Arxiu d'etiquetes: insectos vectores

Simbiosis entre insectos y microorganismos: los endosimbiontes

Las relaciones simbióticas son un importante motor para la diversificación y la evolución de los organismos. En los insectos, las relaciones con microorganismos endosimbiontes (es decir, que residen en el interior de su cuerpo) les han dotado de un gran número de adaptaciones sorprendentes.

La importancia de la relación entre insectos y sus endosimbiontes

Gran parte del éxito evolutivo y adaptativo de los insectos viene dado por su capacidad para relacionarse con otros organismos y, especialmente, con microorganismos que se ubican en el interior de su cuerpo: los endosimbiontes.

Hasta hace algunos años, se consideraba que la mayor contribución de los microorganismos endosimbiontes a la fisiología de los insectos era su papel en la alimentación, hecho que explicaría su gran diversidad de dietas. Sin embargo, se ha demostrado que los endosimbiontes afectan muchos más aspectos de su fisiología.

Tipos de endosimbiosis

Los microorganismos endosimbiontes pueden encontrarse en el tracto digestivo, en los espacios entre las células y dentro de ellas.

Como norma general, cuanto más internamente se halla el endosimbionte, más estrecha es su relación con el insecto. A continuación, vamos a analizar los cuatro tipos más habituales de endosimbiosis en insectos, empezando por la más externa y menos estrecha.

Microorganismos del tracto digestivo

La microbiota del tracto digestivo de los insectos se compone tanto de procariotas (unicelulares, sin núcleo, como bacterias y arqueas) como de eucariotas (uni o pluricelulares, con núcleo, como los protozoos), y es exclusiva del intestino.

Por lo general, se ubican fuera de las células en la parte posterior del intestino, moviéndose libremente en su luz o adheridos a sus paredes. En muchos insectos fitófagos, como termitas y cucarachas, esta parte posterior del intestino forma una cámara sin oxígeno (anaeróbica) donde tiene lugar la fermentación de la celulosa y otros azúcares complejos.

Sistema digestivo de una termita obrera; la parte coloreada en verde corresponde a la parte posterior sin oxígeno. Figura procedente del artículo: Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12(3), 168-180.

En las termitas, esta cámara contiene procariotas anaeróbicos facultativos (pueden desarrollarse con o sin oxígeno) u obligados (sólo se desarrollan en ausencia de oxígeno), como espiroquetas y metanógenos, que participan en la digestión; además, en ciertas termitas obreras, esta cámara también contiene protozoos que participan en la digestión de la celulosa de la madera (¿habéis visto alguna vez un mueble agujereado por termitas?).

A diferencia de otros endosimbiontes, los microorganismos del tracto digestivo se transmiten horizontalmente entre organismos; es decir, los insectos no nacen con ellos, sino que deben adquirirlos a lo largo de su vida. En el caso de las termitas, su adquisición tiene lugar mediante un proceso conocido como trofolaxia: las obreras, que son las únicas que se alimentan por sí mismas, digieren y transfieren el alimento (y sus microorganismos) al resto de miembros de la colonia mediante el contacto de sus aparatos bucales.

Trofolaxia en termitas. Imagen de Shutterstock.

Además, se sabe que los microorganismos son eliminados durante la muda, por lo que la trofolaxia les permite recuperarlos.

Endoparásitos

Los parásitos que viven dentro de un organismo se conocen como endoparásitos, e igual que los microorganismos intestinales, se transmiten horizontalmente de unos insectos a otros.

Existen muchas más relaciones entre insectos y endoparásitos pluricelulares que con microorganismos, siendo los pluricelulares más dañinos en términos generales; es el caso de los parasitoides (de los cuales ya hablamos en esta entrada) y los nematodos (capaces de transmitir bacterias mortales para el insecto).

El tipo de relación endoparasítica más relevante entre insectos y microorganismos, y la única que tratamos aquí, son los vectores: el insecto (o vector) actúa de contenedor y transporte provisional del parásito hasta el momento que éste alcanza su hospedador definitivo. Los parásitos transportados suelen ser protozoos dañinos para vertebrados, como Trypanosoma (enfermedad de Chagas), Leishmania (leismaniosis) o Plasmodium (malaria). Por lo general, el insecto no sufre daño alguno, así que en realidad sería más conveniente hablar de comensalismo y no de parasitismo.

