Arxiu d'etiquetes: mar mediterráneo

Cetáceos del mar Mediterráneo

¿Sabías que en el mar Mediterráneo viven de forma habitual hasta 8 especies de cetáceos, entre delfines, ballenas y zífios; además de otras especies visitantes o espontáneas, entre las que destaca la orca? Este artículo, una nueva versión de “Cetáceos de la costa catalana“, el primer post publicado en este blog, pretende dar un conocimiento más amplio de los cetáceos que viven en el mar entre tierras.

INTRODUCCIÓN

Los cetáceos se originaron hace más o menos 50 millones de años en el antiguo mar de Tethys, a partir de mamíferos terrestres. Aproximadamente, hay un total de 80 especies en el mundo, pero en el Mediterráneo se encuentran 8 de forma habitual y otros están presentes en determinadas épocas del año o de forma esporádica.

CETÁCEOS HABITUALES DEL MAR MEDITERRÁNEO

DELFÍN LISTADO

El delfín listado (Stenella coeruleoalba) es un cetáceo con una coloración dorsal negra o gris azulada, con la parte ventral blanca. Los flancos son atravesados por una línea negra que comienza en el ojo y se extiende hasta la región anal y otra que se dirige hacia la aleta pectoral. Los animales del Mediterráneo son ligeramente más pequeños que sus vecinos del Atlántico, por lo que pueden alcanzar una longitud de 2,2 m.

Stenella coeruleoalba delfin listado cetáceos mediterraneo
Delfin listado (Stenella coeruleoalba) (Foto: Scott Hill National Marine Mammal Laboratory, Creative Commons).

Se pueden observar formando grandes grupos, de hasta cientos de ejemplares. De todos modos, en las observaciones que yo mismo he realizado en el Mediterráneo, los grupos oscilaban entre los 5 y los 50 ejemplares. Se trata de animales muy acrobáticos, pues suelen realizar saltos que pueden superar los 7 metros de altura.

Son comunes en las dos cuencas mediterráneas, especialmente en mar abierto, siendo muy abundantes en el mar de Liguria, en el Golfo de León, el mar de Alborán (entre Andalucía y Marruecos) y el Balear (entre la Península Ibérica y Baleares).

Esta especie es la más abundante del Mediterráneo (unos 117.000 ejemplares en la cuenca occidental), aunque se encuentra en un estado de conservación vulnerable debido a la afectación por morbillivirus, contaminantes como los organoclorados (¿quieres saber qué efecto tiene el mercurio en su salud?) y los aparejos de pesca.

DELFÍN MULAR

El delfín mular o de nariz de botella (Tursiops truncatus) quizás es de los más conocidos para la población, pues es el protagonista de muchas películas y es el mayoritario de los cetáceos en cautividad.

delfin mular tursiops truncatus cetaceos mediterraneo
Delfín mular (Tursiops truncatus) (Foto: Gregory Slobirdr Smith, Creative Commons).

Su cuerpo, que es robusto, tiene una coloración general gris, más clara en los laterales y blanca en el vientre. Pueden alcanzar una longitud máxima de 4 metros.

Vive en grupos de 2-10 ejemplares, que a veces se pueden juntar para formar grandes grupos. Estos grupos suelen estar integrados por hembras y crías o bien son de machos jóvenes. Son animales costeros, y pueden encontrarse por todas las costas del Mediterráneo.

Su estado de conservación en el Mediterráneo es vulnerable. Se cree que el número total de individuos de esta población ronda los 10.000 ejemplares. Sus principales amenazas son la competencia con las pesquerías comerciales, las capturas accidentales y la contaminación del agua.

DELFÍN COMÚN

El delfín común (Delphinus delphis) se puede reconocer fácilmente por la coloración de su cuerpo: la región dorsal es oscura, con los laterales de color crema o amarillo, que forman una V en la zona media del cuerpo. Como los listados, también son delfines pequeños (entre 2 y 2,5 metros).

delfin comun delphinus delphis cetaceos mediterraneo
Delfín común (Delphinus delphis) (Foto: JKMelville, Creative Commons).

Forman grupos muy numerosos, de entre 10 a 200 individuos, aunque se han observado de miles, los cuales viven en aguas abiertas. La composición de los grupos es bastante desconocida.

Les gusta ponerse en la parte delantera de las embarcaciones, como muestra este vídeo:

A pesar de su nombre, cada vez es más difícil observarlos, pues están en peligro de extinción en el Mediterráneo. En los últimos 40 años, sus poblaciones se han reducido a la mitad. Los motivos son varios: falta de presas por la competencia con los pescadores, capturas accidentales, pérdida de la calidad del hábitat, el ruido marino y altas concentraciones de contaminantes.

RORCUAL COMÚN

El rorcual común (Balaenoptera physalus) es la ballena más grande del Mediterráneo, y la segunda del mundo.

rorcual comun balaenoptera physalus cetaceos mediterraneo circe
Rorcual comú (Balaenoptera physalus) (Foto: Circe)

La cabeza de los rorcuales comunes tiene forma de V y es ancha y aplanada. Su coloración general es gris oscura en la parte dorsal y blanca en la ventral, aunque es asimétrica a nivel de mandíbulas: el lado izquierdo es de color gris oscuro y el derecho es blanco. Presentan una aleta dorsal muy baja en el segundo tercio del cuerpo. Cuando se sumergen, no muestran la aleta caudal, lo que nos permite distinguir un rorcual de un cachalote. Su soplo puede alcanzar los 8 metros de altura y es estrecho, y tarda varios segundos en desaparecer. En cuanto a su longitud, pueden alcanzar los 24 metros.

Se suelen observar en mar abierto en solitario o en pequeños grupos, normalmente madre y cría. En el Mediterráneo, se suelen encontrar en aguas profundas oceánicas desde las Islas Baleares hasta el Mar Jónico, siendo especialmente abundante en el Golfo de León.

