Arxiu d'etiquetes: insecto

Comprueba la evolución en tu propio cuerpo

¡ATENCIÓN! ESTE ARTÍCULO ESTÁ ANTICUADO.

LEE LA VERSIÓN ACTUALIZADA Y MEJORADA AQUÍ.

El 42% de la población estadounidense y el 11,5% de la española no cree que la evolución sea cierta. A pesar de ello, existen diferentes pruebas de que el genial Darwin estaba en lo cierto, algunas de ellas en tu propio cuerpo. ¿Te han operado del apéndice o quitado las muelas del juicio? Descubre en este artículo qué estructuras vestigiales heredaste de tus antepasados.

¿QUÉ SON LAS ESTRUCTURAS VESTIGIALES?

Las estructuras vestigiales (a menudo llamadas órganos, aunque no lo sean propiamente dicho) son partes del cuerpo que han visto reducida o perdida su función original durante la evolución de una especie. Se encuentran en muchos animales, incluidos por supuesto los humanos.

Esqueleto de orca en el que se observan vestigios de las extremidades traseras. Foto: Patrick Gries
Esqueleto de orca en el que se observan vestigios de las extremidades traseras, prueba de su origen terrestre. Foto: Patrick Gries

Las estructuras vestigiales eran plenamente funcionales en los antepasados de esas especies (y lo son en las estructuras homólogas de otras especies actuales), pero actualmente su función es prácticamente nula o ha cambiado. Por ejemplo, en algunos insectos como las moscas el segundo par de alas ha perdido su función voladora y ha quedado reducido a órganos del equilibrio (halterios). Si quieres saber más sobre la evolución del vuelo en los insectos entra aquí.

Además de estructuras físicas, las características vestigiales también pueden manifestarse en comportamientos o procesos bioquímicos.

¿POR QUÉ SON PRUEBAS DE LA EVOLUCIÓN?

La selección natural actúa sobre las especies favoreciendo características que aumenten su supervivencia y eliminando las que no, por ejemplo cuando aparecen cambios en el hábitat. Los individuos con características poco favorables morirán o se reproducirán menos y esa característica se verá eliminada a la larga, mientras que las favorables se mantendrán ya que sus portadores la podrán pasar a la siguiente generación.

A veces hay características que no son ni favorables ni desfavorables, por lo que seguirán pasando a las siguientes generaciones. Pero toda estructura tiene un coste (energético, peligro a que se infecte, desarrolle tumores…), por lo que la presión selectiva sigue actuando para eliminar algo que no favorece al éxito de la especie. Es el caso de las estructuras vestigiales, que “tardarían más” en desaparecer a lo largo de la evolución. El hecho que existan revelan que en el pasado esas estructuras sí tenían una función importante en nuestros antepasados.

ENCUENTRA TUS ÓRGANOS VESTIGIALES

LA MEMBRANA NICTITANTE

Ya hablamos de ella en Cómo ven el mundo los animales. Se trata de una membrana transparente o translúcida que sirve para proteger el ojo y humedecerlo sin perder visibilidad. Es común en anfibios, reptiles y aves. Entre los primates, sólo la poseen completa lémures y loris.

membrana nictitante, nictitating membrane
Membrana nictitante o tercer párpado de un avefría militar (Vanellus miles). Foto: Toby Hudson

En humanos la plica semilunaris es un vestigio de la membrana nictitante. Obviamente no la podemos mover pero aún tiene cierta función de drenaje del lagrimal y ayuda al movimiento del ojo (Dartt, 2006).

Plica semilunaris (pliegue semilunar). Foto: desconocido
Plica semilunaris (pliegue semilunar). Foto: desconocido

EL TUBÉRCULO DE DARWIN Y LOS MÚSCULOS DE LA OREJA

El 10% de la población tiene un engrosamiento en la oreja, vestigio de la oreja puntiaguda común en los primates. Esta estructura se llama tubérculo de Darwin y no tiene ninguna función.

Variabilidad del Tubérculo de Darwin en la punta de la oreja (0= ausente). Puede presentarse en otras zonas del pabellón auditivo: ver publicación.
Variabilidad del Tubérculo de Darwin en la punta de la oreja (0= ausente).  Fuente.
Comparación entre la oreja de un macaco y la nuestra. Fuente
Comparación entre la oreja de un babuino amarillo (Papio cynocephalus) y la nuestra. Fuente

Asimismo, los primates (y otros mamíferos) tienen orejas móviles para dirigir los pabellones auditivos hacia la fuente de sonido: seguramente lo habrás observado en tu perro o gato. Los humanos (y chimpancés) ya no tenemos esa gran movilidad, aunque algunas personas pueden mover ligeramente los pabellones auditivos a voluntad. Se ha comprobado mediante electrodos que estos músculos se excitan cuando percibimos un sonido que viene de una dirección concreta (2002).