El mosquito Anopheles es vector del protozoo causante de la malaria, Plasmodium. Imagen de dominio público.

Simbiosis extracelular e intracelular

A diferencia de los microorganismos intestinales, los endosimbiontes extra e intracelulares se transmiten verticalmente generación tras generación; es decir, el insecto nace con ellos, los “hereda”. Se trata de relaciones mucho más estrechas.

  • Endosimbiontes extracelulares

Los microorganismos extracelulares pueden ser tanto procariotas como eucariotas y encontrarse en diferentes partes del cuerpo del insecto (incluso en el intestino junto con los microorganismos intestinales). En cualquier caso, nunca penetran en las células. Esto no quita que algunas especies puedan encontrarse tanto fuera como dentro de las células.

Dado que muchos microorganismos extracelulares pueden ser a la vez intracelulares, se considera que podrían encontrarse, a nivel evolutivo, en una transición entre los microorganismos intestinales y los endosimbiontes intracelulares.

Un caso interesante de endosimbiosis extracelular tiene lugar en algunas especies de pulgones de la tribu Cerataphidini. Por lo general, los pulgones o áfidos presentan una bacteria endosimbionte intracelular (Buchnera), pero en estas especies dicha bacteria es substituida por un hongo unicelular similar a las levaduras que vive fuera de las células (YLS, del inglés “yeast-like symbiont”), la cual se ubica tanto en las cavidades entre los órganos (hemocele) por donde circula la hemolinfa como en distintos cuerpos grasos. Igual que Buchnera en el resto de pulgones, los YLS tendrían un papel clave en la dieta del insecto al participar en la producción de ciertos nutrientes esenciales.

Ceratovacuna nekoashi (Cerataphidini). Link (CC 2.5)

Se cree que estos microorganismos similares a levaduras o YLS habrían evolucionado a partir de un hongo entomopatógeno (es decir, dañino para los insectos) cuyo linaje habría derivado, posteriormente, en organismos endosimbiontes beneficiosos.

  • Endosimbiontes intracelulares

Se considera que al menos un 70% de insectos presenta microrganismos endosimbiontes dentro de sus células. Existen dos tipos de endosimbiontes intracelulares:

Endosimbiontes dentro de micetocitos o cuerpos de Blochmann

Los bacteriocitos o micetocitos son un tipo especializado de células adiposas que se encuentran en algunos grupos de insectos y que contienen microorganismos endosimbiontes. Estas células son transmitidas a la descendencia y usualmente se agrupan en forma de órganos conocidos como micetomas o bacteriomas.

Los cuerpos de Blochman, o lo que es lo mismo, los endosimbiontes que se encuentran dentro de los micetocitos, son propios de tres grupos de insectos: Blattaria (cucarachas), diferentes grupos de heterópteros dentro del antiguo grupo de los Homoptera (cícadas, psílidos, áfidos, etc.) y Curculionidae (escarabajos curculiónidos). La relación de estos endosimbiontes con las células suele ser tan estrecha que podrían confundirse con orgánulos celulares (algo así como lo que ocurre con las mitocondrias y los cloroplastos).

Buchnera aphidicola dentro de un micetocito o bacteriocito del pulgón Acyrthosiphon pisum. El elemento central es el núcleo del bacteriocito. Las células de Buchnera son redondas y están empaquetadas dentro del citoplasma del bacteriocito. Imagen de J. White y N. Moran, University of Arizona (CC 2.5).

El caso más estudiado es el de Buchnera en los pulgones o áfidos. Esta bacteria intracelular recicla el ácido úrico y otros desechos nitrogenados del pulgón para producir el aminoácido glutamina, el cual usa como base para producir otros aminoácidos esenciales necesarios para el crecimiento del insecto. Se cree que también produciría la vitamina B2 (riboflavina). Esto explicaría el gran éxito evolutivo de los pulgones y su elevada tasa de reproducción a pesar de tener una dieta rica en carbohidratos (procedente de la sabia de las plantas) y tan pobre en compuestos nitrogenados.

Se ha comprobado que en escasead de nutrientes, el número de Buchnera disminuye, lo que sugiere que los pulgones se alimentan de ellos en situaciones límite. Así pues, la relación es mucho más beneficiosa para el pulgón que para el endosimbionte.

Endosimbiontes inquilinos

En este caso, la relación entre microorganismos inquilinos e insectos no es beneficiosa para ambos (mutualista), ya que el inquilino altera al insecto para salir beneficiado.

