Arxiu d'etiquetes: irene lobato

How would it be a world without bees?

In recent years, the idea of a world without bees has transcended numerous social and political spheres. The scientific community has been warning about the disappearance of bees during years without any consequence. But now, it has become an issue of major concern, acquiring a media relevance like never before. At the end of 2017, the EU decided to take matters into its own hands to prevent this tragic ending for bees.

Why would it be a problem that bees disappear from Earth? And which measures has the UE take in order to address this problem?

The DDT and Rachel Carson

The use of pesticides has been a common agricultural practice from the very beginning of agriculture. At the beginning, the use of organic chemicals derived from naturals sources, as well as inorganic substances such as sulphur, mercury and arsenical compounds, was very common. However, they eventually stopped being used due to their toxicity (especially, phytotoxicity). The growth in synthetic pesticides accelerated in the mid-twentieth century, especially with the discovery of the effects of DDT, which became one of the most widely used pesticides of all time. DDT became famous due to its generalist insecticidal effects and low toxicity to mammals and plants, being used to eradicate household pests, fumigate gardens and control agricultural pests.

Picture above: cover of a March 1947 brochure on DDT from the U.S. Department of Agriculture (source). Picture below: kids being showered with DDT during a campaing against poliomyelitis, which was believed to be transmitted by a mosquito (source).

DDT resulted to be very effective against insect vectors of deadly diseases such as malaria, yellow fever and typhus, thus becoming even more popular.

However, the overuse of this and other pesticides eventually began to cause severe human and environmental health problems, because some of these products started to contaminate soils, plants and their seeds, and to bioaccumulate within the trophic nets, finally affecting mammals, birds and fishes, among others. The indiscriminate use of pesticides and their effects were denounced by Rachel Carson through her most famous publication, “Silent Spring”, which was distributed in 1962.

Silent Spring, by Rachel Carson (source).

From Carson to the neonicotinoids

Since Carson denounced the abusive use of pesticides, the world has witnessed the birth of many new substances to fight crop pests. Since then, researches have focused on finding less toxic and more selective products in order to minimize their impact on both human and environmental health. Could we say it has been a success?

Yes… and no. Although their use stopped being so indiscriminate and famers started betting on the use of more selective products, there were still some open fronts. Fronts that would remain open until today.

Between 1980 and 1990, Shell and Bayer companies started working on the synthesis of a new assortment of pesticides to face the resistances that some insects have acquired to some of the most widely used substances those days: the neonicotinoids. Neonicotinoids are a class of neuro-active insecticides chemically similar to nicotine; they effect the insect nervous system with a high specificity, while having a very low toxicity to mammals and birds compared to their most famous predecessors (organochlorides, such as the DDT, and carbamates). The most widely used neonicotinoid nowadays (and also one of the most widely used pesticides worldwide) is the imidacloprid.

However, far from getting famous for their effectiveness, the use of neonicotinoids began to get controversial for their supposed relationship with the disappearance of bees.

How do these pesticides affect bees?

For some years now (2006 onwards) the neonicotinoids are in scientists’ spotlight as one of the main suspects of the disappearance of bees. However, it has not been until now that something that scientists had been denouncing for years has finally been assumed: that neonicotinoids cause a greater impact than it was thought.

Dead bees in front of a hive. Public domain.

Unlike other pesticides that remain on plant surfaces, some studies state that neonicotinoids are taken up throughout their tissues, thus being accumulated in their roots, leaves, flowers, pollen and nectar. Also, that nearby fields are polluted with the dust created when treated seeds are planted and that plants derived from these seeds will accumulate a major amount of pesticide than sprayed plants (as it is explained in this publication of Nature). This causes bees (as well as other pollinating insects) to be exposed to high levels of pesticides, both in the crops themselves and in the surrounding foraging areas. These same studies have revealed with less support that these products may persist and accumulate in soils, which may affect future generations of crops.

Some of the negative effects on bees that have been related to neonicotinoids are:

In addition to the effects of neonicotinoids, other important causes must be taken into account: climate change, less food sources and changes in soil uses.

What would happen if bees disappear?

Colonial bees (like honeybees) are the most famous among bees. However, they only represent a mere portion within the great diversity of known bees, most of which have solitary life habits and build their nests inside small cavities. The ecological importance of solitary bees is equal to or greater than that of honey bees, but effects that neonicotinoids have on them are still poorly studied. Together, bees are among the most efficient pollinating organisms.

Solitary bee entering in its nest. Public domain.

According to this study carried out in German territory and published in POLS One at the end of 2017, a large part of flying insect diversity (including numerous pollinators) and up to 75% of their biomass have decreased in the last three decades due to the interaction of several factors. And if that was not enough, the authors say that these numbers can probably be extrapolated to other parts of the world.

What would happen if both colonial and solitary bees disappear?

  • Disappearance of crops. The production of many crops, such as fruit trees, nuts, spices and some oils, depends entirely on pollinators, especially on bees.
  • Decrease in the diversity and biomass of wild plants. Up to 80% of wild plants depend on insect pollination to reproduce, as it happens with many aromatic plants. A decrease in the vegetal surface would lead to serious problems of erosion and desertification.
  • Less recycling of soil nutrients. With the disappearance of the plants, the washing and deposition of soil nutrients would go down.
  • Less biological pest control. Some solitary bees are parasitoids of other solitary bees and other groups of insects (natural enemies); their absence could trigger the recurrence of certain pests.
  • Negative effects on higher trophic levels. The disappearance of bees could cause a decrease in the diversity and biomass of some birds that feed on pollinators.
  • Disappearance of bee-derived products, such as honey or wax.

The UE bans the use of neonicotinoids

Facing this reality, several governments have tried to limit the use of pesticides as a part of the measures to stop the decline of bee populations and the resulting economic losses. To give some examples, since 2006 the biomass of honey bees has decreased by 40% in the US, 25% in Europe since 1985 and 45% in the United Kingdom since 2010, according to data published by Greenpeace.

To date, the more restrictive measures limited the use of neonicotinoids in certain situations or seasons. But at the beginning of 2018, the EU, after preparing a detailed report based on more than 1,500 scientific studies carried out by the EFSA (European Food Safety Authority), decided to definitively ban the use of the three most used neonicotinoids in a maximum period of 6 months in all its member states after demonstrating that they are harmful for bees: imidacloprid, clothianidin and thiamethoxam.