Según la IUCN, se trata de una especie vulnerable en el Mediterráneo, aunque está en peligro de extinción a nivel mundial. Su población mediterránea incluye unos 5.000 adultos. Son víctima de colisiones con embarcaciones, altas concentraciones de DDT, la contaminación acústica causada por las prospecciones sísmicas y capturas accidentales en redes de pesca.

Quizás te suena este vídeo de un rescate que llevaron a cabo unos jóvenes de Fuerteventura a un ejemplar de 15 metros:

CACHALOTE

Los cachalotes (Physeter macrocephalus)  son los cetáceos con dientes más grandes del planeta y unos de los más grandes del Mediterráneo.

cachalote-physeter-macrocephalus-cetaceos-mediterraneo
Cachalote (Physeter macrocephalus) (Foto: Gabriel Barathieu, Creative Commons).

Los cachalotes no presentan aleta dorsal, sino que es más bien una joroba triangular seguida por seis protuberancias. Una característica muy importante es que el soplo es inclinado hacia la izquierda. La cabeza, que tiene forma cuadrada, representa 1/3 de la longitud total del animal. Es de color negro o gris, con la parte inferior de la boca blanca. Para sumergirse, sacan la cola fuera del agua. Pueden llegar a los 20 metros de longitud.

Forman grupos sociales muy cohesionados formados por hembras y sus crías, otros grupos de machos jóvenes y los machos adultos son solitarios. El número de individuos oscila entre los 10 y los 15 animales, aunque también se pueden ver de más pequeños. Se suelen observar en aguas oceánicas de todo el Mediterráneo.

Se encuentra en peligro de extinción en el Mediterráneo debido a que quedan atrapados en redes de pesca, por las colisiones con embarcaciones y las molestias causadas por el tráfico marítimo. Se estima que hay algunos pocos miles de individuos en todo el Mediterráneo.

Te has perdido el vídeo de unos cachalotes que “adoptan” a un cetáceo con deformaciones?

CALDERÓN GRIS

El calderón gris (Grampus griseus), conocido también como delfín de Risso, es un animal que, al nacer, es de color gris. De todos modos, con la edad su piel queda llena de cicatrices blancas y que no desaparecen. Pueden alcanzar los 4 metros de largo.

calderon gris grampus griseus cetaceos mediterráneo
Calderón gris (Grampus griseus) (Foto: Rob, Creative Commons).

Generalmente, viven en grupos de 3-50 individuos, a pesar de que en ocasiones se han visto grupos de varios miles de individuos. En el Mediterráneo, se encuentra ámpliamente distribuido en aguas abiertas, siendo más abundante en la cuenca occidental, donde prefiere el talud continental y los cañones submarinos.

No se conoce el estado de conservación de esta especie en el Mediterráneo, pero se ven afectados por las capturas accidentales en aparejos de pesca y la contaminación acústica y química.

CALDERÓN COMÚN

El calderón común o ballena piloto de aleta larga (Globicephala melas) es la especie de delfín más grande del Mediterráneo, pues puede alcanzar los 6 metros. De color general negro, en el vientre tiene una marca blanca en forma de ancla. Las aletas pectorales miden una quinta parte de la longitud del cuerpo.

globicephala melas calderón común cetáceos mediterráneo
Calderón común (Globicephala melas) (Foto: Wikiwand).

Viven en grupos de 10 a 60 individuos, aunque pueden formar grupos de miles de animales. Los grupos están constituidos por varias generaciones de hembras con sus crías. En el Mediterráneo, se encuentra de forma abundante en la cuenca occidental, especialmente en la zona del estrecho de Gibraltar y el mar de Alborán.

No hay datos suficientes para evaluar su estado de conservación. De todas formas, se sabe que está amenazado por las capturas accidentales de los pesqueros, las colisiones con buques y la contaminación acústica y química.

ZÍFIO DE CUVIER

Los zifios de Cuvier (Ziphius cavirostris) son de color girs oscuro o marrón, con la cabeza más clara. Tienen la cabeza voluminosa, y el morro está poco marcado. Pueden medir hasta 7 metros de longitud.

zifio cuvier ziphius cavirostris cetaceos mediterraneo
Zífio de Cuvier (Ziphius cavirostirs) (Foto: WDC).

Suelen vivir en grupos de 2-7 individuos o solitariamente, en aguas oceánicas y muy profundas.

Es una especie muy difícil de observar ya que tienen poca actividad en superficie, motivo que puede explicar que no haya datos suficientes para evaluar su estado de conservación. De todas formas, se sabe que son especialmente sensibles a la contaminación acústica, ya sean operaciones militares o prospecciones sísmicas. Además, la ingestión de plástico y las capturas accidentales también los ponen en peligro.

¿ORCAS EN EL MEDITERRÁNEO?

Las orcas (Orcinus orca) son uno de los cetáceos más fascinantes. Viven tanto en aguas polares como en tropicales, desde la costa hasta mar abierto.

orca orcinus orca cetáceos mediterraneo
Orca (Orcinus orca) (Foto: Jose J. Díaz)

En el Mediterráneo, sin embargo, se consideran residentes sólo en el Estrecho de Gibraltar, con una población de unos 32 individuos. Su presencia en el Estrecho, se cree que está ligada a la presencia de atún rojo, del que se alimentan. Os dejo un vídeo de la BBC sobre la interacción entre pesca y atún en el Estrecho (en este caso, atún común):

¿Sabías que las orcas utilizan diferentes dialectos para comunicarse? ¿Sabías que se han descrito comportamientos homosexuales? Además, se han encontrado algunos ejemplares de orca albinos.

Sin embargo, a principios de año se vieron dos individuos que llegaron hasta las costas de Cataluña (Ametlla de Mar), tal como anunciaron desde la Red de observaciones y rescate de animales marinos de la Generalitat de Catalunya:

No se conoce su estado de conservación, pero la muerte directa en manos de los pescadores, la reducción de sus presas, las molestias y la degradación del hábitat están entre las causas de su reducción.