Músculos auriculares responsables del movimiento del pabellón auditivo. Fuente

El músculo occipitofrontal también ha perdido su función de evitar que se caiga la cabeza, aunque participa en la expresión facial.

MÚSCULO PALMAR LARGO

El 16% de las personas caucásicas no posee este músculo en la muñeca, tampoco un 31% de las nigerianas ni un 4,6% de las chinas. Incluso puede aparecer en un brazo y no en el otro o ser doble según las personas.

Se cree que este músculo participaría activamente en la locomoción arborícola de nuestros antepasados, pero actualmente no tiene ninguna función necesaria, ya que no proporciona más fuerza de agarre. Este músculo es más largo en primates completamente arborícolas (lemures) y más corto en los más terrestres, como los gorilas (referencia).

Y tú, ¿lo tienes o no? Haz la prueba: junta los dedos pulgar y meñique y levanta ligeramente la mano.

mireia querol, mireia querol rovira, palmaris longus, musculo palmar largo, tendon
Yo tengo dos en el brazo izquierdo y uno en el derecho. Foto: Mireia Querol

MUELAS DEL JUICIO

El 35% de las personas no poseen muelas del juicio o tercer molar. En el resto, su aparición suele ser dolorosa y es necesaria la extirpación.

Yo no tengo el tercer molar. Foto: Mireia Querol Rovira
Yo no tengo el tercer molar. Foto: Mireia Querol Rovira

Nuestros ancestros homininos sí las tenían, bastante mayor que el nuestro. Un reciente estudio explica que cuando un diente se desarrolla, emite señales que determinan el tamaño de los dientes vecinos. La reducción de la mandíbula y el resto de dentadura a lo largo de la evolución ha provocado la reducción de los molares (e incluso la desaparición del tercero).

Comparativa entre la dentición de un chimpancé, Australopithecus afarensis y Homo sapiens. Fuente
Comparativa entre la dentición de un chimpancé, Australopithecus afarensis y Homo sapiens. Observa la reducción de los tres últimos molares entre afarensis y sapiens, Fuente

EL COXIS

Si te tocas la columna vertebral hasta el final, llegarás al coxis o cóccix. Se trata de 3 a 5 vértebras fusionadas vestigio de la cola de nuestros ancestros primates. De hecho, cuando estábamos en el útero materno, en los primeros estadíos de desarrollo del embrión se observa una cola con 10-12 vértebras en formación.

Distintos estados en el desarrollo embrionmario humano y comparación con otras especies. Créditos en la imagen
Distintos estadíos en el desarrollo embrionario humano (1 a 8) y comparación con otras especies. Créditos en la imagen

Posteriormente se reabsorbe, pero no en todos los casos: hay reportados 40 nacimientos de bebés con cola.

Neonato nacido con cola. Una mutación ha evitado la inhibición del crecimiento de la cola durante la gestación. Fuente
Neonato nacido con cola. Una mutación ha evitado la inhibición del crecimiento de la cola durante la gestación. Fuente

Aunque no tengamos cola, actualmente estos huesos sirven de anclaje de algunos músculos pélvicos.

mireia querol, mireia querol rovira, coxis, sacro, sacrum, tailbone, rabadilla
Situación del coxis. Foto: Mireia Querol Rovira

PEZONES SUPERNUMERARIOS (POLITELIA)

Se estima que hasta un 5% de la población mundial presenta más de dos pezones. Estos pezones “extra”, pueden presentarse en diferentes formas (completos o no) por lo que a veces se confunden con pecas o lunares.  Se situan en la línea mamilar (de la ingle a la axila), exactamente en la misma posición que el resto de mamíferos con más de dos mamas (observa a tu perro, por ejemplo). Habitualmente el número de mamas corresponde con la media de crías que puede tener un mamífero, por lo que los pezones extra serían un vestigio de cuando nuestros antepasados tenían más crias por parto. Lo habitual son 3 pezones, pero se ha documentado un caso de hasta 8 pezones en una persona.