Will the objectives of this report be accomplished? We will have to wait …

.           .           .

Although slowly, the fight against the abusive use of pesticides is paying off. However, we will have to see if the gap left by some products is filled with other substances or if governments commit to adopt more environment friendly agricultural models.

Main picture obtained from [link].

¿Qué pasaría en un mundo sin abejas?

En los últimos años, la idea de un mundo sin abejas ha trascendido numerosas esferas sociales; así, lo que antes preocupaba únicamente a los científicos ha pasado a ocupar un puesto de relevancia entre los temas de actualidad. Tanto es así, que a finales de 2017 la Unión Europea decidió tomar cartas en el asunto a fin de evitar este trágico desenlace.

¿Por qué sería un problema que desaparecieran las abejas? ¿y cuáles son las medidas tomadas por la Unión Europea ante esta problemática?

Sobre el DDT y Rachel Carson

El uso de pesticidas ha formado parte de las prácticas agrícolas desde hace miles de años. Inicialmente, era común el uso de sustancias orgánicas e inorgánicas sin adulterar, como los compuestos de sulfuros, mercurio o arsénico. Sin embargo, su elevada toxicidad los llevó al desuso. A mediados del siglo XX, concretamente en la década de 1950, se disparó la aplicación de pesticidas sintéticos, siendo el DDT la máxima expresión del uso indiscriminado de un insecticida hasta la fecha. Dada su acción generalista y su supuesta baja toxicidad directa en plantas y mamíferos, era usado en todo tipo de ámbitos: para eliminar los insectos en el hogar, fumigar jardines o controlar plagas agrícolas.

Arriba, portada de un folleto sobre el DDT publicado en 1947 por el Departamento de Agricultura de EUA (fuente). Abajo, niños en una piscina rociados con DDT como estrategia para combatir la polio, la cual se creía que era transmitida por un mosquito (fuente).

El DDT resultaba muy efectivo ante insectos vectores de enfermedades mortales como la malaria, la fiebre amarilla o el tifus, hecho que lo convirtió en otro miembro más de la familia.

El uso indiscriminado de este y otros pesticidas, sin embargo, empezó a generar problemas graves de salud en humanos y en el medio ambiente, ya que muchos de estos productos se bioacumulaban y contaminaban el suelo, las plantas y sus semillas, e impactaban finalmente en niveles superiores de las redes tróficas (mamíferos, aves, peces, etc.). El uso indiscriminado de pesticidas y sus terribles consecuencias fueron denunciados por Rachel Carson en su publicación “Silent Spring” (Primavera Silenciosa), distribuida en 1962.

Silent Spring, de Rachel Carson (fuente).

Desde Carson a los neonicotinoides

Desde que Rachel Carson denunciara el uso abusivo de pesticidas, el mundo ha presenciado el nacimiento de nuevas sustancias para combatir las plagas agrícolas. Desde entonces, el rumbo de las investigaciones ha sido obtener productos menos tóxicos y más selectivos a fin de minimizar los impactos sobre la salud humana y ambiental. ¿Podríamos decir que ha sido un éxito?

Sí…y no. Si bien su uso dejó de ser tan indiscriminado y se apostaba por el uso de productos más selectivos, aún había algunos frentes abiertos. Frentes que seguirían presentes hasta la actualidad.

Entre 1980 y 1990, las empresas Shell y Bayer empezaron a trabajar en la síntesis de un nuevo surtido de pesticidas para dar solución a las resistencias que los insectos habían generado a ciertas sustancias usadas hasta la fecha: los neonicotinoides. Los neonicotinoides son una familia de insecticidas con una estructura molecular similar a la nicotina que actúan directamente sobre el sistema nervioso central de los insectos, revolucionarios por su elevada especificad sobre estos organismos y su baja toxicidad en mamíferos y aves en comparación a sus predecesores más famosos (organoclorados, como el DDT, y carbamatos). El neonicotinoide más usado a nivel mundial es el imidacloprid, siendo además uno de los pesticidas más usados actualmente.

Sin embargo, más allá de hacerse famosos por su efectividad, los neonicotinoides empezaron a levantar polvareda por su supuesta relación con la desaparición de las abejas.

¿Cómo afectan estos pesticidas a las abejas?

Desde hace ya algunos años (aprox. 2006 en adelante) que los neonicotinoides están en el punto de mira de los científicos al tratarse de unos de los principales sospechosos de la desaparición de las abejas. Sin embargo, no ha sido hasta la actualidad que se ha reconocido algo que la comunidad científica llevaba denunciando desde hace años: que los neonicotinoides causan un impacto mayor del que se creía.

Abejas muertas delante de una colmena. Imagen de dominio público.

A diferencia de otros pesticidas que permanecen en la superficie de las plantas, diversos estudios afirman que los neonicotinoides son asimilados por sus tejidos, acumulándose en raíces, hojas, flores, polen y néctar; por otro lado, las semillas tratadas con estos productos liberan residuos en forma de polvo que se distribuyen por el aire y las plantas que derivan de éstas acumulan una mayor cantidad de pesticida (tal y como comenta Nature en esta publicación). Esto hace que las abejas (entre otros insectos polinizadores) estén expuestas a elevados niveles de residuos, tanto en los propios campos como en las zonas circundantes en las que se alimentan. Estos mismos estudios han revelado, aunque con menor respaldo, que estos productos pueden llegar a persistir y acumularse en el suelo, pudiendo afectar a futuras generaciones de cultivos.

Los efectos negativos sobre las abejas que se han asociado a los neonicotinoides son, entre otros:

  • Alteración del sistema inmune, menor capacidad para sobrevivir al invierno y menor capacidad reproductiva (tanto individual como colonial), afectando especialmente al éxito reproductivo en abejas solitarias (según este reciente estudio publicado en Science).
  • Posible alteración sobre los hábitos y las rutas de búsqueda de alimento (desorientación) tanto en abejas solitarias como coloniales, así como sobre la comunicación entre miembros de abejas coloniales.
  • Efectos negativos potenciados por interacción con otros pesticidas.
  • Contribución al CCD (Colony Collapse Disorder). Este fenómeno se caracteriza por la desaparición masiva de las abejas obreras de una colonia, las cuales dejan atrás a la reina junto con alimento, sus larvas y algunas abejas que cuidan de ellas. Este fenómeno ha sido registrado numerosas veces a lo largo de la historia, el último de los cuales en EUA en 2006, cuando una gran cantidad de colonias de abejas melíferas (Apis mellifera) empezaron a colapsar (hasta el 2013, se estima la pérdida de hasta 10 millones de colmenas, casi 2 veces más de lo que es considerado normal). El CCD es un fenómeno multifactorial, en el que la acción de los pesticidas sólo sería uno de tantos.