REFERENCIAS

  • CRAM: Cetacis
  • Day, T (2008). Guía para observar ballenas, delfines y marsopas en su hábitat. Ed. Blume
  • Gobierno de Canarias: Curso de Observación de Cetáceos
  • IUCN (2012). Marine Mammals and Sea Turtles of the Mediterranean and Black Seas. Gland, Switzerland and Malaga, Spain: IUCN
  • Kinze, CC (2002). Mamíferos marinos del Atlántico y del Mediterráneo. Ed. Omega
  • Lleonart, J (2012). Els mamífers marins i els seus noms. Terminàlia, 5, 7-25
  • Notarbartolo di Sciara G. (compilers and editors) (2006). The status and distribution of cetaceans in the Black Sea and Mediterranean Sea. IUCN Centre for Mediterranean Cooperation, Malaga, Spain.
  • Foto de portada: Scuba Diver Life

Difusió-castellà

Cuántas especies viven en el mar Mediterráneo y otras curiosidades que te sorprenderán

El mar Mediterráneo es un “mar en medio de tierra” (Mare medi terraneum, en latín). ¿Sabes cuántas especies viven en este pequeño mar? ¿Sabes cuál es la profundidad media y máxima? Éstas y más preguntas son respondidas en este artículo y te va a mostrar la magnificencia de este mar. 

¿CUÁNTAS ESPECIES VIVEN EN EL MAR MEDITERRÁNEO?

Se han registrado unas 17.000 especies en el mar Mediterráneo. ¿Pensabas que eran más o menos? De estas, un 26% son microbios (microorganismos) marinos, pero podrían ser incluso más si tenemos en cuanta que la información disponible es muy limitada. Se consideramos sólo a los animales, la mayoría de ellos son crustáceos (13,2%) y moluscos (12,4%), mientras que los vertebrados representan una pequeña parte (4,1%). Las plantas representan sólo un 5% del total de especies. Conviene destacar que en el Mediterráneo hay unas 1.200 especies de algas, pero los autores las han distribuido entre los microbios y las plantas, aunque no sean plantas propiamente dichas.

Porcentaje de especies en cada grupo (Foto: Marc Arenas Camps).
Porcentaje de especies en cada grupo (Foto: Marc Arenas Camps).

Estas 17.000 especies representan un 6,4% del total de especies. ¿Es mucho o poco? Pues si consideramos que el Mediterráneo es sólo un 0,82% de la superficie y un 0,32% del volumen de los océanos mundiales, saca las conclusiones tu mismo/a. ¡Esto significa que menos de un 1% de la superficie de los océanos tiene más del 6% de las especies marinas!

Además, el 20% de las especies son endémicas. Esto significa que el 20% de las especies del Mar Mediterráneo sólo se pueden encontrar en el Mediterráneo. Algunos ejemplos son la famosa planta marina Posidonia oceanica, la emblemática foca monje del Mediterráneo (Monachus monachus) y el alga Rissoella verruculosa.

Posidonia oceanica is a very important species in the Mediterranean, which constitutes an ecosystem by itself (Picture: For Divers).
Posidonia oceanica es una especie muy importante del Mediterráneo ya que constituye ecosistemas por si misma (Foto: For Divers).

Por todas estas razones, el mar Mediterráneo es considerado un punto caliente de biodiversidad, explicado por razones paleogeográficas y ecológicas. Desde el punto de vista paleogeográfico, su alta riqueza en especies se debe a su larga historia evolutiva y a la entrada de especies del océano Atlántico. Además, desde el punto de vista ecológico, se explica por la variedad de situaciones climáticas e hidrológicas actuales, lo que permite la presencia de especies temperadas y subtropicales.

En estos números, hay que añadir otras 600 especies de metazoos más. ¿Quiénes son? La biodiversidad mediterránea está influenciada por la introducción de 600 especies nuevas, lo que representa un 3,3% del total de especies. De hecho, este número está continuamente creciendo. Los moluscos (33%), los artrópodos (18%) y los cordados (17%) son los gruos con más especies exóticas. Un ejemplo bien conocido es el pez globo, el cual es tóxico.

¿EL MAR MEDITERRÁNEO ES UN MAR PROFUNDO?

El mar Mediterráneo es el mar cerrado más profundo de la Tierra. Tiene una profundidad media de 1.460 m y la maxima es de 5.267 m. La parte más profunda se encuentra en la fosa de Matapan, en Grecia. Podemos comparar la profundidad media y máxima con otros mares cerrados para dar algunas evidencias: mar Báltico (55 y 421 m respectivamente), mar del Norte (94 y 660 m), mar Negro (1.240 y 2.245 m) y mar Rojo (491 y 3.040 m).

Mediterranean Sea bathymetry (Picture: CIBRA).
Batimetría del mar Mediterráneo (Foto: CIBRA).

¿Qué pasa cuando lo comparamos con los océanos de la Tierra? Personalmente, no considero que se quede atrás, pero miremos los números (profundidad media y máxima): océano Pacífico (4.001 y 11.034 m), océano Atlántico (3.605 y 8.605 m), océano Índico (3.854 y 7.455 m), océano Austral (4.500 y 7.235 m) y océano Ártico (1.430 y 5.625 m).

¿SABÍAS QUE EL MAR MEDITERRÁNEO SE QUEDO CASI SECO?

Hace aproximadamente unos 6 millones de años, hacia finales del Mioceno, el mar Mediterráneo quedó aislado del resto de océanos del mundo. Debido a que tiene un balance de agua negativo, lo que significa que la evaporación es más alta que la entrada de agua, quedó casi seco y, probablemente, quedó transformado en un conjunto de lagos evaporíticos durante la crisis salina de la etapa Messiniense.

Mediterranean geography during the salinity crisis in the (Picture: Paubahi, Creative Commons).
Geografía mediterránea durante la crisis de salinidad del Messiniense (Foto: Paubahi, Creative Commons).

Probablemente, el paisaje durante este período de crisis habría parecido el actual mar Muerto. Esta crisis podría haber causado la extinción de la fauna profunda, pero algunas especies de las aguas superficiales habrían sobrevivido.

Probably, (Picture: AtlasTours.Net).
Probablemente, el paisaje durante la crisis de salinidad habría podido parecer el actual mar Muerto (Foto: AtlasTours.Net).

