Arxiu d'etiquetes: maribel sancho martínez

¿Por qué cambian de color las aguas?

En Agosto de 2016, la noticia de una piscina verde en los Juegos Olímpicos de Río de Janeiro se publicó en todos los medios de comunicación. Todo el mundo se sorprendió y habló sobre el tema, pero este fenómeno ocurre en la naturaleza  con mayor frecuencia de la que creemos: el lago Urmía (Irán), Lago de los Clicos (Lanzarote), Lago rosa Hilier (Australia), etc. ¿Quieres conocer el porqué de estos cambios?

EUTROFIZACIÓN: CONCEPTO Y EJEMPLOS

10 de Agosto del 2016. Plenos juegos olímpicos de Rio de Janeiro. Salta a los medios de comunicación una curiosa noticia: “La piscina de trampolines ha cambiado de color”. El agua había perdido su tono azulado y presentaba un color verde. El mundo se revolucionó ante este cambio, pero ¿qué había sucedido?

1470812789_613295_1470814544_sumario_normal
Piscina de Saltos en los Juegos Olímpicos de Rio de Janeiro 2016. Se volvió verde debido a la proliferación de algas. (Imagen: Verne. El País).

Este fenómeno de cambio de color de determinados cuerpos de agua es un fenómeno muy común en la naturaleza. Se trata de la eutrofización del agua. Este concepto hace referencia a la proliferación masiva de organismos debido a un aumento en la concentración de nutrientes en el agua. Para que nos entendamos fácilmente: en el agua se produce un aumento de los alimentos y por tanto, se produce un aumento de los organismos que condicionan las características del agua como el color, la turbulencia, etc.

En los cuerpos de agua cerrados (lagos, piscinas, estanques…) es mucho más sencillo que ocurra este fenómeno. Aún así en mar abierto también se dan estas explosiones de microorganismos (sobre todo de fitoplacton).

eutrofizacion_as_conchas_2011-05-31d
Ejemplo de eutrofización por algas en un cuerpo de agua cerrado. (Imagen: Radio wtcv)

Los principales nutrientes que influyen en la eutrofización de los lagos son los limitantes nitrógeno y fósforo. En cuerpos de agua dulce este último es determinante, mientras que en aguas saladas el nitrógeno suele ser el factor limitante. Un aumento de las concentraciones de estos nutrientes inicia el proceso de eutrofización y proliferación de productores primarios (en su mayoría microalgas y bacterias fotosintéticas como Cianobacterias o arqueobacterias como las Holobacterias).

En estos cuerpos de agua cerrados, el equilibrio natural del ciclo de nutrientes se perturba con mucha facilidad. Cuando un lago recibe nutrientes de forma excesiva, toda la estructura trófica puede cambiar rápidamente. El agua se sobrefertiliza y los organismos fotosintéticos proliferan a sus anchas provocando una explosión de algas y microorganismos.

diagramaeutofizacion
Diagrama básico del proceso de eutrofización (imagen: Verdezona)

Normalmente hablamos de explosiones demográficas de microalgas (fitoplacton) y cianobacterias, pero en ciertos casos, cuando el cambio de nutrientes es más drástico (que afecta a la composición físico-química del agua) hablamos de la proliferación de bacterias y arqueas. Este caso seria el del Lago Urmía (Irán), donde proliferan exponencialmente las Halobacterias que soportan grandes concentraciones salinas. Debido a las escasas lluvias y la continua extracción del agua para la agricultura, el agua se torna más salada, impendiendo la vida de la mayoría de organismos y favoreciendo la explosión demográfica de los más especializados, como Halobacterias. La pigmentación roja surge por la presencia de un pigmento conocido como Bacteriorodopsina.

img_cvillalonga_20160730-175846_imagenes_lv_otras_fuentes_lago-kydd-u403578585540yod-992x558lavanguardia-web
Imagen de satélite del Lago Urmía (Irán). El cambio de color se debe a la proliferación de bacterias de la familia Halobacteriaceae. (Imagen: La Vanguardia)