A los efectos negativos de los pesticidas se le unen el cambio climático (cambios en los regímenes hídricos y de temperatura), menor cantidad de alimento y los cambios en el uso del suelo.

¿Qué ocurriría si desaparecieran las abejas?

Las abejas coloniales son las más famosas entre las abejas; sin embargo, sólo suponen un modesto porcentaje dentro de la gran diversidad de abejas conocidas, muchas de las cuales son formas solitarias que construyen sus nidos en pequeñas cavidades. La importancia ecológica de las abejas solitarias es igual o mayor que la de las abejas melíferas y, sin embargo, el efecto que los neonicotinoides tienen sobre ellas está mucho menos estudiado. En conjunto, las abejas son de los organismos polinizadores más eficientes.

Abeja solitaria entrando en su nido. Imagen de dominio público.

Según este estudio realizado en territorio alemán y publicado en PLOS One a finales del 2017, gran parte de la diversidad y hasta un 75% de la biomasa de insectos voladores (incluyendo numerosos polinizadores) habría disminuido en las últimas tres décadas debido a la interacción de numerosos factores, valores que podrían extrapolarse a casi todo el mundo.

¿Qué pasaría si las abejas, tanto coloniales como solitarias, desaparecieran?

  • Desaparición de cultivos. La producción de muchos cultivos, como la de árboles frutales, frutos secos, especias y algunos aceites, depende completamente de los polinizadores. Las abejas serían, entre ellos, los más importantes.
  • Disminución de la diversidad y biomasa de plantas salvajes. Hasta un 80% de plantas salvajes dependen de la polinización por insectos para reproducirse, como es el caso de muchas aromáticas. La disminución de superficie vegetal conduciría a graves problemas de erosión y desertización.
  • Menor reciclaje de nutrientes del suelo. Con la desaparición de las plantas, el lavado y deposición de nutrientes del suelo iría a la baja.
  • Menor control biológico de plagas. Algunas abejas solitarias son parasitoides de otras abejas solitarias y de otros grupos de insectos (enemigos naturales); su ausencia podría disparar la recurrencia de ciertas plagas.
  • Efectos negativos sobre niveles tróficos superiores. Posiblemente, la desaparición de las abejas se traduzca en una disminución de la diversidad y biomasa de algunas aves que incluyen a las abejas en su dieta. Esto sin contar con los consiguientes efectos en cadena dentro de las redes tróficas.
  • Desaparición de productos derivados, como la miel o la cera.

La UE prohibe el uso de neonicotinoides

Dada esta situación, distintos gobiernos han tratado de limitar desde hace algunos años el uso de pesticidas como parte de las acciones para frenar el declive de las poblaciones de abejas y las consiguientes pérdidas económicas. Por poner algunos ejemplos, desde 2006 la biomasa de abejas melíferas ha disminuido un 40% en EUA, un 25% en Europa desde 1985 y un 45% en Reino Unido desde 2010, según datos publicados por Greenpeace.

Hasta la fecha, las medidas más restrictivas simplemente limitaban el uso de los neonicotinoides en ciertas situaciones o épocas del año. Pero a principios de 2018, la UE, tras la elaboración de un minucioso informe basado en más de 1500 estudios científicos realizado por la EFSA (Autoridad Europea de Seguridad Alimentaria), decidió prohibir definitivamente el uso de los tres neonicotinoides más usados en un periodo máximo de 6 meses en todos sus estados miembros tras demostrar que dañaban a las abejas: imidacloprid, clotianidina y tiametoxam.

¿Se cumplirán los objetivos de este informe? Habrá que esperar…

.           .           .

Aunque lentamente, la lucha contra el uso abusivo de los pesticidas va dando sus frutos. Sin embargo, habrá que ver si el vacío dejado por algunos productos es llenado con otros o si se apuesta por adoptar modelos agrícolas más amistosos con el medio ambiente.

Imagen de portada obtenida de [link].

Què passaria en un món sense abelles?

En els darrers anys, la idea d’un món sense abelles ha transcendit nombroses esferes socials; així, el que abans preocupava únicament els científics ha passat a ocupar un lloc de rellevància entre els temes d’actualitat. Tant és així, que a finals del 2017 la Unió Europea va decidir intervenir per tal d’evitar aquest tràgic desenllaç.

Per què seria problemàtic que desapareguessin les abelles? I quines mesures ha pres la Unió Europea envers aquesta problemàtica?

Sobre el DDT i Rachel Carson

L’ús de pesticides ha format part de les pràctiques agrícoles des de fa milers d’anys. Inicialment, era comú l’ús de substàncies orgàniques i inorgàniques sense adulterar, com els compostos de sulfurs, mercuri o arsènic. Tanmateix, la seva elevada toxicitat els va dur al desús. A mitjans del segle XX, concretament en la dècada de 1950, es disparà l’aplicació de pesticides sintètics, essent el DDT la màxima expressió de l’ús indiscriminat d’un insecticida fins a dia d’avui. Donada la seva acció generalista i la seva suposada baixa toxicitat directa en plantes i mamífers, es feia servir en tot tipus d’àmbits: per eliminar els insectes a la llar, fumigar jardins o controlar plagues agrícoles.

Adalt, portada d’un tríptic sobre el DDT publicat l’any 1947 pel Departament d’Agricultura dels EUA (font). A sota, nens en una piscina ruixats amb DDT com a estratègia per combatre la pòlio, la qual es creia que era trasmessa per un mosquit (font).

El DDT resultava molt efectiu envers insectes vectors de malalties mortals com la malària, la febre groga o el tifus, fet que el va convertir en un membre més de la família.

L’ús indiscriminat d’aquest i d’altres pesticides, però, va començar a generar problemes greus de salut en humans i en el medi ambient, ja que molts d’ells es bioacumulaven i contaminaven el sòl, les plantes i les seves llavors, i impactaven finalment a nivells superiors de les xarxes tròfiques (mamífers, aus, peixos, etc.). L’ús indiscriminat de pesticides i les seves terribles conseqüències van ser denunciats per Rachel Carson en la seva publicació “Silent Spring” (Primavera Silenciosa), distribuïda l’any 1962.