EL OCÉANO ABIERTO REPRESENTA EL 80% DEL TOTAL DE LAS AGUAS MEDITERRÁNEAS

Las plataformas continentales del Mediterráneo son estrechas y están travesadas por cañones submarinos, de manera que el océano abierto representa un área importante. De hecho, el 80% del total de las aguas del Mediterráneo son aguas abiertas y se pueden clasificar como océano profundo. Una característica inusual es la alta homotermia desde los 300-500 metros hasta el fondo marino (hay una temperatura homogénea de 12,8 – 13,5ºC en la cuenca occidental y de 13,5 – 15,5ºC en la oriental).

REFERENCIAS

  • Ballesteros E & Llobet T (2015). Fauna i flora de la mar Mediterrània. Ed. Brau
  • Bianchi CN & Morri C (2000). Marine Biodiversity of the Mediterranean Sea: Situation, Problems and Prospects for Future Research. Marine Pollution Bulletin. Vol. 40, No. 5, pp. 367-376
  • Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, et al. (2010) The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE 5(8): e11842. doi:10.1371/journal.pone.0011842
  • Hofrichter R (2004). El mar Mediterráneo. Fauna, Flora y Ecología: Guía sistemática y de identificación. Ed. Omega
  • Hofrichter R (2004). El mar Mediterráneo. Fauna, Flora y Ecología: Parte general. Ed. Omega
  • Hutchinson S & Hawkins LE (2005). Océanos. Biblioteca virtual. Scyla Editores
  • Imagen de portada: obtenida de Pinake.

Difusió-castellà

Alerta: ¡El pez globo ya está en el Mediterráneo!

Desde hace un tiempo, los diarios van comentando y alertando de la llegada el pez globo en el Mediterráneo. Este artículo pretende describir a estos animales tan famosos y explicar qué peligro suponen para las personas. 

¿CÓMO ES EL PEZ GLOBO DEL MEDITERRÁNEO?

Los peces globo son un grupo presente en el Mediterráneo de forma no natural, lo que significa que se trata de una especie exótica. En concreto, la especie que ha entrado en el Mediterráneo es Lagocephalus sceleratus. Accedió a través del Canal de Suez y se estableció rápidamente en el Mediterráneo Oriental, aunque hay noticias de que ya ha llegado en el mar Adriático (en el este de Italia). En este artículo publicado en Mediterranean Marine Science puedes encontrar un mapa con las localizaciones concretas (no lo podemos publicar aquí por derechos de autor). Es originario de las aguas tropicales del Pacífico e Índico, incluyendo el Mar Rojo, donde vive en fondos fangosos y arenosos cerca de los arrecifes de coral entre los 10 y 180 m de profundidad. Se alimentan de una gran variedad de animales y plantas gracias a que pueden abrir muchas presas con su potente pico.

Se puede identificar por la coloración verde oliva claro con manchas oscuras, una franja lateral plateada y el vientre blanco. Se puede diferenciar de otras especies de coloración parecida con la presencia de una cola simétrica. Todas las espinas de las aletas, además, son blandas. No tiene escamas en el cuerpo, pero sí presenta unas pequeñas espinas en el vientre y en el dorso. Presenta dos dientes grandes en cada mandíbula, los cuales forman una especie de pico. Cuando se sienten en peligro, absorben agua en una cámara lateral del estómago para hincharse y, así, no caber en la boca de sus enemigos. Los animales más grandes pueden medir más de un metro de longitud, aunque la media es de unos 40 cm.

Lagocephalus sceleratus (Foto: Il Giornale dei Marinai).
Lagocephalus sceleratus (Foto: Il Giornale dei Marinai).

¿QUÉ PELIGRO SUPONEN?

Como cualquier otro pez con unas mandíbulas potentes y que sea suficientemente grande, el pez globo puede realizar mordeduras que dejan una herida profunda. Algunas especies de pez globo pueden ser especialmente agresivas. Hay que decir que la mayoría de accidentes se producen al manipular animales vivos.

A pesar de ésto, su carne es venenosa y, de hecho, ha causado alguna muerte humana debido a la presencia de la toxina tetrodotoxina, la cual es 1.200 veces más tóxica que el cianuro. Esta toxina tiene la capacidad de paralizar los músculos, de manera que para la respiración y causa la muerte por asfixia. Se conoce que con 0,009 mg por cada kg de peso corporal ya es mortal. Por poner un ejemplo, una persona de 70 kg que ingiriese 0,63 mg de la toxina podría morir (sí, ¡en mg!). Lo más curioso es que la toxina no la producen ellos mismos sino las bacterias que ingieren a través de la alimentación.

REFERENCIAS

  • Bergbauer, Myers & Kirschner (2009). Guía de animales marinos peligrosos. Ed. Omega
  • FishBase: Lagocephalus sceleratus
  • IUCN: Lagocephalus sceleratus
  • Nader M., Indary S., Boustany L., 2012. FAO EastMed The Puffer Fish Lagocephalus sceleratus (Gmelin, 1789) in the Eastern Mediterranean. GCP/INT/041/EC – GRE – ITA/TD-10

Difusió-castellà

Los cetáceos tienen una respuesta negativa al tráfico marítimo durante el verano en el mar Mediterráneo Occidental

Un equipo de investigadores de diferentes organizaciones italianas ha publicado en mayo del 2015 sus descubiertas sobre la respuesta al tráfico marítimo durante el verano de los cetáceos que viven en alta mar en el Mediterráneo Occidental. Este artículo es un resumen de este estudio. 

INTRODUCCIÓN

Actualmente, los cetáceos hacen frente a diferentes amenazas, como la pérdida de sus hábitats, la reducción de los recursos, la interacción con las pesquerías y la contaminación química y acústica, entre otras. En el caso del transporte en barcos, puede producir cambios a largo plazo en su distribución, cambios a corto plazo en su comportamiento o heridas físicas directas (por ejemplo, colisiones).