El ejemplo de la piscina de Rio de Janeiro muestra las etapas iniciales de la explosión demográfica de algas. Algunos lagos, sin embargo, muestran etapas más avanzadas de eutrofización, como seria el caso del lago Clicos en Lanzarote. En este lago proliferan exponencialmente algas de la especie Ruppia maritima.

clicos
Fotografía del Lago de Clicos en Lanzarote. (Imagen: National Geographic)

EUTROFIZACIÓN NATURAL Y ANTROPOGÉNICA

El proceso natural de eutrofización está altamente regulado, ya que se tiende a un equilibrio entre las entradas (precipitación, escorrentia, erosión…) y salidas de nutrientes. Existen tres estados tróficos en los cuerpos de agua cerrados: el oligotrófico, el mesotrófico y el eutrófico, dependiendo de ciertas características del agua como la concentración de nutrientes y oxigeno, la turbulencia del agua, la producción primaria etc. Estos estados marcan la “edad” de los lagos, es decir, un lago joven sera oligrotrófico mientras que uno más antiguo tenderá a la eutrofización. En la siguiente tabla encontramos algunas diferencias resumidas entre estos tres estados tróficos:

jajaajajkbdicidkb
Tabla con algunas diferencias entre los diferentes estados tróficos de los cuerpos de agua cerrados. Elaboración propia.

Los ecosistemas naturales presentan resilencia, es decir, capacidad para volver al estado normal después de una perturbación brusca.

Aún así, con el paso del tiempo, los lagos más antiguos tienden a acumular sedimentos y restos orgánicos, convirtiendo finalmente el lago en un pantano. Este proceso puede durar miles de años.

Aunque el fenómeno natural de eutrofización es bastante común, no es tan explosivo como el producido por la eutrofización antropogénica. ¿Que significa este concepto? Hablamos de eutrofización antropogénica haciendo referencia al tipo de eutrofización causada por el hombre. Aguas residuales, aguas ricas en fertilizantes y otro tipo de contaminación son las principales causas de este tipo de eutrofización. El ecosistema no tiene la capacidad de eliminar tantos nutrientes de forma equilibrada y tienden a acumularse. En este caso, el proceso dura mucho menos que el natural: tan solo unas décadas son suficientes.

eutrophication
Comparación entre la eutrofización natural y la antropogénica. (Imagen: New Brunswick, CanadáNew Brunswick, Canadá).

EL INICIO DEL FIN

La eutrofización , sin embargo, marca el inicio de la muerte del cuerpo de agua. ¿Cómo?

El aumento de las concentraciones de nutrientes produce un aumento en la proliferación de plantas acuáticas y algas que realizan la fotosintesis. La concentración de oxigeno aumenta y los organismos también proliferan. Por tanto se da una explosión en la densidad poblacional que provoca la formación de una barrera en el agua. En la superficie la concentración de oxigeno se mantiene mientras que en zonas profundas, donde la luz no penetra con facilidad, se produce un aumento de la respiración aeróbica y disminuye la fotosintesis. Este proceso de consumo de oxigeno provoca que cada vez haya menos concentración de este gas y el medio se vuelva anóxico. Al no haber oxigeno suficiente, las especies que antes vivían plácidamente en el lago, ahora desaparecen.

sin-titulo
En el diagrama se puede observar la barrera que se crea por la proliferación de algas, dejando las zonas más profundas en un ambiente oscuro y sin oxigeno. (Imagen modificada de SPE International)

Por otro lado, una elevada actividad biológica implica una disminución de la disolución de determinados nutrientes en el agua, provocando un cambio en el pH y salinidad de esta, condicionando gravemente también la habitabilidad de estas aguas y favoreciendo la proliferación de organismos extremófilos. Además, la presencia de ciertas algas implica la producción de toxinas que afectan negativamente a las poblaciones autoctónas del lago. Las principales cianobacterias tóxicas que suelen proliferar fácilmente son Anabaena sp, Cylindrospermopsis sp, Microcystis sp. y Oscillatoria sp. Esto implica una gran pérdida en la diversidad de la zona.

o_perdida-de-biodiv-impacto
Comparación de la diversidad en un cuerpo de agua oligotrófico y uno eutrófico. (Imagen: Madrid+d)

Finalmente, los restos orgánicos de los organismos muertos se acumulan en el fondo del cuerpo de agua, aumentando así la capa de sedimentos. Al cabo de los años, el volumen de agua se ha reducido significativamente, convirtiendo el lugar en un pantano.