Los endosimbiontes inquilinos suelen afectar a la proporción de machos y hembras y a su capacidad reproductiva. Muchos microorganismos inquilinos que viven dentro del citoplasma de las células se transmiten a la siguiente generación a través de los óvulos, por lo que necesitan que haya una mayor proporción de hembras de insectos para asegurar su perpetuidad. Para alterar dicha proporción, recurren a diferentes métodos: muerte de los machos, inducción de la partenogénesis, feminización o incompatibilidad citoplasmática, para lo cual suelen inducir cambios a nivel genético. Uno de los inquilinos más estudiados es Wolbachia, una bacteria intracelular capaz de causar un sesgo en la proporción de sexos mediante casi todas las vías antes mencionadas.

Fenotipos derivados de insectos infectados por Wolbachia. Figura procedente del artículo: Werren, J. H., Baldo, L. & Clark, M. E. 2008. Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6(10), 741-751.

.          .          .

¿Conoces más relaciones entre microorganismos e insectos? Deja tu aportación en los comentarios.

Referencias

  • Bourtzis K. Miller T. A. (2003). Insect Symbiosis. CRC Press.
  • Douglas, A.E. (1998). Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 43: 17–38.
  • Vega F.E., Blackwell M. (2005). Insect-Fungal Associations: Ecology and Evolution. Oxford University Press, USA.

La imagen de portada es un montaje realizado por la autora de este artículo a partir de dos imágenes: 1) vector de bacteria (por Flaticon de www.flaticon.com) y 2) vector de termita (extraído de www.allstatepest.com.au).

¡Que no te piquen las chinches!

Al oír esta expresión, más de uno habrá temido sufrir las picaduras de esos pequeños bichos llamados “chinches” al irse a dormir (especialmente en una cama ajena). Sin embargo, lo cierto es que ni todas las chinches pican, ni todas se esconden en las camas, ni todas son tan pequeñas como estos compañeros nocturnos.

¿Qué son realmente las chinches? ¿Todas son dañinas? ¿Dónde se encuentran? Descubre su diversidad en este artículo, ¡y olvídate de una vez por todas de su mala fama!

¿Qué son?

Al referirse a las chinches, a menudo la gente no es consciente de la gran diversidad que esconden estos organismos, las cual va más allá de la idea de esos pequeños insectos que nos pican mientras dormimos. Las chinches pertenecen al suborden de los Heteroptera, un taxón de distribución cosmopolita que incluye más de 40.000 especies a nivel mundial; de hecho, constituyen el grupo de insectos más grande con metamorfosis sencilla. Su fósil más antiguo, Paraknightia magnifica, data del Pérmico superior en Australia (260-251 MA).

Este suborden se clasifica dentro del orden de los Hemiptera junto con otros subórdenes antiguamente agrupados en uno sólo (“Homoptera”), el cual incluía organismos tan conocidos como las cigarras (Cicadidae) o los pulgones (Aphididae).

¿Cómo los reconocemos?

Los heterópteros presentan un amplio abanico de formas y tamaños, oscilando entre apenas un milímetro a varios centímetros. Los miembros más pequeños pertenecen a las familias Anthocoridae, Microphysidae, Ceratocombidae, Dipsocoridae, Aepophilidae y Leptopodidae, apenas visibles. Entre los miembros más grandes se encuentran algunas especies de la familia Belostomatidae, como Lethocerus indicus con sus 6,5-8 cm de longitud.

A pesar de esto, constituyen un grupo monofilético con, al menos, tres caracteres morfológicos únicos o sinapomorfías:

  1. Piezas bucales de tipo picador-chupador, alargadas en forma de estilete.

    Piezas bucales del depredador Arilus cristatus (Reduviidae). Imagen propiedad de John Flannery en Flicker (CC 2.0).
  2. Glándulas odoríferas pares.
  3. Antenas con 4 segmentos.

Además, sus alas anteriores o hemiélitros se dividen en dos regiones fácilmente diferenciables: una basal endurecida y una distal membranosa, considerado un carácter derivado. De ahí que recibieran el nombre de Heteroptera (del griego “hetero”, diferente; “-pteron”, ala).

Pentatomidae. La parte superior de las alas anteriores está endurecida, mientras que la distal es membranosa. Imagen propiedad de Mick Talbot en Flickr (CC 2.0).