Pezón suplementario debajo del principal. Fuente
Pezón suplementario debajo del principal. Fuente

ENCUENTRA TUS REFLEJOS Y COMPORTAMIENTOS VESTIGIALES

EL REFLEJO DE PRENSIÓN PALMAR Y PLANTAR

Alguna vez habrás experimentado que al acercar cualquier cosa a las manos de un bebé, automáticamente lo agarra con una fuerza tal que sería capaz de aguantar su propio peso. Desaparece hacia los 3-4 meses y es un remanente de nuestro pasado arborícola y a la forma de agarrarse al pelo de la madre, igual que sucede con los otros primates actuales. Observa el siguiente vídeo de 1934 sobre un estudio de dos gemelos (minuto 0:34):

En los pies también existe el reflejo de intentar agarrar algo cuando se toca la planta del pie de un bebé. Desaparece hacia los 9 meses de edad.

Por cierto, ¿te has fijado en la afición y facilidad que tienen los niños y niñas para subirse a cualquier barandilla o parte elevada en un parque infantil?

LA PIEL DE GALLINA

El frío, el estrés o una emoción intensa (por ejemplo, el escuchar cierta música) provoca que el músculo piloerector nos erice el vello dándole a la piel el aspecto de una gallina desplumada. Es un reflejo involuntario en el que algunas hormonas, com la adrenalina (que se libera en las situaciones mencionadas), están implicadas.  ¿Qué utilidad tenía esto para nuestros ancestros y tiene en los mamíferos actuales?

  • Aumentar el espacio entre la piel y el exterior, por lo que el aire caliente atrapado entre el pelo ayuda a mantener la temperatura.
  • Parecer más grandes para ahuyentar posibles depredadores o competidores.

    Chimpancé con el pelo erizado durante un display antes de un conflicto. Foto: Chimpanzee Sanctuary Northwest
    Chimpancé con el pelo erizado durante un display antes de un conflicto. Foto: Chimpanzee Sanctuary Northwest

Obviamente nosotros hemos perdido el pelo en la mayor parte del cuerpo, por lo que aunque conservamos el reflejo, no nos sirve ni para calentarnos ni para ahuyentar depredadores. El pelo se ha conservado más abundantemente en zonas donde es necesaria protección o  debido a la selección sexual (cabeza, cejas, pestañas, barba, pubis…), pero en general, también puede ser considerado una estructura vestigial.

Existen más estructuras vestigiales aunque en este artículo nos hemos centrado en las más observables. En futuros artículos hablaremos de otras internas, como el famoso apéndice o el órgano vomeronasal.

REFERENCIAS

Evolución para principiantes 2: la coevolución

Después del éxito de Evolución para principiantes, seguimos con un artículo para seguir conociendo aspectos básicos de la evolución biológica. ¿Por qué hay insectos que parecen orquídeas y viceversa? ¿Por qué gacelas y guepardos son casi igual de rápidos? ¿Por qué tu perro te entiende? En otras palabras, ¿qué es la coevolución?

¿QUÉ ES LA COEVOLUCIÓN?

Ya sabemos que es inevitable que los seres vivos establezcan relaciones de simbiosis entre ellos. Unos dependen de otros para sobrevivir, y a la vez, del acceso a elementos de su entorno como agua, luz o aire. Estas presiones mutuas entre especies hacen que evolucionen conjuntamente y según evolucione una especie, obligará a su vez a la otra a evolucionar. Veamos algunos ejemplos:

POLINIZACIÓN

El proceso más conocido de coevolución lo encontramos en la polinización. Fue de hecho el primer estudio coevolutivo (1859), a cargo de Darwin, aunque él no utilizara este término.  Los primeros en acuñarlo fueron Ehrlich y Raven (1964).

Los insectos ya existían mucho antes de la aparición de plantas con flor, pero su éxito se debió al descubrimiento de que el polen es una buena reserva de energía. A su vez, las plantas encuentran en los insectos una manera más eficaz de transportar al polen hacia otra flor. La polinización gracias al viento (anemofilia) requiere más producción de polen y una buena dosis de azar para que al menos algunas flores de la misma especie sean fecundadas. Muchas plantas han desarrollado flores que atrapan a los insectos hasta que están cubiertos de polen y los dejan escapar. Estos insectos presentan pelos en su cuerpo para permitir este proceso. A su vez algunos animales han desarrollado largos apéndices (picos de los colibríes, espiritrompas de ciertas mariposas…)  para acceder al néctar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock

Es famoso el caso de la polilla de Darwin (Xanthopan morganii praedicta) del que ya hemos hablado en una ocasión. Charles Darwin, estudiando la orquídea de Navidad (Angraecum sesquipedale), observó que el néctar de la flor se encontraba a 29 cm del exterior. Intuyó que debería existir un animal con una espiritrompa de ese tamaño. Once años después, el mismo Alfred Russell Wallace le informó que había esfinges de Morgan con trompas de más de 20 cm y un tiempo más tarde se encontró en la misma zona donde Darwin había estudiado esa especie de orquídea (Madagascar). En honor de ambos se añadió el “praedicta” al nombre científico.