·

Como en la mayoría de casos, las acciones del hombre tienen graves consecuencias en el medio ambiente. Debemos evitar la contaminación si no queremos perder la gran diversidad de organismos y parajes que nos rodea. 

REFERENCIAS

  • Eutrofización. Nestor Mazzeo. (PDF, en castellano)
  • Apuntes personales y Generales del Grado en Biología, UIB.
  • Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. Michael Chislock. Disponible aquí en inglés.

  • Imagen de Portada: Axena.

Maribel-castellà

Home’s micro-squatters

If you ever thought to be alone in your house, you were wrong. In your home there are thousands and thousands of micro-organisms sprout at ease. They are responsible for odors and pollution from yourhome. Would you like to know more about your tenants?

MICRO-SQUATTERS OF OUR HOUSES

It is stimated that about 90% if our time is spended in closed places, such as office, school or home. These places, as well as the rest of our planet, presents a environmental conditions suitable for proliferation of bacteria, fungi and arthropods. These communities are known as the Home’s Microbiome.

3-cepillo-dientes
Photomicrograph of the bristle of a used toothbrush where proliferate a lot of microbial communities (Image: Science photo library)

The relations that we stablish with these communities of microorganisms can condition directly in our health. Can find beneficial microorganisms, indifferent microorganisms (i.e that do not produce any effect) and pathogenic microorganism (as Staphylococcus auereus resistant to antibiotics) or allergens as them mites. These pathogens, in most of cases, just represent a litle percentage and not pose any risk for them home’s occupants.

BACTERIA

Bacterial communities are very abundant in our homes. We can find them in every corner and have a great diversity. For example, in the dust is estimated that there are som 7000 different bacterial species. In the following graphic, can observe the broad diversity of bacterial species that colonizes certain regions of our home, such as the toilet’s lid, kitchen or our own beds.

fig_1a
Differents bacterial families that we can found arround our home (Image: G.E. Flores)

FUNGI

In normal conditions, a house can present up to 2000 different types from fungi. We can also find them in all home environment such as food, kitchen, walls and even in forgotten places during cleaning as for example the dust accumulated on the door frames. Among them, we can highlight the presence of Aspergillus, Penicillium and Fusarium (common envirnmental fungi). Also proliferate fungi responsible of the wood degradation (as for example Stereum, Tremetes, or Tremellosa) or fungi related with humans, like Candida.

fig_6
Wall mold that appear in homes (Image: Mycleaningproduct.com) or fruit mold by Penicillium sp. (image: wisegeek).

MITES

These microorganisms represents to the Arthropods of our homes. Normally they live in dust, on rough surfaces such as fabrics, mattresses and pillowsa where they feed on died human and animals skin. We can find Dermatophagoides pteronyssus and Dermatophagoides farinae species, commonly knwon as dust mites. Even so, and to a lesser extent, we can find also some that another exemplay of Demodex folliculorum. This mite live in the hair follicles of our face and feeds on dead skin. Normally follows from the skin while we are sleeping.

fig_7
Dust mite D. pteronyssinus (image: Göran Malmberg) and follicles mite Demodex folliculorum (Image: BBC)

BIOGEOGRAPHY AND  EMISSION SOURCES

The geographical distribution of these microscopic communities and those factors that determine it, are little known. For that reason, along this decade, studies about hom’s microbiome have increased and proliferated singnicantly.

The large microbial diversity changes over different locations in our home, i.e. we will not find the same microorganisms in bed than in the bowl of the toilet. For example, in our kitchen, depending on the place that we examine, we find greater abundance of specific bacterium or other. In the image bottom, us show as in the stove of our kitchen find more Salmonella sp than Clostridium sp.

fig_3
Differences in the abundance of bacteria depending on the location (Image: G.E. Flores)

Even so, we can found a certain pater in this distribution, i.e. the microorganisms that inhabit certain areas are more similar than the comminities that we found in other locations. In the following dendogram we can observe that microorganisms found in our pillowcase are very similar to those that found in toilet, but completely different from whichwe can find in our kitchen cutting board.

fig_1
Dendrogram of similarity between the bacterial communities of various areas of our home. (Image: Robert, D. Dunn).