Ecología

Ciclo de vida

Los heterópteros llevan a cabo una metamorfosis sencilla, por lo que juveniles y adultos apenas presentan diferencias y conviven en el mismo hábitat. Tras salir del huevo, los juveniles o ninfas experimentan diversas mudas sucesivas, aumentando su tamaño. Finalmente, tras una última muda conocida como muda imaginal, alcanzan la fase adulta o imago.

Ciclo de desarrollo de los heterópteros. Imagen propiedad de Encyclopedia Britannica, Inc. (link).

Los adultos se diferencian de las ninfas por presentar alas, una nueva disposición de las aberturas de las glándulas odoríferas, un número diferente de segmentos tarsales (patas) y antenales, ocelos, ornamentación (espinas y pelos glandulares), rasgos sexuales en los segmentos terminales del abdomen y, en ocasiones, el patrón de coloración, además de una mayor talla y consistencia del tegumento o exoesqueleto.

Nimfa de Nezara viridula (Pentatomidae), aún carente de alas. Imagen propiedad de S. Rae en Flickr (CC 2.0).

Comunicación y defensa

Los individuos de una misma especie se comunican principalmente mediante la emisión de feromonas volátiles que emiten a través de las glándulas odoríferas, gracias a las cuales pueden agruparse (feromonas de agregación) o reunirse para la reproducción (feromonas sexuales). Aunque menos estudiado, también se han citado casos de especies que emiten sonidos por estridulación, es decir, frotando dos partes del cuerpo entre sí como hacen, por ejemplo, las cigarras.

Los heterópteros también presentan mecanismos defensivos activos y pasivos:

  • Entre los métodos pasivos se encuentran las características del propio cuerpo (por ejemplo, estructuras lisas, redondeadas, que dificultan el agarre), la inactividad (no moverse para pasar desapercibido) y la cripsis o el mimetismo. Dentro de las cripsis o mimetismos, destacan 1) la mimesis de color (homocromía), por ejemplo, con la vegetación, 2) la mimesis de forma (homotipia), mediante la cual se confunden con estructuras de su entorno, ya sean vegetales u otros animales (por ejemplo, imitando a hormigas en el caso de especies mirmecomorfas, un tipo de mimetismo batesiano) y 3) la disrupción de la silueta mediante formas que dificultan marcar los límites del individuo con su entorno.
Leptoglossus occidentalis (Coreidae), con sus tibias posteriores aplanadas simulando hojas. Imagen propiedad de Giancarlodessi (CC 3.0).
Myrmecoris gracilis (Miridae), un claro ejemplo de mirmecomorfia. Imagen propiedad de Michael F. Schönitzer (CC 4.0).
  • Entre los métodos activos, destacan 1) la huida, 2) los picotazos, 3) el desprendimiento de apéndices para confundir y 4) la emisión de sustancias malolientes o irritantes mediante las glándulas odoríferas; en muchas ocasiones, adquieren estas sustancias irritantes o tóxicas a través de las plantas que ingieren. También las hay que emiten sonidos intimidatorios mediante estridulación.

Formas de vida y diversidad

Si bien casi todo el mundo conoce a las chinches por su alimentación basada en la ingesta de sangre, éste no es ni mucho menos su único modo de vida.

  • Terrestres

La mayoría de heterópteros vive en distintos ambientes terrestres, sobre plantas o en el suelo, pudiendo ser totalmente fitófagos (dieta basada en fluidos vegetales) o depredadores de otros insectos que se mueven entre la vegetación, los cuales además pueden ingerir líquidos vegetales para complementar su dieta. También los hay que viven bajo la corteza alimentándose de hongos, o en el suelo nutriéndose de raíces. Algunos ejemplos de familias terrestres fitófagas son Pentatomidae y Coreidae; entre las chinches depredadoras, las cuales utilizan su estilete para inocular agentes proteolíticos a sus presas, disolverlas y succionar su contenido, encontramos muchos representantes de la familia Reduviidae.

  • Acuáticos y semiacuáticos

Existe una gran diversidad de formas acuáticas o semiacuáticas depredadoras y fitófagas, las cuales presentan adaptaciones para vivir en estos ambientes, como la presencia de pelos hidrófugos (repelen el agua). La mayoría vive en lagos y ríos, ya sea únicamente en su superficie (semiacuáticos) o sumergidos.