El mar Mediterráneo es una de las zonas con más transporte marítimo. Además, el transporte en barco está creciendo a la vez que crece la preocupación de su impacto en la fauna. Además, debemos tener en consideración que los meses de verano son los que más transporte presentan, especialmente debido al incremento de los barcos de cruceros y los ferry de pasajeros.

El objetivo de este estudio fue determinar si la intensidad del tráfico en alta mar era estadísticamente diferente entre la presencia y ausencia de avistamientos de cetáceos.

ÁREA  DE ESTUDIO Y RECOGIDA DE DATOS

Como la mayoría de las especies de cetáceos del Mediterráneo son pelágicos y hay una falta de información en estas áreas, la investigación ha estado realizada a lo largo de seis transectos en rutas en barco que conectan Italia, Francia y España en alta mar (situados en la cuenca Liguria-Provenzal, el mar Tierreno norte y central y los mares de Cerdeña y Balear).

Mediterranean Sea basin (Picture from Encylopaedia Britannica)
Cuenca del mar Mediterráneo (Foto de Encylopaedia Britannica)

Los transectos se realizaron de junio a setiembre entre los años 2009 y 2013 utilizando ferris como plataformas de observación. Durante este periodo, se recorrieron más de 95.000 km y se registró la presencia de ocho especies de cetáceos.

Curso introductorio online sobre cetáceos. Ahora, con un descuento del 40%, hasta el 30 de junio. Más información aquí. Haz click en la imagen para acceder al cupón.  

PromoJuny

CETÁCEOS Y TRANSPORTE MARÍTIMO

En las localizaciones donde se avistaron cetáceos, el número de embarcaciones era un 20% inferior al número de barcos en ausencia de avistamientos. En el caso de las tres especies más avistadas; el rorcual común (Balaenoptera physalus), el delfín listado (Stenella coeruleoalba) y el cachalote (Physeter macrocephalus); esta diferencia era, respectivamente, del 18%, 20% y 2%. Referente a las otras especies, en el caso del zifio de Cuvier (Ziphius cavirostris) la diferencia era del 29% y en el calderón gris (Grampus griseus) era del 43%. En el caso del delfín mular (Tursiops truncatus) la diferencia fue insignificante. Finalmente, para el delfín común (Delphinus delphis) y para el calderón común (Globicephala melas) no se puede concluir nada.

De todas formas, a pesar de que el número de barcos registrados durante los avistamientos de cetáceos era inferior en todas las áreas, el porcentaje de diferencia oscilaba del 11 al 49% entre las áreas.

Por lo tanto, en alta mar durante el verano, donde los cetáceos fueron avistados, había una abundancia significativamente inferior de barcos. Algunas explicaciones pueden ser: los animales puede tender a evitar las zonas más impactadas con pequeños desplazamientos buscando áreas con menos barcos, pueden cambiar su distribución para ocupar las áreas con menos tráfico o pueden aumentar las inmersiones donde tiene lugar el tráfico más intenso. Por lo tanto, hay diferentes factores que afectan este porcentaje de diferencia, como las necesidades ecológicas específicas y las condiciones medioambientales locales. 

En el caso de los rorcuales comunes, donde el transporte marítimo era intenso, la presencia de rorcuales era generalmente inferior con la excepción de la parte central del mar de Liguria. La explicación podría ser que esta región es ecológicamente favorable en verano ya que es una zona de alimentación de la especie y estos animales están presentes para alimentarse. Así, se produce una coexistencia entre los barcos y los rorcuales.

Fin whale (Balaenoptera physalus) (Picture from Circe)
Rorcual común (Balaenoptera physalus) (Foto de Circe)

Otro ejemplo es el delfín listado. Debido a su alta movilidad, este delfín puede evitar la presencia de embarcaciones y ésto podría ser la razón por la cual hay una respuesta negativa entre esta especie y la presencia de los barcos.

Striped dolphin (Stenella coeruleoalba) (Picture from Marc Arenas Camps)
Delfín listado (Stenella coeruleoalba) (Foto de Marc Arenas Camps)

En cuanto al cachalote y al zifio de Cuvier, no había diferencias en ambos casos en aguas del mar de Liguria y la razón es posiblemente que el cachalote y el zifio de Cuvier tienen sus zonas de alimentación en esta cuenca y, además, el talud continental y los caños submarinos están localizados en áreas concretas. No obstante, se observan diferencias en otras áreas.

Sperm whale (Physeter macrocephalus) (Picture from Gabriel Barathieu).
Cachalote (Physeter macrocephalus) (Foto: Gabriel Barathieu, Creative Commons).
Cuvier's beaked whale (Ziphius cavirostris) (Picture: Todd Pusser, Arkive).
Zifio de Cuvier (Ziphius cavirostris) (Foto: Todd Pusser, Arkive).

Finalmente, el delfín mular no mostraba ninguna respuesta al transporte marítimo. Probablemente, al ser una especie costera, está más acostumbrado a compartir su hábitat con las embarcaciones.

Bottlenose dolphin (Tursiops truncatus) (Picture: Brandon Cole).
Delfín mular (Tursiops truncatus) (Foto: Brandon Cole).

REFERENCIAS

  • Campana, I; Crosti, R; Angeletti, D; Carosso, L, David, L; Di-Méglio, N; Moulins, A; Rosso, M; Tepsich, P & Arcangeli, A (2015). Cetacean response to summer maritime traffic in the Western Mediterranean Sea. Marine Environmental Research, 109, 1-8

El observador submarino

Tal como se comentó en el artículo “La tecnología al rescate de los datos” la plataforma OBSEA es un observatorio submarino situado en la costa catalana. En este artículo haremos una descripción general del observatorio, de la instrumentación instalada así como unas pinceladas de los estudios y usos que se realizan.