But, what is the reason for this geographical distribution?

The response is found in the differents emission sources of these organisms. Depending on the source we can find find a few species or others. Obviously the main microorganism source of emission  into the environment are humans. We know that millions of bacteria and other microorganisms live in our body and they spread everywhere, either by respiratory activity, waste digestion or skin contact. Each human leaves a specific microbial fingerprint in those places. 

fig_3b
Major sources of emissions according to the area of the home to examine. See is that the largest source of emission are the own human. (Image: G. E. Flores)

In the graphic you can see that in some places appear microorganisms related to our intestines, specifically those who are ejecting with droppings. Is not wash you hans after going to the service, surely yo go spreading faecal bacteria everywhere. Also, if you pull the string with the toiled lid open, it causes the expansion of faecal bacteria as if it were a spray, reaching our toothbrushes  or the hand soap.

On the other hand, microbial diversity is very influenced by the number and type of home occupants. We cannot found the same microorganisms in a house with two persons than in other one with a family of seven. In addition, is has observed that not found the same microorganisms in homes where there is greater number of women that in which there is greater numer of males. Usually, mens released more microorganisms to environment.

f5a
Graphic of the influence of the genre of the occupants in the diversity of microorganisms in our home (Image: Albert barberán).

Another important factor that determines this geographical distribution and microbial diversity is the presence of pets. If in our homes we have animals like cats or dogs, we will found more varied microbial communities. In these case, these microorganisms are related to feces, skin and glans of these animals.

f5-large
Differences in the abundance of certain bacterial species based on the presence or absence of pets (Image: Albert barberán).

Although the main source of emission are the occupants of these homes, microscopic comminities that colonise all corners are closely related to which we can found on the outside. In the case of fungi, this relationship is more narrow that in the case of bacteria. Even so, it has been observed that species are more varied in houses.

fig_4
Comparison of the rich bacterial and fungal of our homes and the foreign. (Image: Albert barberán)

·

How much reason have the phrase “as my home any place! Each home is indeed aunique and specific universe of microscopic communities. There aren’t two equal in the world!

REFERENCES

Maribel-anglès

Micro-okupas de nuestros hogares

Si alguna vez has pensado estar solo en tu casa, sentimos comunicarte que te equivocabas. En nuestros hogares existen una gran cantidad de microecosistemas perfectos para que una gran diversidad de microorganismos prolifere a sus anchas. Estas comunidades son las responsables de los olores de nuestro hogar, de la degradación de ciertos materiales y la contaminación de ciertas zonas. ¿Quieres saber un poco más sobre tus microscópicos compañeros de piso? ¡Adelante!

MICRO-OKUPAS DE NUESTROS HOGARES

Se calcula que cerca de un 90% de nuestro tiempo lo pasamos en lugares cerrados, tales como la oficina, el colegio, nuestro hogar. Estos lugares, así como el resto de nuestro planeta, presenta condiciones idóneas para la creación de espacios donde puedan proliferar especies microscópicas como bacterias, hongos y artrópodos. Estas comunidades comprenden lo que conocemos como el microbioma de nuestro hogar.

3-cepillo-dientes
Microfotografía de escáner electrónico de una cerda de un cepillo de dientes usado donde se acumulan las comunidades bacterianas. (Imagen: Science photo library)

Las relaciones que establecemos con estas comunidades de microorganismos pueden condicionar directamente en nuestra salud. Podemos encontrar microorganismos beneficiosos, microorganismos indiferentes (es decir, que no producen ningún efecto) y microorganismos patógenos como Staphylococcus aureus resistente a antibióticos o alérgenos como los ácaros. Cabe decir que estos patógenos, en la mayoría de casos, apenas representan un porcentaje y no suponen ningún riesgo para los ocupantes del hogar.