También existen las llamadas orquídeas abejeras, que imitan a hembras de insectos para asegurarse su polinización. Si deseas saber más sobre estas orquídeas y la de Navidad, no te pierdas este artículo de Adriel.

Anoura fistulata, murcielago, bat
El murciélago Anoura fistulata y su larga lengua. Foto de Nathan Muchhala

Pero muchas plantas no sólo dependen de los insectos, también algunas aves (como los colibríes) y mamíferos (como murciélagos) son imprescindibles para su fecundación. El récord de mamífero con la lengua más larga del mundo y segundo vertebrado (por detrás del camaleón) se lo lleva un murciélago de Ecuador (Anoura fistulata); su lengua mide 8 cm (el 150% de la longitud de su cuerpo). Es el único que poliniza una planta llamada Centropogon nigricans, a pesar de la existencia de otras especies de murciélagos en el mismo hábitat de la planta. Esto plantea la pregunta si la evolución está bien definida y se da entre pares de especies o por contra es difusa y se debe a la interacción de múltiples especies.

RELACIONES DEPREDADOR-PRESA

El guepardo (Acinonyx jubatus) es el vertebrado más rápido sobre la tierra (hasta 115 km/h).  La gacela de Thomson (Eudorcas thomsonii), el segundo (hasta 80 km/h). Los guepardos tienen que ser lo suficientemente rápidos para capturar alguna gacela (pero no todas, a riesgo de desaparecer ellos mismos) y las gacelas suficientemente rápidas para escapar alguna vez y reproducirse. Sobreviven las más veloces, así que a su vez la naturaleza selecciona los guepardos más rápidos, que son los que sobreviven al poder comer. La presión de los depredadores es un factor importante que determina la supervivencia de una población y qué estrategias deberá seguir la población para sobrevivir. Así mismo, los depredadores deberán encontrar soluciones a las posibles nuevas formas de vida de sus presas para tener éxito.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi
Guepardo persiguiendo una gacela de Thomson en Kenya. Foto de Federico Veronesi

Lo mismo sucede con otras relaciones depredador-presa, parásito-hospedador o herbívoros-plantas, ya sea con el desarrollo de la velocidad u otras estrategias de supervivencia como venenos, pinchos…

HUMANOS Y PERROS… Y BACTERIAS

Nuestra relación con los perros, que data de tiempos prehistóricos, también es un caso de coevolución. Esto nos permite, por ejemplo, crear lazos afectivos con sólo mirarlos. Si quieres ampliar la información, de invitamos a leer este artículo pasado donde tratamos el tema de la evolución de perros y humanos en profundidad.

Otro ejemplo es la relación que hemos establecido con las bacterias de nuestro sistema digestivo, indispensables para nuestra supervivencia. O también con las patógenas: han coevolucionado con nuestros antibióticos, por lo que al usarlos indiscriminadamente, se ha favorecido la resistencia de estas especies de bacterias a los antibióticos.

IMPORTANCIA DE LA COEVOLUCIÓN

La coevolución es uno de los principales procesos responsables de la gran biodiversidad de la Tierra. Segun Thompson, es la responsable que existan millones de especies en lugar de miles.

Las interacciones que se han desarrollado con la coevolución son importantes para la conservación de las especies. En los casos donde la evolución ha sido muy estrecha entre dos especies, la extinción de una llevará a la otra casi con seguridad también a la extinción. Los humanos alteramos constantemente los ecosistemas y por lo tanto, la biodiversidad y evolución de las especies. Con sólo la disminución de una especie, afectamos muchas más. Es el caso de la nutria marina, que se alimenta de erizos.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium

Al ser cazada por su piel, el siglo pasado los erizos aumentaron de número, arrasaron poblaciones enteras de algas (consumidoras de CO2, uno de los responsables del calentamiento global), las focas que encontraban refugio en las algas ahora inexistentes, eran más cazadas por las orcas… la nutria es pues una especie clave para el equilibrio de ese ecosistema y del planeta, ya que ha evolucionado conjuntamente con los erizos y algas.