La plataforma

El OBSEA (Western Mediterranean Expandable SEAfloor OBservatory) es un observatorio submarino diseñado, desarrollado y gestionado por el grupo de investigación SARTI de la Universitat Politècnica de Catalunya (UPC). Está situado a 4km mar adentro de la costa de Vilanova i la Geltrú, a 20 metros de profundidad, en una zona protegida de pesca, i cuenta con una conexión vía cable de fibra óptica con el laboratorio del SARTI. Gracias a este cable se establece una comunicación continua entre la base en tierra y la plataforma submarina, que le permita, a esta, recibir la energía necesaria para hacer funcionar todos los sensores instalados y enviar los datos, que estos instrumentos va recogiendo, de forma continuada. De esta forma se obtiene la información en tiempo real y se evitan los problemas relacionados con los sensores alimentados por baterías. Además, también permito a los ingenieros del grupo tecnológico SARTE hacer modificaciones de software y comprobaciones de los instrumentos electrónicos sin necesidad de subir a la superficie toda la plataforma.

Plataforma OBSEA
Plataforma OBSEA (Imagen: SARTI-UPC)

Instrumentación y estudios

Todo el sistema electrónico está ubicado dentro de un cilindro estanco para evitar la entrada de agua en los circuitos y a las conexiones de los sensores. A la vez, este cilindro, a la vez que la instrumentación, se encuentra dentro de una estructura metálica que los protege de posibles agresiones externas y que permite su fijación en el fondo marino.

Estructura externa del OBSEA (Imaten 3D: Renderparty)
Estructura externa del OBSEA (Imaten 3D: Renderparty)

Uno de los instrumentos más importantes cuando se estudia el medio marino es el CTD, siglas de Conductivity (conductividad), Temperature (temperatura) y Depth (profundidad), se utiliza en infinidad de estudios, tanto biológicos como físicos. Este instrumento mide directamente la temperatura, conductividad y presión, y se pueden obtener los calores de otros parámetros ambientales a partir de estos primeros: salinidad a partir de la conductividad, profundidad a partir de la presión,…

Video cámera con rotación de 360º (Imagen: SARTI-UPC)
Video cámera con rotación de 360º (Imagen: SARTI-UPC)

Dos cámaras proporcionan imágenes en tiempo real de los alrededores de la plataforma. Una con un eje de rotación de 360º mientras que la otra es fija. Las cámaras hacen posible la realización de proyectos de ámbitos muy dispares, desde estudios biológicos y comportamentales de la fauna asociada al observatorio y a su entorno, a proyectos destinados a la implicación ciudadana al mundo científico, a través de la identificación de las especies que aparecen en las imágenes, y son la base de un grupo de Facebook en el cual los usuarios cuelgan imágenes curiosas que se han captado con estas cámaras y los científicos responsables resuelven las dudas que se plantean.

Un hidrófono capta i caracteriza el ruido ambiental y, mediante el software adecuado, es capaz de distinguir entre ruido biológico y el producido por el hombre. Este sensor se está utilizando actualmente para estudiar los cetáceos de la zona y las posibles relaciones entre las comunidades de peces que viven alrededor del observatorio, los cetáceos (depredadores) y el tránsito marítimo local.

AWAC instal·lat a l'OBSEA (Imatge: SARTI-UPC)
AWAC instalado en el OBSEA (Imagen: SARTI-UPC)
Sismògraf instal·lat a l'OBSEA (Imatge: SARTI-UPC)
Sismógrafo instalado en el OBSEA (Imagen: SARTI-UPC)

Para perfilar la corriente y la altura de las olas se dispone del AWAC, que permite medir la velocidad i dirección del agua a diferentes profundidades, desde el fondo marino hasta la superficie. También es capaz de distinguir entre distintos tipos de olas: largas de tormenta, cortas de viento o las generadas por barcos.

Un sensor del pH nos da información de la acidez del agua.

También se dispone de un sismógrafo que detecta cualquier movimiento tectónico producido a cualquier lugar del planeta. Los datos obtenidos se comparan con una base de datos universal con la finalidad de referenciarlas y verificarlas. Este sismógrafo fue capaz de detectar, entre otros, los movimientos sísmicos producidos por el terremoto de Japón del 2011 o por la plataforma del proyecto Castor.

Finalmente destacar una extensión del observatorio OBSEA en forma de boya. Esta boya esta permanentemente conectada al observatorio y dispone de una estación meteorológica completa para medir, entre otros parámetros, la temperatura delaure, la velocidad y dirección del viento y la presión atmosférica.

Boia oceanogràfica connectada a l'OBSEA
Boya oceanográfica conectada al OBSEA (Imagen 3D: Renderparty)

La plataforma OBSEA permite la obtención de información de orígenes muy diversos (biológicos, oceanográficos, atmosféricos,…) y, lo más importante, de forma continuada y en tiempo real. Esta funcionalidad la hacen una herramienta clave en la realización de estudios oceanográficos actuales y futuros.

Referencias

Aguzzi J, Mànuel A, Condal F, Guillén J, Nogueras M, Del Río J, Costa C, Menesatti P, Puig P, Sardà F, Toma D and Palanques A (2011). The New Seafloor Observatory (OBSEA) for Remote and Long-Term Coastal Ecosystem Monitoring. Sensors vol. 11, pp: 5850−5872.

OBSEA

Renderparty

SARTI-UPC

Si te ha gustado este artículo, por favor compártelo en las redes sociales para hacer difusión, pues el objetivo del blog, al fin y al cabo, es divulgar la ciencia y que llegue al máximo de gente posible.

 Esta publicación está bajo una licencia Creative Commons:

Llicència Creative Commons

Estudio Baleària – 5 de septiembre del 2014

El pasado viernes 5 de septiembre realicé mi sexta colaboración al Estudio y seguimiento de fauna marina del mar catalanbalear (Mediterráneo Noroccidental), organizado por Biodiversidad Marina y patrocinado por Baleària. El equipo, en esta ocasión, estuvo formado por Àlex, Beatriz, Marta y yo mismo. El estudio se inició a las 14:30 des de el puente de comandos del buque Abel Matutes, en la ruta Palma de Mallorca – Barcelona, y finalizó a las 18:19.

Referente a las condiciones meteorológicas del día conviene destacar que el estado del mar fue excelente, el viento tomó rachas entre 16 y 24 nudos (29 – 44 km/h aprox.); la visibilidad fue muy buena (visibilidad de más de 9 km de distancia) y la nubosidad tomó un valor entre el 10-30% de cobertura.