Las especies semiacuáticas suelen presentar patas y antenas largas que, junto con los pelos hidrófugos, les ayudan a sostenerse sobre el agua; un ejemplo conocido de chinches semiacuáticas son los zapateros (familia Gerridae), abundantes en Europa.

Zapatero (Gerris sp.). Imagen propiedad de Webrunner (CC 3.0)

En cambio, las especies acuáticas suelen presentar algún par de patas transformado en paletas natatorias; un buen ejemplo son los notonéctidos (familia Notonectidae), los cuales presentan el último par de patas aplanadas y con franjas de pelos para aumentar su superficie.

Notonecta sp. (Notonectidae). Imagen propiedad de Jane Burton/Bruce Coleman Ltd. (link).

Los heterópteros acuáticos necesitan el aire para respirar, por lo que periódicamente realizan ascensos a la superficie para captar oxígeno. Para ello, han desarrollado múltiples estrategias, como absorber aire directamente hacia su sistema respiratorio o traqueal mediante un sifón (familia Nepidae) o capturar burbujas de aire mediante los pelos hidrófugos (familia Notonectidae). Otras, simplemente, quedan rodeadas de una fina película de aire al salir del agua (plastron) gracias a los pelos hidrófugos.

  • Hematófagos

También hay heterópteros que se alimentan de sangre como parásitos de aves y mamíferos, pudiendo ser potenciales vectores de enfermedades. Este es el caso de los Cimicidae (como Cimex lectularius, la chinche de las camas que da fama al grupo) y algunos grupos de Reduviidae, como la subfamilia Triatominae o vinchucas, agentes vectores de la enfermedad de Chagas en Centro y Sudamérica principalmente (siendo Triatoma infestans su mayor vector).

Ninfa de Cimex lectularius o chinche de las camas. Imagen de dominio público.
Triatoma sp. (Triatominae). Imagen propiedad de Bramadi Arya (CC 4.0)

Interés científico

Los heterópteros son interesantes por distintos motivos:

  • Contribuyen a regular las poblaciones de algunas plagas de insectos en bosques y cultivos, siendo un elemento esencial en el control integrado de plagas. Es el caso de algunos heterópteros depredadores de las familias Reduviidae, Anthocoridae, Miridae, Nabidae y Geocoridae. Sin embargo, algunos heterópteros fitófagos también pueden desarrollarse como plagas.
  • Han sido un modelo científico para estudiar la fisiología de los insectos.
  • Forman una parte importante de la dieta humana en algunos países, siendo especialmente consumidos los pentatómidos. También son muy apreciados en Asia algunos heterópteros acuáticos, como Lethocerus sp. (Belostomatidae) en Vietnam y Tailandia.
Lethocerus sp. Imagen propiedad de Judy Gallagher en Flickr (CC 2.0).
  • Son vectores de enfermedades o causantes de malestar. El caso más clásico es el chinche de las camas (Cimex lectularius), el cual se ha convertido en una plaga frecuente en regiones templadas; algunos cimícidos también resultan dañinos para las aves de corral. Por otro lado, y especialmente en América, los redúvidos de la subfamilia Triatominae son agentes vectores de enfermedades (como la enfermedad de Chagas causada por el protozoo Trypanosoma cruzi).

.                .                 .

Todos los organismos tienen alguna función o utilidad, tan sólo hay que indagar un poco para averiguarlo. ¡Incluso las chinches que tanta gente teme!

Referencias

Foto de portada propiedad de Pavel Kirillov en Flickr, con licencia Creative Commons 2.0. (link).

Insectos vectores: ¿Por qué se están expandiendo?

La semana pasada, nuestra compañera Maribel nos habló de la expansión de las epidemias, gran parte de las cuales dependen de insectos vectores. En los últimos años, los medios se han hecho eco del creciente aumento de casos de enfermedades transmitidas por insectos y otros artrópodos; uno de los más recientes es el caso del virus zika, transmitido por mosquitos del género Aedes (género al que pertenece el mosquito tigre, Aedes albopictus). La mayoría de estos vectores se distribuían hasta hace pocos años en regiones tropicales, pero están empezando a expandirse.

En este artículo, te explicamos qué son los vectores, algunos de los más importantes y por qué se encuentran actualmente en expansión.

¿Qué son los vectores?