Silent Spring, de Rachel Carson (font).

Des de Carson als neonicotinoides

Des què Rachel Carson denunciés l’ús abusiu de pesticides, el món ha presenciat el naixement de noves substàncies per combatre les plagues agrícoles. Des d’aleshores, el rumb de les investigacions ha estat obtenir productes menys tòxics i més selectius per tal de minimitzar els impactes sobre la salut humana i ambiental. Podríem dir que ha estat un èxit?

Sí … i no. Si bé el seu ús va deixar de ser tan indiscriminat i s’apostava per l’ús de productes més selectius, encara hi havia alguns fronts oberts. Fronts que seguirien presents fins a l’actualitat.

Entre 1980 i 1990, les empreses Shell i Bayer van començar a treballar en la síntesi d’un nou assortit de pesticides per donar solució a les resistències que els insectes havien generat a certes substàncies emprades fins al moment: els neonicotinoides. Els neonicotinoides són una família d’insecticides amb una estructura molecular similar a la nicotina que actuen directament sobre el sistema nerviós central dels insectes, revolucionaris per la seva elevada especificitat sobre aquests organismes i la seva baixa toxicitat en mamífers i aus en comparació als seus predecessors més famosos (organoclorats, com el DDT, i carbamats). El neonicotinoide més usat a nivell mundial és l’imidacloprid, sent a més a més un dels pesticides més emprats actualment.

Tanmateix, més enllà de fer-se famosos per la seva efectivitat, els neonicotinoides van començar a aixecar polseguera per la seva suposada relació amb la desaparició de les abelles.

Com afecten aquests pesticides a les abelles?

Des de fa ja alguns anys (aprox. 2006 fins a l’actualitat) que els neonicotinoides es troben en el punt de mira dels científics en tractar-se d’uns dels principals sospitosos de la desaparició de les abelles. No obstant això, no ha estat fins a l’actualitat que s’ha  reconegut un fet que la comunitat científica portava denunciant des de fa anys: que els neonicotinoides causen un impacte major del que es creia.

Abelles mortes davant d’un rusc. Imatge de domini públic.

A diferència d’altres pesticides que romanen en la superfície de les plantes, diversos estudis afirmen que els neonicotinoides són assimilats pels seus teixits, acumulant-se en arrels, fulles, flors, pol·len i nèctar; d’altra banda, les llavors tractades amb aquests productes alliberen residus en forma de pols que es dispersen per l’aire i les plantes que deriven d’aquestes acumulen una major quantitat de pesticida (tal com comenta Nature en aquesta publicació). Això fa que les abelles (entre d’altres insectes pol·linitzadors) estiguin exposades a elevats nivells de residus, tant en els propis camps com en les zones circumdants on s’alimenten. Aquests mateixos estudis han revelat, encara que amb menys suport, que aquests productes poden arribar a persistir i acumular-se en el sòl, podent afectar futures generacions de cultius.

Els efectes negatius sobre les abelles que s’han associat als neonicotinoides són, entre altres:

  • Alteració del sistema immune, menor capacitat per sobreviure a l’hivern i menor capacitat reproductiva (tant individual como colonial), afectant especialment l’èxit reproductiu en abelles solitàries (segons aquest estudi recent publicat a Science).
  • Possible alteració sobre els hàbits i les rutes de cerca d’aliment (desorientació) tant en abelles solitàries com colonials, així com sobre la comunicació entre membres d’abelles colonials.
  • Efectes negatius potenciats per interacció amb altres pesticides.
  • Contribució al CCD (Colony Collapse Disorder). Aquest fenònem es caracteritza por la desaparició massiva de les abelles obreres d’una colònia, les quals deixen enrere la reina juntament amb aliment, les seves larves i algunes abelles que cuiden d’elles. Aquest fenòmen ha estat registrat nombrosos cops al llarg de la història, l’últim dels quals als EUA l’any 2006, quan una gran quantitat de colònies d’abelles de la mel (Apis mellifera) van començar a col·lapsar (fins el 2013, s’estima la pèrdua de fins a 10 milions de ruscs, quasi 2 cops més del que és considerat normal). El CCD és un fenòmen multifactorial, en el que l’acció dels pesticides només seria un de tants.

Als efectes negatius dels pesticides se li uneixen el canvi climàtic (canvis en els règims hídrics i de temperatura), menor quantitat d’aliment i els canvis en l’ús del sòl.

Què passaria si desapareguessin les abelles?

Les abelles colonials són les més famoses entre les abelles; tanmateix, només suposen un modest percentatge dins de la gran diversitat d’abelles conegudes, moltes de les quals són formes solitàries que construeixen nius en petites cavitats. La importància ecològica de les abelles solitàries és igual o més gran que la de les abelles de la mel i, no obstant això, l’efecte dels neonicotinoides sobre elles està molt poc estudiat. En conjunt, les abelles es troben entre els organismes pol·linitzadors més eficients.

Abella solitària entrant al seu seu niu. Imatge de domini público.

Segons aquest estudi realitzat en territori alemany i publicat en PLOS One a la fi del 2017, gran part de la diversitat i fins a un 75% de la biomassa d’insectes voladors (incloent nombrosos pol·linitzadors) hauria disminuït en les últimes tres dècades a causa de la interacció de nombrosos factors, valors que podrien extrapolar-se a nivell mundial.

Què passaria si les abelles, tant colonials com solitàries, desapareguessin?

  • Desaparició de cultius. La producció de molts cultius, como la d’arbres fruiters, fruits secs, espècies i alguns olis, depèn completament dels pol·linitzadors. Dins d’aquests, les abelles en serien els més importants.
  • Disminució de la diversitat i biomassa de plantes salvatges. Fins a un 80% de plantes salvatges depenen de la pol·linització per insectes per reproduir-se, com és el cas de moltes aromàtiques. La disminució de la superfície vegetal conduiria a greus problemes d’erosió i desertització.
  • Menor reciclatge de nutrients del sòl. Amb la desaparició de les plantes, el rentat i deposició de nutrients del sòl aniria a la baixa.
  • Menor control biològic de plagues. Algunes abelles solitàries són parasitoids d’altres abelles solitàries i d’altres grups d’insectes (enemics naturals); la seva absència podria disparar la recurrència de certes plagues.
  • Efectes negatius sobre nivells tròfics superiors. Possiblement, la desaparició de les abelles es traduiria en una disminució de la diversitat i biomassa d’algunes aus que inclouen les abelles dins la seva dieta. Això sense comptar amb el consegüents efectes en cadena dins les xarxes tròfiques.
  • Desaparició de productes derivats, com la mel o la cera.