De las relaciones coevolutivas entre flores y animales depende la polinización de miles de especies, entre ellas muchas de interés agrícola, por lo que no hay que perder de vista la gravedad del asunto de la desaparición de un gran número de abejas y otros insectos en los últimos años. Un complejo caso de coevolución que nos afectaría directamente es la reproducción de la higuera.

EN RESUMEN

Como hemos visto, la coevolución es el cambio evolutivo entre dos o más especies que interactúan, de manera recíproca y gracias a la selección natural.

Para que haya coevolución se debe cumplir:

  • Especificidad: la evolución de cada carácter de una especie se debe a presiones selectivas del carácter de la otra especie.
  • Reciprocidad: los caracteres evolucionan de manera conjunta.
  • Simultaneidad: los caracteres evolucionan al mismo tiempo.

REFERENCIAS

Mireia Querol Rovira

Plantas carnívoras

El carnivorismo es un tipo de nutrición que normalmente se asocia a los animales, al mundo de los heterótrofos. Pero se ha visto que hay plantas que también son capaces de alimentarse de otros organismos. Éstas son las denominadas plantas carnívoras y sus estrategias para capturar a las presas son bien diferentes y curiosas.

¿QUÉ ES UNA PLANTA CARNÍVORA?

Una planta carnívora es aquella planta que aun siendo autótrofa obtiene un suplemento nutritivo gracias a que se alimenta de animales, sobretodo insectos.

Para que una planta sea carnívora debe cumplir tres requisitos básicos:

  • Tiene que atraer a la presa para capturar y matarla. Para llamar su atención normalmente presentan coloración rojiza y secretan néctar. Y para capturar a las presas disponen de trampas, adaptaciones morfológicas y anatómicas que permiten retener y matarla.
  • También deben ser capaces de digerir y absorber los nutrientes liberados por la presa que han capturado.
  • Y finalmente tiene que extraer un beneficio significativo de todo el proceso.
Dionaea muscipula
Venus atrapamoscas (Dionaea muscipula) (Autor: Jason).

¿DÓNDE VIVEN?

Las carnívoras resultan poco competitivas en ambientes normales y además suelen presentar un sistema radicular pequeño, por ello requieren de esta especialización que les permite crecer más rápidamente. Generalmente se encuentran en lugares con poca mineralización, pero alta concentración de materia orgánica y zonas soleadas y de humedad elevada, ya que todas las carnívoras realizan la fotosíntesis.

Normalmente también son plantas calcífugas, es decir, no están bien adaptadas a suelos alcalinos y prefieren ambientes ácidos dónde la fuente de calcio es la presa. También tienden a vivir en ambientes reductores, por lo tanto aparecen en suelos con poco oxígeno y cargados de agua. Algunas incluso son acuáticas y viven flotando o sumergidas pero cerca de la superficie.

TIPO DE TRAMPAS Y EJEMPLOS

El sistema de captura es bastante diverso, pero se puede clasificar según si hay movimiento o no. Consideramos activas aquellas que tienen movimiento mecánico o por succión. En segundo lugar están las semiactivas; éstas tienen movimiento y disponen de pelos adhesivos. Y finalmente hay las pasivas, es decir, que capturan sin movimiento gracias a pelos adhesivos o estructuras de caída como los cartuchos o las urnas. A continuación veremos las estrategias a través de algunos ejemplos.

TRAMPAS ACTIVAS

Venus atrapamoscas

En el caso de esta planta las trampas son mecánicas y están formadas por dos valvas unidas a un eje central. Estas valvas son el resultado de la transformación de las hojas, las cuales ya no son fotosintéticas. En consecuencia el tallo es el encargado de actuar como peciolo y de hacer la fotosíntesis; por ello se encuentra engrosado, aumentando su superficie facilita el proceso. Por otro lado, las valvas constan de glándulas de néctar que atraen a la presa y además están rodeadas en su perímetro por dientes que ayudan al cierre, ya que quedan superpuestas para encajar perfectamente y evitar que el animal escape.

Pero, ¿qué acciona el cierre? los encargados son una serie de pelos disparadores que se encuentran en el interior de la valva. Cuando la presa se sitúa sobre la trampa y mueve dos veces el mismo pelo o dos de distintos en menos de 20s las valvas se cierran inmediatamente.