BACTERIAS

Las comunidades bacterianas son muy abundantes en nuestros hogares. Las podemos encontrar en todos los rincones y presentan una gran diversidad. Por ejemplo, en el polvo se calcula que hay unas 7.000 especies bacterianas diferentes. En el gráfico siguiente podemos observar la diversidad bacteriana que coloniza ciertas regiones de nuestro hogar, como la tapa del inodoro, la cocina o nuestras propias camas.

fig_1a
Diferentes taxones bacterianos que podemos encontrar en diferentes zonas de nuestro hogar. (Imagen: G.E. Flores)

HONGOS

Una vivienda normal puede presentar hasta 2.000 tipos diferentes de hongos. Los podemos encontrar también en todos los ambientes del hogar como alimentos, cocina, paredes e incluso en lugares olvidados durante la limpieza como por ejemplo el polvo acumulado sobre los marcos de las puertas. Entre ellos podemos destacar la presencia de Aspergillus, Penicillium y Fusarium. También proliferan hongos encargados de la degradación de maderas (como por ejemplo Stereum, Tremetes, Phlebia) o hongos relacionados con los humanos, como sería el caso de Candida.

fig_6
Aparición de moho en nuestros hogares en forma de húmedad por Strachybrotrys sp. (Imagen: Mycleaningproduct.com) o en las frutas como Penicillium sp. (imagen: wisegeek).

ÁCAROS

Estos organismos representan al grupo de los artrópodos microscópicos de nuestros hogares. Normalmente habitan en el polvo de nuestra casa, en las superficies rugosas tales como telas, colchones y almohadas donde se alimentan de piel y escamas humanas y de animales. Normalmente encontramos las especies Dermatophagoides pteronyssus y Dermatophagoides farinae, conocidos comúnmente como ácaros del polvo. Aun así, y en menor medida, podemos encontrar también algún que otro ejemplar de Demodex folliculorum. Este ácaro habita en los folículos pilosos de nuestro rostro y se alimenta de piel muerta. Normalmente se desprende de la piel al dormir.

fig_7
Ácaro del polvo D. pteronyssinus (Imagen: Göran Malmberg) y ácaro del folículo Demodex folliculorum (Imagen: BBC)

BIOGEOGRAFÍA Y PRINCIPALES FUENTES DE EMISIÓN

La distribución geográfica de las comunidades microscópicas de nuestro hogar y los factores ambientales que condicionan esta distribución son poco conocidos. Por ese motivo, a lo largo de esta última década los estudios sobre el microbioma de nuestros hogares han aumentado y proliferado de manera considerable.

Esta gran diversidad microbiana cambia a lo largo de diferentes localizaciones de nuestro hogar, es decir, no encontraremos los mismos microorganismos en la cama que en la taza del váter. Por ejemplo, en nuestra cocina, dependiendo del lugar que examinemos podemos encontrar mayor abundancia de una determinada bacteria o de otra. En la imagen inferior, nos muestran como en los fogones de nuestra cocina encontramos una mayor abundancia de Salmonella sp. que de Clostridium sp.

fig_3
Diferencias en la abundancia de bacterias en función de la localización. (Imagen: G.E. Flores)

Aun así, encontramos un cierto patrón en la distribución geográfica de estas comunidades, es decir, los organismos que habitan en ciertas zonas son más similares que a los que encontramos en otras. En el dendrograma siguiente podemos observar como los organismos que encontramos en la funda de nuestras almohadas (pillowcase en inglés) son muy parecidas a las que encontramos en el retrete, pero completamente diferentes a las que podemos encontrar en la tabla de cortar de nuestras cocinas.

fig_1
Dendograma de similitud entre las comunidades bacterianas de diversas zonas de nuestro hogar. (Imagen: Robert, D. Dunn).

¿Cuál es el porqué de esta distribución geográfica?