La UE prohibeix l’ús de neonicotinoides

Donada aquesta situació, diferents governs han intentat limitar des de fa alguns anys l’ús de pesticides com a part de les accions per frenar el declivi de les poblacions d’abelles i les consegüents pèrdues econòmiques. Per posar alguns exemples, des de l’any 2006 la biomassa d’abelles de la mel ha disminuït un 40% als EUA, un 25% a Europa des de l’any 1985 i un 45% al ​​Regne Unit des de l’any 2010, segons dades publicades per Greenpeace.

Fins a l’actualitat, les mesures més restrictives simplement limitaven l’ús dels neonicotinoides en certes situacions o èpoques de l’any. Però a principis de 2018, la UE, després de l’elaboració d’un minuciós informe basat en més de 1.500 estudis científics realitzat per l’EFSA (Autoritat Europea de Seguretat Alimentària), va decidir prohibir definitivament l’ús dels tres neonicotinoides més usats en un període màxim de 6 mesos en tots els seus estats membres després de demostrar que afectaven a les abelles: imidacloprid, clotianidina i tiametoxam.

S’assoliran els objectius d’aquest informe? Caldrà esperar…

.           .           .

Tot i que lentament, la lluita contra l’ús abusiu dels pesticides va donant els seus fruits. Tanmateix, caldrà veure si el buit deixat per alguns productes és omplert per d’altres o si s’aposta per adoptar models agrícoles més amistosos amb el medi ambient.

Imatge de portada obtinguda de [link].

Insectos vectores: ¿Por qué se están expandiendo?

La semana pasada, nuestra compañera Maribel nos habló de la expansión de las epidemias, gran parte de las cuales dependen de insectos vectores. En los últimos años, los medios se han hecho eco del creciente aumento de casos de enfermedades transmitidas por insectos y otros artrópodos; uno de los más recientes es el caso del virus zika, transmitido por mosquitos del género Aedes (género al que pertenece el mosquito tigre, Aedes albopictus). La mayoría de estos vectores se distribuían hasta hace pocos años en regiones tropicales, pero están empezando a expandirse.

En este artículo, te explicamos qué son los vectores, algunos de los más importantes y por qué se encuentran actualmente en expansión.

¿Qué son los vectores?

En epidemiología, se define un vector como cualquier agente (ya sea persona, animal o microorganismo) que porta y transmite un patógeno infeccioso a otro organismo, ya sea directamente mediante la interacción con el organismo susceptible o bien indirectamente transmitiendo el patógeno a la comida, al agua o a cualquier otro elemento cercano al receptor con los que éste pueda interaccionar.

vector-borne-disease-transmission
Ciclo de la transmisión de las enfermedades mediadas por vectores (Imagen extraída del artículo de Ellis et al. 2009).

Los vectores de enfermedades más importantes y abundantes son los insectos (y otros artrópodos). Aunque si bien es cierto que los vectores pueden ser potenciales transmisores de enfermedades tanto a plantas como a animales, en este artículo nos centraremos en los que afectan a los animales, especialmente a los humanos.

Los insectos como vectores pueden asumir diferentes papales en relación al patógeno que transportan:

  • Vectores mecánicos: la única función del insecto es la de transportar al patógeno, el cual no necesita al insecto para completar su ciclo de vida (dicho de otra manera, el insecto no es un huésped del patógeno). Algunas moscas transportan patógenos causantes de diferentes enfermedades y diarreas, pero dichos patógenos no necesitan a las moscas para vivir; de hecho, podrían ser transportados por algún otro vector.
OLYMPUS DIGITAL CAMERA
Sarcophaga sp. comiendo unos restos de salmón (Imagen de Ernie Cooper ®, 2013)
  • Huéspedes obligatorios: el insecto vector es, en este caso, un elemento esencial en el ciclo vital del patógeno, el cual lo necesita para completar su desarrollo antes de ser transmitido. La mayoría de estos patógenos viajan en la hemolinfa (equivalente a la sangre) de los insectos. Este es el caso de la malaria, el patógeno de la cual (un protista del género Plasmodium) viaja dentro de diferentes especies de mosquito del género Anopheles.
anopheles-stephensi-mosquito
Mosquito de la especie Anopheles stephensi, uno de los vectores de la malaria (Imagen de dominio público, cedida por la CDC).

Aunque muchos insectos se convierten en huéspedes, por lo general no “enferman” como resultado de esta relación: los patógenos necesitan a los vectores para alcanzar a su huésped definitivo, el cual suele ser un vertebrado (como nosotros, los humanos), por lo que evitan al máximo causarles daño.

Pero, aunque no se pongan enfermos, el patógeno muchas veces induce en ellos cambios (fisiológicos, anatómicos, etc.) con el fin de potenciar su transmisión e infección. Por ejemplo, algunos mosquitos sufren modificaciones estructurales de su aparato de succión que limitan la sangre que succionan en cada picada, haciendo que sean más proclives a picar más veces.

Pero… ¿Por qué son tan problemáticos los insectos vectores?

mosquito_malaria_warning-512

Muchos de los patógenos más problemáticos tendrían una dispersión limitada si no fuera por la existencia de vectores. La mayoría de insectos vectores son hematófagos (se alimentan de sangre), por lo que proveen a los patógenos de un sistema de transporte directo a la saliva o sangre del huésped. Por lo tanto, pasar de un huésped a otro mediante los vectores es esencial para su supervivencia y, sobre todo, para su dispersión.

