland).
  • Solitary Bees (Hymenoptera). Royal Entomological Society: http://www.royensoc.co.uk/insect_info/what/solitary_bees.htm
  • Stevens, A. (2010) Predation, Herbivory, and Parasitism. Nature Education Knowledge 3(10):36

If you liked this article, feel free to share it at different Social Networks. Your collaboration allows science and nature information to spread throught different media and guarantee more peolpe could enjoy it!

Llicència Creative Commons

Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.