En epidemiología, se define un vector como cualquier agente (ya sea persona, animal o microorganismo) que porta y transmite un patógeno infeccioso a otro organismo, ya sea directamente mediante la interacción con el organismo susceptible o bien indirectamente transmitiendo el patógeno a la comida, al agua o a cualquier otro elemento cercano al receptor con los que éste pueda interaccionar.

vector-borne-disease-transmission
Ciclo de la transmisión de las enfermedades mediadas por vectores (Imagen extraída del artículo de Ellis et al. 2009).

Los vectores de enfermedades más importantes y abundantes son los insectos (y otros artrópodos). Aunque si bien es cierto que los vectores pueden ser potenciales transmisores de enfermedades tanto a plantas como a animales, en este artículo nos centraremos en los que afectan a los animales, especialmente a los humanos.

Los insectos como vectores pueden asumir diferentes papales en relación al patógeno que transportan:

  • Vectores mecánicos: la única función del insecto es la de transportar al patógeno, el cual no necesita al insecto para completar su ciclo de vida (dicho de otra manera, el insecto no es un huésped del patógeno). Algunas moscas transportan patógenos causantes de diferentes enfermedades y diarreas, pero dichos patógenos no necesitan a las moscas para vivir; de hecho, podrían ser transportados por algún otro vector.
OLYMPUS DIGITAL CAMERA
Sarcophaga sp. comiendo unos restos de salmón (Imagen de Ernie Cooper ®, 2013)
  • Huéspedes obligatorios: el insecto vector es, en este caso, un elemento esencial en el ciclo vital del patógeno, el cual lo necesita para completar su desarrollo antes de ser transmitido. La mayoría de estos patógenos viajan en la hemolinfa (equivalente a la sangre) de los insectos. Este es el caso de la malaria, el patógeno de la cual (un protista del género Plasmodium) viaja dentro de diferentes especies de mosquito del género Anopheles.
anopheles-stephensi-mosquito
Mosquito de la especie Anopheles stephensi, uno de los vectores de la malaria (Imagen de dominio público, cedida por la CDC).

Aunque muchos insectos se convierten en huéspedes, por lo general no “enferman” como resultado de esta relación: los patógenos necesitan a los vectores para alcanzar a su huésped definitivo, el cual suele ser un vertebrado (como nosotros, los humanos), por lo que evitan al máximo causarles daño.

Pero, aunque no se pongan enfermos, el patógeno muchas veces induce en ellos cambios (fisiológicos, anatómicos, etc.) con el fin de potenciar su transmisión e infección. Por ejemplo, algunos mosquitos sufren modificaciones estructurales de su aparato de succión que limitan la sangre que succionan en cada picada, haciendo que sean más proclives a picar más veces.

Pero… ¿Por qué son tan problemáticos los insectos vectores?

mosquito_malaria_warning-512

Muchos de los patógenos más problemáticos tendrían una dispersión limitada si no fuera por la existencia de vectores. La mayoría de insectos vectores son hematófagos (se alimentan de sangre), por lo que proveen a los patógenos de un sistema de transporte directo a la saliva o sangre del huésped. Por lo tanto, pasar de un huésped a otro mediante los vectores es esencial para su supervivencia y, sobre todo, para su dispersión.

Por ello, se considera que los patógenos transmitidos por insectos y otros artrópodos son los más peligrosos e impredecibles, lo que se debe a varios motivos:

  • Son los más difíciles de prevenir y controlar debido a que presentan una enorme resiliencia a su control y gestión. Esto se debe a que sus vectores están muy bien integrados en los ecosistemas de las regiones donde se encuentran.
  • Los vectores aumentan exponencialmente el rango y la transmisión de los patógenos en relación a aquellos que dependen necesariamente del contacto entre humanos.
  • Actúan de puente entre diferentes huéspedes animales y los humanos; sin los vectores, muchas enfermedades sólo las padecerían ciertos organismos y no pasarían a otros.
  • Tienen una función de reservorio de patógenos, lo que es especialmente útil de cara a pasar los periodos menos propicios para la infección (por ejemplo, el invierno o las épocas secas).
  • Por otro lado, la relación vector-patógeno suele durar hasta el final de la vida del vector, por lo que éste siempre tendrá capacidad infectiva.

Ejemplos de vectores y su impacto

Según datos de la OMS, los mosquitos constituyen el grupo más importante de vectores, así como el más conocido: son los transmisores de enfermedades como la malaria o paludismo, el dengue o la fiebre amarilla, así como de otras enfermedades quizá menos conocidas, como la filariosis linfática.