Por ello, se considera que los patógenos transmitidos por insectos y otros artrópodos son los más peligrosos e impredecibles, lo que se debe a varios motivos:

  • Son los más difíciles de prevenir y controlar debido a que presentan una enorme resiliencia a su control y gestión. Esto se debe a que sus vectores están muy bien integrados en los ecosistemas de las regiones donde se encuentran.
  • Los vectores aumentan exponencialmente el rango y la transmisión de los patógenos en relación a aquellos que dependen necesariamente del contacto entre humanos.
  • Actúan de puente entre diferentes huéspedes animales y los humanos; sin los vectores, muchas enfermedades sólo las padecerían ciertos organismos y no pasarían a otros.
  • Tienen una función de reservorio de patógenos, lo que es especialmente útil de cara a pasar los periodos menos propicios para la infección (por ejemplo, el invierno o las épocas secas).
  • Por otro lado, la relación vector-patógeno suele durar hasta el final de la vida del vector, por lo que éste siempre tendrá capacidad infectiva.

Ejemplos de vectores y su impacto

Según datos de la OMS, los mosquitos constituyen el grupo más importante de vectores, así como el más conocido: son los transmisores de enfermedades como la malaria o paludismo, el dengue o la fiebre amarilla, así como de otras enfermedades quizá menos conocidas, como la filariosis linfática.

Además de los mosquitos, las garrapatas, las moscas, los flebótomos (subfamilia de dípteros similares a los mosquitos), las pulgas, los triatominos (chinches de la familia Reduviidae), e incluso algunos caracoles de agua dulce (Gasterópodos, Moluscos), también actúan como vectores de enfermedades.

Phlebotomus
Flebótomo (Phlebotomus sp.), vector transmisor de enfermedades como la leishmaniasis (Imagen de dominio público, cedida por la CDC).
Triatoma_infestans
Triatoma infestans, uno de los chinches de la familia Reduviidae vector de la enfermedad de Chagas (Especimen del Zoologische Staatssamlung München. Localidad: Bolivia, Cochabamba, Leg. Zischka. Autor: Bärbel Stock, CC).

Si quieres conocer más acerca de cada uno de ellos y de las enfermedades que transmiten, puedes entrar en la web de la OMS.

¿Cuál es el impacto de los vectores a escala mundial?

  • Según datos de la OMS, cada año se registran en todo el mundo más de 1.000 millones de casos y más de 1 millón de fallecimientos causados por enfermedades transmitidas por vectores.
  • Del total de enfermedades infecciosas conocidas, casi el 17% de ellas son transmitidas mediante vectores.
  • La malaria (vector: mosquito del género Anopheles) causa anualmente más de 600.000 muertes, la mayor parte de niños menores de 5 años. Por otro lado, más de 2.500 millones de personas en más de 100 países corren el riesgo de contraer el dengue (vector: mosquito del género Aedes).

¿Por qué se encuentran actualmente en expansión?

La manera cómo se distribuyen estas enfermedades está determinada por múltiples factores ambientales y sociales.

Los cambios en la temperatura y los regímenes de humedad como consecuencia del cambio climático están introduciendo modificaciones profundas en el área de distribución de muchos vectores que, hasta hace unos años, se encontraban limitados a zonas tropicales. El incremento de las temperaturas medias anuales y las alteraciones de los ritmos estacionales en latitudes por encima de los trópicos se cree que serían los mayores agentes conductores de la expansión de estos organismos. Así pues, existe la posibilidad que, en los próximos años, aparezcan o aumenten los casos de personas afectadas por patógenos transmitidos por vectores de origen tropical en muchas otras partes del mundo (este es el caso del dengue, la fiebre chikungunya y la fiebre del Nilo Occidental, transmitidas por mosquitos del género Aedes, Anopheles y Culex, respectivamente).

Pero el cambio climático no es, ni mucho menos, la única posible causa de su expansión. La globalización de los desplazamientos y el comercio ha traído consigo el transporte no intencionado de vectores de unas partes a otras del mundo. Estos transportes no serían un motivo tan grave de preocupación si no fuera porque los vectores que llegan al nuevo hábitat muchas veces encuentran las condiciones propicias para su desarrollo, lo que tiene mucho que ver con lo expuesto en el apartado anterior.

También existen evidencias que los cambios en ciertas prácticas agrícolas debido a los cambios en la temperatura y las precipitaciones podrían estar influyendo en la propagación de enfermedades transmitidas por vectores (sobre todo a un manejo inadecuado de los recursos hídricos, dado que muchos insectos pasan gran parte de su vida larvaria en medio acuático).

Para ilustrar un poco la situación actual en el caso de las enfermedades transmitidas por mosquitos en Europa, puedes echar un vistazo a la siguiente infografía del European Centre for Disease Prevention and Control (para descargarla en mayor tamaño, entra aquí). En esta misma web, podrás consultar otras infografías y más información acerca de cada vector.

vector-borne-disease.             .             .

Las enfermedades transmitidas por vectores suponen una gran preocupación a escala mundial. Aunque son impredecibles y difíciles de controlar, la ejecución de unos buenos programas de control, así como la implementación de unas buenas acciones de manejo ambiental (sobre todo en relación a la gestión de los recursos hídricos) podría frenar bastante su avance. En cuanto a los efectos del cambio climático y la globalización, ¿Podría ser ya demasiado tarde? Y tú, ¿Qué opinas?

Referencias

Imagen de portada: Mosquito transmisor del Chikungunya (del Centre for Disease Control and Prevention).

Icono de peligro del mosquito: Ivlichev Viktor Petrovich

Difusió-castellà

Insectes vectors: quina és la causa de la seva expansió?

La setmana passada, la Maribel ens parlà de les epidèmies, moltes de les quals depenen d’insectes vectors. Durant els darrers anys, els medis s’han fet ressò de l’augment sobtat de casos de malalties transmeses per insectes i altres grups d’artròpodes; un dels casos més recents és el del virus zika, el qual és transmès per diferents espècies de mosquit del gènere Aedes (el mateix que el del mosquit tigre, Aedes albopictus). La majoria d’aquests vectors es distribuïen fins fa no gaires anys únicament en regions tropicals, però actualment s’han detectat en latituds més elevades, esdevenint un greu problema de salut a escala mundial.

En aquest article, t’expliquem què són els vectors, alguns dels més importants i per quina raó es troben actualment en expansió.

Què són els vectors?

Segons l’epidemiologia, un vector es defineix com un agent (persona, animal o microorganisme) que transmet un patogen infecciós a un altre organisme, ja sigui directament mitjançant la interacció amb l’organisme susceptible de patir la infecció o bé indirectament transmetent el patogen al menjar, l’aigua o qualsevol altre element proper al receptor amb què aquest pugui interaccionar.

vector-borne-disease-transmission
Cicle de la transmisió de les malalties transmesses per vectors (Imatge extreta de l’article de Ellis et al. 2009).