DSCN1742En cuanto a los avistamientos, a pesar de que las excelentes condiciones del mar auguraban un día también excelente, fueron bastante escasos. En cuanto a los cetáceos, observamos unas aletas muy lejanas de alguna especie de delfín que no pudimos determinar y un grupo de 6-15 individuos de delfines listados (Stenella coeruleoalba). Entre los pájaros, vimos dos pardelas cenicienta (Calonectris diomedea), 2  gaviotas patiamarillas (Larus michahelis) y 3 pardelas mediterráneas (Puffinus yelkowan). Además, tuvimos la oportunidad de observar varias especies de peces: 1 pez volador (Familia Exocoetidae), 3 peces luna (Mola mola) y 1 atún (Thunnus).

La primera fotografía fue tomada por Marta Riera y el resto por Beatriz Marín. Todas corresponden a delfines listados.

DSC_0092 10574836_10204795050982076_2069186576_o 10677236_10204795050782071_780693806_o 10698119_10204795050942075_1160131124_o 10703230_10204795050902074_1849778954_o

Esta publicación está bajo una licencia Creative Commons:
Llicència Creative CommonsLicencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.

Mercurio en delfines listados (Stenella coeruleoalba) del Mediterráneo (II): efectos y detoxificación

Aquí tenéis la segunda parte y última en la que trato el tema del mercurio en delfines listados del Mediterráneo. Si en la primera parte hablé sobre el origen y los niveles de mercurio, en esta ocasión nos centramos en los efectos y su detoxificación. Espero que sea de vuestro interés!

 

ORIGEN Y NIVELES DE MERCURIO EN DELFINES LISTADOS DEL MEDITERRÁNEO (RESUMEN)

El mercurio del Mediterráneo tiene un origen principalmente natural, debido a la presencia de depósitos de cinabrio (HgS) a lo largo de la cuenca mediterránea, especialmente en Italia. Es por este motivo que los delfines del Mediterráneo tienen uno de los niveles más elevados del mundo, teniendo la máxima concentración en el hígado, seguido del pulmón, el riñón y los músculos.

DSCN1453

 

EFECTOS DEL MERCURIO EN LOS DELFINES

El mercurio presenta múltiples formas intercambiables en la biosfera, pero la bioamulación a lo largo de la red trófica se produce gracias al metilmercurio (MeHg), una forma orgánica con una alta afinidad por los lípidos (grasas). Las formas inorgánicas son menos tóxicas que las orgánicas. Así pues, la concentración de metilmercurio, más que la concentración total de mercurio, es el mejor indicador de los posibles efectos tóxicos. De todas formas, el metilmercurio representa menos del 10% del mercurio total del hígado en adultos (Cardellicchio et al. 2000, Krishna et al. 2003), aunque en los individuos lactantes representa aproximadamente un 50% (Cardellicchio et al. 2002b) y en jóvenes es entre el 13-35% (Cardellicchio et al. 2002b).Aunque no se puede relacionar directamente la muerte de los delfines encontrados en las costas mediterráneas con el mercurio, es razonable pensar que éste, en sinergia con otros contaminantes, podría causar trastornos en la fisiología de los animales (Cardellicchio et al. 2002a). A grandes rasgos, el mercurio causa desórdenes serios en tejidos como el hígado, el riñón y el cerebro (Augier et al. 1993)Los daños primarios causados por el mercurio se producen en el sistema nervioso central, incluyendo déficit motor y sensitivo y deficiencia de comportamiento. Se ha observado que el límite de tolerancia de mercurio en el hígado de mamíferos es de 100 – 400 μg/g en peso húmedo (Frodello et al. 2000, Cardellicchio et al 2000, Cardellicchio et al. 2002b). En delfines mulares (Tursiops truncatus) del Atlántico se han asociado anormalidades del hígado con la acumulación crónica de mercurio (Krishna et al. 2003). En concreto, se ha observado la acumulación de lipofucsina (pigmento marrón) en las áreas portales del hígado, derivado del daño en células causado por la inhibición que causa el metal en las enzimas digestivas lisosomáticas, lo que habría reducido la degradación de proteínas y, así, causando la acumulación del pigmento y la muerte de las células. Si eso fuera cierto también para los delfines listados, las poblaciones mediterráneas de esta especie están en grave riesgo.
También se observan anorexia, letargo, trastornos reproductores y alteraciones y muerte de fetos. A la vez, el mercurio produce una disminución de las defensas, facilitando la aparición de enfermedades infecciosas y neumónia.

 

DETOXIFICACIÓN DEL MERCURIO

A pesar de los elevados valores hallados en delfín listado, los animales no presentan signos evidentes de intoxicación por mercurio. Como los delfines tienen muy poca capacidad para eliminar el mercurio, se han desarrollado diferentes mecanismos de detoxificación de este metal, de manera que se generan formas menos tóxicas que las originales (André et al. 1990, Leonzio et al. 1992, Augier et al. 1993, Monaci et al. 1998, Cardellicchio et al. 2000, Cardellicchio et al. 2002b, Krishna et al. 2003, Roditi-Elasar et al. 2003, Pompe-Gotal et al. 2009).

La detoxificación de mercurio la realizan principalmente el hígado (detoxificación y almacenaje) y el riñón (eliminación), a pesar de que el pulmón podría tener algún papel también en la detoxificación (Augier et al. 1993).

La vida media de eliminación del metilmercurio en delfines listados es de 1000 días (Itano i Kawai 1981). Se han identificado dos mecanismos de detoxificación de metilmercurio principales: la asociación a selenio y a metalotioneínas (Augier et al. 1993).