La respuesta se encuentra en las diferentes fuentes de emisión de estos organismos. En función de dónde provenga la afluencia de microorganismos encontraremos unas especies u otras. Obviamente la mayor fuente de emisión de microorganismos al ambiente son los seres humanos. Sabemos que millones de bacterias y demás microorganismos viven en nuestro organismo y estos se extienden por todas partes, ya sea por actividad respiratoria, contacto directo o por la piel. Cada humano deja una huella microbiana (fingerprint en inglés) específica en aquellos lugares donde se encuentra.

fig_3b
Principales fuentes de emisión en función de la zona del hogar a examinar. Véase que la mayor fuente de emisión son los propios humanos. (Imagen: G. E. Flores)

Se puede observar que en ciertos lugares aparecen microorganismos relacionados con nuestros intestinos, concretamente son aquellos que se expulsan con los excrementos. Si no lavamos nuestras manos después de acudir al servicio, seguramente vayamos esparciendo bacterias fecales por doquier. También cabe destacar que hasta los más pulcros cometen errores: tirar de la cadena con la tapa del retrete abierta provoca la expansión de bacterias fecales como si se tratara de un aerosol, llegando hasta nuestros cepillos de dientes o el jabón de manos.

Por otro lado, la diversidad microbiana está muy influenciada por el número y tipo de ocupantes de la casa, es decir, no habrá los mismos organismos en una casa con dos ocupantes que en la casa de una familia de siete miembros. Además, se ha observado que no encontramos los mismos microorganismos en hogares donde hay mayor número de mujeres que en los que hay mayor número de varones. Por lo general estos últimos liberan una mayor cantidad de microorganismos.

f5a
Gráfico de la influencia del género de los ocupantes en la diversidad de microorganismos de nuestro hogar. (Imagen: Albert barberán).

Otro factor muy importante que condiciona esta diversidad microbiana es la presencia de mascotas. Si en nuestros hogares tenemos animales de compañía como gatos o perros, conviviremos con comunidades microscópicas más variadas. En estos casos, encontramos organismos relacionados con los excrementos, piel y glándulas de estos animales que no encontraríamos, obviamente, en casas sin animales.

f5-large
Diferencias entre la abundancia de determinadas especies bacterianas en función de la presencia o ausencia de animales de compañia. (Imagen: Albert barberán).

Aunque las principales fuentes de emisión son los ocupantes de estos hogares, las comunidades microscópicas que colonizan todos los rincones están estrechamente relacionadas con las que encontramos en el exterior. En el caso de los hongos esta relación es más estrecha que en el caso de las bacterias. Aun así, se ha observado que en el interior de las casas las especies son más variadas que en el exterior.

fig_4
Comparación de la riqueza bacteriana y fúngica de nuestros hogares y el exterior. (Imagen: Albert barberán)

·

¡Cuánta razón tiene la frase “como mi hogar ningún lugar! Efectivamente, cada hogar es un universo único y específico de comunidades microscópicas. ¡No hay dos iguales en el mundo!

REFERENCIAS

Maribel-castellà

Micro-okupes a casa

Segurament has pensat algun cop “Que bé s’està sol a casa”. Doncs, si es així, ens sap greu dir-te que t’estaves equivocant. A casa existeixen una gran quantitat de micro-ecosistemes perfectes per la proliferació d’una gran diversitat de microorganismes. Aquestes comunitats són les responsables de les olors, degradació de certs materials i contaminació. Vols conèixer una mica més els teus microcompanys de pis? Endavant. 

MICRO-OKUPES A LES NOSTRES LLARS

Passem un 90% del nostre temps a llocs tancats, com per exemple oficines, cases, escoles, etc. Aquests llocs, així com la resta del planeta, presenta unes condiciones adequades per la proliferació de diverses espècies microscòpiques com ara bacteris, fongs i determinades espècies d’artròpodes. Aquestes comunitats formen el que coneixem com microbioma de les nostres llars.

3-cepillo-dientes
Microfotografia d’escàner electrònic d’un bri d’un raspall de dents utilitzat on s’acumulen les comunitats bacterianes. (Imatge: Science photo library)

Les diferents relacions que podem establir amb aquestes comunitats poden condicionar directament a la nostra salut. Dins les nostres llars podem trobar microorganismes beneficiosos, microorganismes indiferents (és a dir, que no ens produeixen cap efecte) i microorganismes patògens (com Staphylococcus aureus resistent a antibiòtic) o al·lergogens, com per exemple els àcars. Tranquils! Cal destacar que aquests patògens no presenten un percentatge important i per tant, no suposen cap risc per la nostra salut.