Els vectors de malalties més importants i abundants són els insectes (i altres artròpodes). Si és cert que els vectors poden transmetre malalties tant a plantes com a animals, en aquest article ens centrarem en aquells que afecten exclusivament els animals, especialment als humans.

Els insectes com a vectors poden assumir diferents papers en relació al patogen que transporten:

  • Vectors mecànics: l’única funció de l’insecte és la de transportar al patogen, el qual no necessita l’insecte per completar el seu cicle de vida (per tant, l’insecte no és un hoste del patogen). Algunes mosques transporten patògens causants de diferents malalties i diarrees, però aquests no necessiten a les mosques per viure; de fet, podrien ser transportats per algun altre vector.
OLYMPUS DIGITAL CAMERA
Sarcophaga sp. menjant unes restes de salmó (Imatge de Ernie Cooper ®, 2013)
  • Hostes obligatoris: l’insecte vector és, en aquest cas, un element essencial en el cicle vital del patogen, el qual el necessita per completar el seu desenvolupament abans de ser transmès a un altre individu. La majoria d’aquests patògens viatgen dins l’hemolimfa dels insectes (una substància equivalent a la sang). Aquest és el cas de la malària, el patogen de la qual (un protista del gènere Plasmodium) viatja dins de diferents espècies de mosquit del gènere Anopheles.
anopheles-stephensi-mosquito
Mosquit de l’espècie Anopheles stephensi, un dels vectors de la malària (imatge de domini públic, cedida per la CDC).

Encara que molts insectes esdevenen hostes de diferents patògens, generalment no emmalalteixen” com a resultat d’aquesta relació. Això és lògic si pensem que els patògens necessiten els vectors per assolir el seu hoste definitiu, el qual sol ser un vertebrat (com nosaltres, els humans). Altrament, la supervivència del vector disminuiria i el patogen no podria expandir-se.

Però, encara que no es posin malalts, el patogen moltes vegades indueix en ells canvis (fisiològics, anatòmics, etc.) per tal de potenciar el seu propi poder de transmissió i infecció. Per exemple, alguns mosquits pateixen modificacions estructurals del seu aparell de succió que limiten la sang que ingereixen a cada picada, fent que siguin més proclius a picar moltes més vegades que un mosquit normal.

Però… per què són tan problemàtics els insectes vectors?

mosquito_malaria_warning-512

Alguns dels patògens més problemàtics tindrien una dispersió limitada si no fos per l’existència de vectors. La majoria d’insectes vectors són hematòfags (s’alimenten de sang), de manera que proveeixen als patògens d’un sistema de transport directe a la saliva o sang de l’hoste. Per tant, des del punt de vista de molts patògens passar d’un hoste a un altre mitjançant els vectors és essencial per a la seva supervivència i, sobretot, per la seva dispersió.

Per això, es considera que els patògens transmesos per insectes i altres artròpodes són els més perillosos i impredictibles, el que es deu a diversos motius:

  • Són els més difícils de prevenir i controlar, doncs presenten una enorme resiliència al seu control i gestió. Això és degut a què estan molt ben integrats en els ecosistemes de les regions on es troben.
  • Els vectors augmenten exponencialment el rang i la transmissió dels patògens en relació a aquells que depenen necessàriament del contacte entre organismes. Són agents molt mòbils!
  • Actuen de pont entre diferents hostes animals i els humans; sense els vectors, moltes malalties només les patirien certs organismes i no passarien a d’altres.
  • Tenen una funció de reservori de patògens, el que és especialment útil de cara a passar els períodes menys propicis per a la infecció (per exemple, l’hivern o les èpoques de sequera).
  • D’altra banda, la relació vectorpatogen sol durar fins al final de la vida del vector, de manera que aquest sempre tindrà capacitat infectiva.

Exemples de vectors i el seu impacte

És molt probable que en algun moment hagis sentit a parlar d’insectes vectors. Però, saps quins són els més importants i quin és el seu impacte mundial a l’actualitat?

Segons dades de l’OMS, els mosquits constitueixen el grup de vectors més important, així com el més conegut: són els transmissors de malalties com la malària o paludisme, el dengue o la febre groga, així com d’altres malalties potser menys conegudes, com la filariosi limfàtica. A més dels mosquits, les paparres, les mosques, els flebòtoms (subfamília de dípters similars als mosquits), les puces, els triatomins (xinxes de la família Reduviidae) i, fins i tot, alguns caragols d’aigua dolça (Gasteròpodes, Mol·luscs), també actuen com a vectors de malalties.

Phlebotomus
Flebòtom (Phlebotomus sp.), vector transmissor de malalties com la leishmaniasis (Imatge de domini públic, cedida per la CDC).
Triatoma_infestans
Triatoma infestans, una de les xinxes de la família Reduviidae vector de la malaltia de Chagas (Espècimen del Zoologische Staatssamlung München. Localidad: Bolivia, Cochabamba, Leg. Zischka. Autor: Bärbel Stock, CC).

Si vols conèixer moltes més coses sobre cadascun d’aquests vectors i sobre les malalties que transmeten, pots visitar el web de l’OMS

Quin és l’impacte dels vectors a escala mundial?

  • Cada any es registren a tot el món més de 1.000 milions de casos i més d’1 milió de morts causats per malalties transmeses per vectors.
  • Del total de malalties infeccioses conegudes, gairebé el 17% d’aquestes són transmeses mitjançant vectors.
  • La malària (vector: mosquit del gènere Anopheles) és la causa anual de més de 600.000 morts, la major part de nens menors de 5 anys. D’altra banda, més de 2500 milions de persones en més de 100 països corren el risc de contraure el dengue (vector: mosquit del gènere Aedes).

Per què es troben actualment en expansió?

La forma com es distribueixen aquestes malalties ve determinada per múltiples factors, tant ambientals com socials.