A continuación podemos ver un vídeo dónde se explica este proceso. El vídeo es originario de un reportaje emitido en La 2 de TVE (Canal de Youtube: Luis Estévez):

Utricularia, la succionadora

Esta planta conocida como col de vejigas (Utricularia) vive sumergida cerca de la superficie y consta de vejigas o utrículos que actúan como trampas. Las vejigas se caracterizan por tener en la entrada unos pelos sensitivos que activan el mecanismo de succión de la presa hacía el interior, ya que en consecuencia la vejiga genera una presión interna muy fuerte. De este modo succionan agua y arrastran al animal hacía la trampa. En el momento que entra agua en la vejiga, ésta puede llegar a aumentar un 40% su volumen. La presión interna es tan grande que cuando el animal es capturado se escucha la succión.

En el siguiente vídeo podemos ver en acción a la col de vejigas. El vídeo es originario de un reportaje emitido en La 2 de TVE (Canal de Youtube: Schoolbox):

TRAMPAS SEMIACTIVAS

Cuando te coja ya no podrás escapar

La presencia de pelos adhesivos no es exclusiva de plantas carnívoras, muchas plantas los utilizan como una defensa o para evitar pérdidas de agua. Pero algunas carnívoras, como el rocío del Sol (Drosera), los usan para capturar animales.

Los pelos adhesivos o glándulas que presenta Drosera en sus hojas están formados por un  pie y una célula apical que libera mucilago. Esta substancia atrae a las presas por su olor y gusto. Cuando la presa se sitúa en las hojas, las gotas de mucilago se van uniendo entre ellas hasta formar una masa viscosa que acaba lubricando toda la presa haciendo imposible que pueda escapar. Debemos remarcar que las glándulas tienen cierta movilidad y se desplazan para ponerse en contacto con el animal. Además, esto provoca el cierre de la hoja, facilitando la posterior digestión.

El siguiente vídeo muestra el funcionamiento de este mecanismo (Canal de Youtube: TheShopofHorrors):

TRAMPAS PASIVAS

¡Cuidado que te enganchas! 

El caso de Drosophyllum es muy similar al de Drosera, pero esta vez los pelos adhesivos no tienen movilidad y en consecuencia la hoja tampoco. El insecto queda atrapado simplemente porque se engancha y no se puede liberar.

Drosophyllum
Insectos atrapados por los pelos adhesivos de Drosophyllum (Autor: incidencematrix).

¡Vigila que caes!

Finalmente vemos las trampas pasivas de caída, los cucuruchos y las urnas. Éstos a veces presentan una tapa inmóvil que no forma parte del mecanismo de captura, pero que protege del exceso de agua, evitando que se llene. Los cucurucho y urnas pueden estar formados por la propia hoja o bien ser una estructura adicional originada por el nervio foliar. Éste baja hasta la altura del suelo y después forma la trampa.

Nepenthes
Urna de Nepenthes (Autor: Nico Nelson).

Las presas se sienten atraídas hacia estos engaños debido a las glándulas de néctar situadas en el interior. ¡Una vez dentro salir se vuelve complicado! Las paredes de estas trampas pueden ser viscosas, presentar pelos orientados hacia abajo que dificultan la salida o bien tener tacas translucidas que hacen pensar al animal que hay una salida, pero que en realidad no lo es y entonces el animal cae rendido al fondo intentando escapar. Otras además liberan sustancias que aturden a la presa impidiendo la huida.

Heliamphora
Cucuruchos de Heliamphora (Autor: Brian Gratwicke).

Debe decirse que los animales grandes que suelen caer en estas trampas es porque están enfermos o porque su desarrollo no les permite distinguir la trampa, aunque las hay que llegan a medir hasta 20cm de largo.

FALSAS CARNÍVORAS

Hay algunas plantas que parece que en un futuro podrían llegar a ser carnívoras, pero que no lo son porque no tienen un mecanismo especializado, es decir, no cumplen uno o más requisitos necesarios.

Es el caso de Dipsacus fullonum. Esta especie consta de unas hojas que almacenan agua alrededor del tallo. Esto evita que los insectos no voladores puedan subir y al mismo tiempo actúa como una trampa potencial de caída. De tal modo que algunos insectos pueden morir ahogados en el agua. Por lo tanto, en un futuro podría ser carnívora, ya que podría capturar los insectos y a partir de esa agua absorber los nutrientes.

Dipsacus fullonum
Acumulación de agua con insectos muertos en las hojas de  Dipsacus fullonum (Autor: Wendell Smith).

Difusió-castellà

REFERENCIAS