Además de los mosquitos, las garrapatas, las moscas, los flebótomos (subfamilia de dípteros similares a los mosquitos), las pulgas, los triatominos (chinches de la familia Reduviidae), e incluso algunos caracoles de agua dulce (Gasterópodos, Moluscos), también actúan como vectores de enfermedades.

Phlebotomus
Flebótomo (Phlebotomus sp.), vector transmisor de enfermedades como la leishmaniasis (Imagen de dominio público, cedida por la CDC).
Triatoma_infestans
Triatoma infestans, uno de los chinches de la familia Reduviidae vector de la enfermedad de Chagas (Especimen del Zoologische Staatssamlung München. Localidad: Bolivia, Cochabamba, Leg. Zischka. Autor: Bärbel Stock, CC).

Si quieres conocer más acerca de cada uno de ellos y de las enfermedades que transmiten, puedes entrar en la web de la OMS.

¿Cuál es el impacto de los vectores a escala mundial?

  • Según datos de la OMS, cada año se registran en todo el mundo más de 1.000 millones de casos y más de 1 millón de fallecimientos causados por enfermedades transmitidas por vectores.
  • Del total de enfermedades infecciosas conocidas, casi el 17% de ellas son transmitidas mediante vectores.
  • La malaria (vector: mosquito del género Anopheles) causa anualmente más de 600.000 muertes, la mayor parte de niños menores de 5 años. Por otro lado, más de 2.500 millones de personas en más de 100 países corren el riesgo de contraer el dengue (vector: mosquito del género Aedes).

¿Por qué se encuentran actualmente en expansión?

La manera cómo se distribuyen estas enfermedades está determinada por múltiples factores ambientales y sociales.

Los cambios en la temperatura y los regímenes de humedad como consecuencia del cambio climático están introduciendo modificaciones profundas en el área de distribución de muchos vectores que, hasta hace unos años, se encontraban limitados a zonas tropicales. El incremento de las temperaturas medias anuales y las alteraciones de los ritmos estacionales en latitudes por encima de los trópicos se cree que serían los mayores agentes conductores de la expansión de estos organismos. Así pues, existe la posibilidad que, en los próximos años, aparezcan o aumenten los casos de personas afectadas por patógenos transmitidos por vectores de origen tropical en muchas otras partes del mundo (este es el caso del dengue, la fiebre chikungunya y la fiebre del Nilo Occidental, transmitidas por mosquitos del género Aedes, Anopheles y Culex, respectivamente).

Pero el cambio climático no es, ni mucho menos, la única posible causa de su expansión. La globalización de los desplazamientos y el comercio ha traído consigo el transporte no intencionado de vectores de unas partes a otras del mundo. Estos transportes no serían un motivo tan grave de preocupación si no fuera porque los vectores que llegan al nuevo hábitat muchas veces encuentran las condiciones propicias para su desarrollo, lo que tiene mucho que ver con lo expuesto en el apartado anterior.

También existen evidencias que los cambios en ciertas prácticas agrícolas debido a los cambios en la temperatura y las precipitaciones podrían estar influyendo en la propagación de enfermedades transmitidas por vectores (sobre todo a un manejo inadecuado de los recursos hídricos, dado que muchos insectos pasan gran parte de su vida larvaria en medio acuático).

Para ilustrar un poco la situación actual en el caso de las enfermedades transmitidas por mosquitos en Europa, puedes echar un vistazo a la siguiente infografía del European Centre for Disease Prevention and Control (para descargarla en mayor tamaño, entra aquí). En esta misma web, podrás consultar otras infografías y más información acerca de cada vector.

vector-borne-disease.             .             .

Las enfermedades transmitidas por vectores suponen una gran preocupación a escala mundial. Aunque son impredecibles y difíciles de controlar, la ejecución de unos buenos programas de control, así como la implementación de unas buenas acciones de manejo ambiental (sobre todo en relación a la gestión de los recursos hídricos) podría frenar bastante su avance. En cuanto a los efectos del cambio climático y la globalización, ¿Podría ser ya demasiado tarde? Y tú, ¿Qué opinas?

Referencias

Imagen de portada: Mosquito transmisor del Chikungunya (del Centre for Disease Control and Prevention).

Icono de peligro del mosquito: Ivlichev Viktor Petrovich

Difusió-castellà