Els canvis de temperatura i dels règims d’humitat com a conseqüència del canvi climàtic estan introduint modificacions profundes en l’àrea de distribució de molts vectors que, fins fa uns anys, es trobaven limitats a zones tropicals. L’increment de les temperatures mitjanes anuals i les alteracions dels ritmes estacionals en latituds per sobre dels tròpics es creu que serien els majors agents conductors de l’expansió d’aquests organismes. Així doncs, hi ha la possibilitat que, en els propers anys, apareguin o augmentin els casos de persones afectades per patògens transmesos per vectors d’origen tropical en moltes altres parts del món (aquest és el cas del dengue, la febre chikungunya i la febre del Nil Occidental, transmeses per mosquits del gènere Aedes, Anopheles i Culex, respectivament).

Però el canvi climàtic no és, ni de bon tros, l’única causa possible de la seva expansió. La globalització dels desplaçaments i el comerç ha comportat el transport no intencionat de vectors d’unes parts a altres del món. Aquests transports no serien un motiu tan greu de preocupació si no fos perquè els vectors que arriben als nous hàbitats moltes vegades troben les condicions propícies per al seu desenvolupament, la qual cosa té molt a veure amb el que s’exposa en l’apartat anterior.

També hi ha evidències que els canvis en certes pràctiques agrícoles a causa dels canvis en la temperatura i les precipitacions podrien estar influint en la propagació de malalties transmeses per vectors (sobretot degut un maneig inadequat dels recursos hídrics, atès que molts insectes passen per fases larvàries aquàtiques).

Per il·lustrar una mica la situació actual en el cas de les malalties transmeses per mosquits a Europa, pots fer una ullada a la següent infografia del European Centre for Disease Prevention and Control (per descarregar-la en una mida més gran, entra aquí). En aquesta mateixa web, podràs consultar altres infografies i més informació sobre cada vector.

vector-borne-disease.             .             .

Les malalties transmeses per vectors són d’una gran preocupació a escala mundial. Encara que són impredictibles i difícils de controlar, l’execució d’uns bons programes de monitorització i control, així com la implementació d’unes bones accions de maneig ambiental (sobretot en relació a la gestió dels recursos hídrics) podria frenar bastant el seu avanç. En relació als efectes del canvi climàtic i a la globalització Es possible que ja fos massa tard? I tu, què n’opines?

Referències

Imatge de portada: Mosquit transmissor del Chikungunya (del Centre for Disease Control and Prevention).

Icona de perill del mosquit: Ivlichev Viktor Petrovich

Difusió-català

Irene Lobato Vila: Biography

IRENE LOBATO VILA, Editor on All you need is Biology

Irene

Collaborator since March 2015.

As far back as I can remember, I’ve been very interested about nature and environmental issues. My passion for these subjects was the reason I decided to study the Environmental Biology degree at Universitat Autònoma de Barcelona (UAB). I’m very interested on animals, especially on insects, because of what I got specialized in animals at the end of my degree.

I had the chance to collaborate with one of the most influential ecology investigation centers of Catalonia, CREAF, where I took part of a wide study about the ecology and functions of different pollinator insects.

At present, I work as environmental educator and I’m waiting to begin a master’s degree about Biodiversity at Universitat de Barcelona (UB).

You can contact with me with LinkedIn.

Sections: Arthropods.

You can read all her posts here.

Irene Lobato Vila: Biografía

IRENE LOBATO VILA, Redactora de All you need is Biology

Irene

Colaboradora desde marzo de 2015.

Desde que tengo uso de razón, he sentido un gran interés por la naturaleza y el medio ambiente. Esta pasión es la que me llevó a estudiar el Grado de Biología Ambiental impartido por la Universidad Autónoma de Barcelona (UAB). Me encantan los animales, y especialmente los insectos, motivo por el que decidí especializarme en el itinerario animal de mis estudios.

He tenido la oportunidad de realizar prácticas en uno de los centros de investigación ecológica más influyentes de Catalunya, el CREAF, en el marco de un estudio sobre la ecología y funcionalidad de distintos grupos de insectos polinizadores.

A día de hoy, trabajo esporádicamente como educadora ambiental y me encuentro a la espera de iniciar el Máster en Biodiversidad impartido por la Universidad de Barcelona (UB).

Puedes contactar conmigo en LinkedIn.

Secciones: Artrópodos.

Puedes leer todos sus artículos aquí.

Irene Lobato Vila: Biografia

IRENE LOBATO VILA, Redactora de All you need is Biology

IreneCol·laboradora des del març de 2015.

Des que tinc ús de raó que he sentit un gran interès per la natura i el medi ambient. Aquesta passió és la que em va dir a estudiar el Grau de Biologia Ambiental impartir per la Universitat Autònoma de Barcelona (UAB). Sento un interès especial pels animals, més concretament pels insectes, motiu pel qual vaig decidir especialitzar-me en l’itinerari animal dels meus estudis.

He tingut l’oportunitat de realitzar pràctiques en un dels centres d’investigació ecològica més influents de Catalunya, el CREAF, en el marc d’un estudi sobre l’ecologia i funcionalitat de diferents grups d’insectes pol·linitzadors.

A dia d’avui, treballo esporàdicament com a educadora ambiental i em trobo a l’espera de començar el Màster en Biodiversitat impartit per la Universitat de Barcelona (UB).

Pots contactar amb mi a través de LinkedIn.

Seccions: Artròpodes

Pots llegir tots els seus articles aquí.

Equip – Equipo – Team

Marc Arenas

Marc2

David López

David2

Biografia (Cat)Biografía (Cast) Biography (En)

Biografia (Cat)Biografía (Cast) Biography (En)

Adriel Acosta

Adriel2

Guillem Santamaria

Guillem2

Biografia (Cat)Biografía (Cast) Biography (En)

Biografia (Cat)Biografía (Cast) Biography (En)

Mireia Querol

Mireia2

Irene Lobato

Irene2

Biografia (Cat)Biografía (Cast) Biography (En)

Biografia (Cat)Biografía (Cast) Biography (En)

Laia Barres

Laia

Maribel Sancho

maribel

Biografia (Cat)Biografía (Cast) Biography (En)

Biografia (Cat)Biografía (Cast) Biography (En)

Mireia Ramos

mireia ramos muntada all you need is biology

Ricard Arasa

Ricard-Arasa-Gisbert

Biografia (Cat)Biografía (Cast) Biography (En)

Biografia (Cat)Biografía (Cast) Biography (En)

Sara de la Rosa

Sara-de-la-Rosa-Ruiz

 

Biografia (Cat)Biografía (Cast) Biography (En)