 

Asociación a selenio

Se ha identificado el efecto antagónico que tienen el mercurio y el selenio a lo largo de todo el reino animal, incluyendo los delfines (Leonzio et al. 1992, Monaci et al. 1998, Frodello et al. 2000, Cardellicchio et al. 2000, Cardellicchio et al. 2002b, Krishna et al. 2003, Roditi-Elasar et al. 2003, Pompe-Gotal et al. 2009).Se han observado gránulos esféricos y poligonales de selenuro de mercurio (también llamado tiemannita) a nivel intracelular, situados sobretodo en los macrófagos del hígado, las células de Kupfer y en los túbulos proximales del riñón, pero también en el sistema respiratorio, los pulmones y los nodos limfáticos hilares en delfines listados (Cardellicchio et al. 2002b, Krishna et al. 2003). El mercurio ingerido con el alimento se transporta hasta el hígado a través de las venas portales donde se convierte en selenuro de mercurio y se acumula (Krishna et al. 2003), lo que explica los elevados niveles de mercurio total del hígado de los delfines listados del Mediterráneo.

Palmisano et al. (1995) han propuesto dos fases en el mecanismo de desmetilación y acumulación: a niveles bajos de mercurio, el metal se retiene sobretodo en la forma metilada, mientras que a niveles altos (probablemente por encima del lindar de 100 μg/g en peso fresco de mercurio total) se produce la desmetilación. De hecho, la relación molar Hg:Se en el hígado de delfines listados es aproximadamente 1 una vez superado este nivel lindar (Krishna et al. 2003), mientras que toma valores inferiores a 1 en el resto de tejidos como el músculo (Leonzio et al. 1992).

Parece ser que la acción protectora del selenio contra el mercurio disminuye en la parte final de la vida de les delfines (Leonzio et al. 1992).

 

Asociación a metalotioneínas

La detoxificación del mercurio en delfines también se realiza por la compexación a metalotioneínas (MT), proteínas ricas en cisteína capaces de unirse a metales pesados a través de grupos tiol de sus residuos de cisteína (André et al. 1990, Caurant et al. 1996; Cardellicchio et al. 2002b). Aunque no es el mecanismo principal, se observa un máximo de un 10% del mercurio intracelular de los hepatócitos asociado a estas proteínas en ratas (Gerson i Shaikh 1982).

 

CONCLUSIONES

  • La concentración de mercurio varía substancialmente según el tejido y órgano que se consideren, pero sigue el siguiente patrón general: hígado >> pulmón, riñón > músculo. En la piel, melón, blubber y cerebro, toma valores insignificantes.
  • Los niveles del Mediterráneo son más altos que en el Atlántico y Pacífico y toma los valores máximos en la costa francesa, el mar de Liguia y el mar Tirreno.
  • La concentración de mercurio está relacionada con la edad y la longitud, pero no con el sexo.
  • A pesar de que los niveles de mercurio en los delfines listados del Mediterráneo son muy elevados no presentan efectos tóxicos gracias a la detoxificación del metal con selenio y metalotioneínas.

 

REFERENCIAS

  • Andre J, Boudou A, Ribeyre F i Bernhard M (1990). Comparative study of mercury accumulation in dolphins (Stenella coeruleoalba) from French Atlantic and Mediterranean coasts. The Science of the Total Environment 104:191-209
  • Augier H, Park WK i Ronneau C (1993). Mercury Contamination of the Striped Dolphin Stenella coeruleoalba Meyen from the French Mediterranean Coast. Marine Pollution Bulletin 26:306-311
  • Cardellicchio N, Decataldo A, Di Leo A i Giandomenico S (2002a). Trace elements in organs and tissues of striped dolphins (Stenella coeruleoalba) from the Mediterranean sea (Southern Italy). Chemosphere 49:85-90
  • Cardellicchio N, Decataldo A, Di Leo A i Misino A (2002b). Accumulation and tissue distribution of mercury and selenium in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea (southern Italy). Environmental Pollution 116:265-271
  • Cardellicchio N, Giandomenico S, Ragone P i Di Leo A (2000).Tissue distribution of metals in striped dolphin (Stenella coeruleoalba) from the Apulian coast, Southern Italy. Marine Environmental Research 49:55-66
  • Frodello JP, Roméo M i Viale D (2000). Distribution of mercury in the organs and tissues of five toothed whale species of the Mediterranean. Environmental Pollution 108:447-452
  • Gerson JR i Shaikh ZA (1982). Uptake and binding of cadmium and mercury to metallothionein in rat hepatocyto primary cultures. Biochemistry Journal 208:465-472
  • Itano K i Kawai S (1981). Changes of mercury contents and biological half-life of mercury in the striped dolphin. In: Fujiyama H (Ed.) Studies on the Levels of Oganochlorine Compounds and Heavy Metals in Marine Organisms. University of Ryukyus, 49-73
  • Krishna D, Virginie D, Stéphane P i Jean-Marie B (2003). Heavy metals in marine mammals. In: Vos JV, Bossart GD, Fournier M i O’Shea T (Eds.) Toxicology of Marine Mammals. Taylor and Francis Publishers, Washington DC, 135-167
  • Leonzio C, Focardi S i Fossi C (1992). Heavy metals and selenium in stranded dolphins of the Northern Tyrrhenian (NW Mediterranean). The Science of the Total Environment 119:77-84
  • Monaci F, Borrl A, Leonzio C, Marsili L i Calzada N (1998). Trace elements in striped dolphin (Stenella coeruleoalba) from the western Mediterranean. Envirnmental Pollution 99:61-68
  • Palmisano F, Cardellicchio N i Zambonin PG (1995). Speciation of mercury in dolphin liver: a two-stage mechanism for the demethylation accumulation process and role of selenium. Marine Environment Research 40(2):109-121
  • Pompe-Gotal J, Srebocan E, Gomercic H i Prevendar Crnic A (2009). Mercury concentrations in the tissues of bottlenose dolphins (Tursiops truncatus) and striped dolphins (Stenella coeruleoalba) stranded on the Croatian Adriatic coas. Veterinarni Medicina, 54(12):598-604
  • Roditi-Elasar M, Kerem D, Hornung H, Kress N, Shoham-Frider E, Goffman O i Spanier E (2003). Heavy metal levels in bottlenose and striped dolphins off the Mediterranean coast of Israel. Marine Pollution Bulletin 46: 504-512

 

Licencia Creative Commons
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.