BACTERIS

Aquests són els  microorganismes més abundants que podem trobar a casa. Es troben repartits per tots els racons imaginables i presenten una gran diversitat genètica. Per exemple, a la pols es calcula que hi pot haver fins a 7000 espècies de bacteris diferents. Al següent gràfic, ens presenten una llarga llista de taxons bacterians que colonitzen cada racó de casa, com per exemple la tapa del vàter, la cuina o els nostres llits.

fig_1a
Diferents taxons bacterians que trobem en llocs variats de les nostres cases. (Imatge: G.E. Flores)

FONGS

Es calcula que a una casa normal es poden trobar fins a 2000 tipus diferents de fongs. També es troben repartits arreu de la casa com per exemple al menjar, cuina, parets o llocs oblidats per la neteja com la pols acumulada sobre les portes. Entre aquesta gran quantitat de fongs podem destacar la presència d’ Aspergillus, Penicillium i Fusarium (fongs molt comuns a l’ambient). També podem trobar espècies com Stereum, Tremetes o Phlebia (fongs encarregats de la degradació de la fusta) o fongs relacionats amb els humans, com seria el cas de Candida.

fig_6
Floridura de les parets de la casa per Strachybrotrys sp. (Imagen: Mycleaningproduct.com) o a les fruites com per exemple Penicillium sp. (imagen: wisegeek).

ÀCARS

Aquests organismes representen al grup d’artròpodes microscòpics més abundants de les nostres llars. Normalment habiten a la pols, a les superfícies rugoses com teles, matalassos i coixins on s’alimenten de pell morta d’humans i animals. Normalment trobem les espècies Dermatophagoides pteronyssus i Dermatophagoides farinae (coneguts vulgarment com àcars de la pols). Tot i això, també podem trobar en menor quantitat l’espècie Demodex folliculorum. Aquest àcar habita als fol·licles pilosos de la nostra cara i s’alimenta de pell morta. Normalment es desprenen de la pell mentre dormim.

fig_7
Àcar de la pols D. pteronyssinus (imatge: Göran Malmberg) i àcar dels fol·licles pilosos Demodex folliculorum (Imagen: BBC)

BIOGEOGRAFIA I PRINCIPALS FONTS D’EMISSIÓ

La distribució geogràfica de les comunitats microscòpiques de casa i els factors ambientals que la condicionen són poc coneguts. Per aquest motiu, al llarg d’aquests darrers anys els estudis sobre el microbioma de les nostres llars han augmentat significativament.

Aquesta gran diversitat microbiana canvia en funció de la localització, és a dir, no trobarem els mateixos microorganismes al llit que al vàter. Per exemple, a la nostra cuina podem trobar diferents bacteris depenent del lloc que analitzem. A la imatge inferior, ens mostren com al foc de la cuina trobem una major quantitat de Salmonella sp. que Clostridium sp.

fig_3
Diferència de distribució geogràfica en funció de l’espècie bacteriana analitzada (Imatge: G.E. Flores)

Tot i això, trobem una certa tendència en aquesta distribució geogràfica, és a dir, els microorganismes que habiten en certes zones són semblants a les que trobem a altres ones relacionades. Al dendrograma següent se’ns explica de manera gràfica aquest darrer punt. Per exemple, podem veure com als coixins (pillowcase en anglès) trobem microorganismes molt semblants a les que trobem al vàter (contacte amb la pell humana) mentre que són totalment diferents de les que trobem a la fusta de tallar de les nostres cuines.

fig_1
Dendrograma de similitut entre les comunitats bacterianes que trobem a les nostres cases. (Imatge: Robert, D. Dunn).

Però, per què existeix aquesta distribució geogràfica?

Les diferents fonts d’emissió de microorganismes són les causants d’aquesta variació geogràfica. En funció d’aquesta font trobarem a un determinat lloc unes espècies o unes altres. Òbviament la font més gran d’emissió de microorganismes són els éssers humans. Com bé sabem, al nostre cos portem milions i milions de bacteris i altres microorganismes que s’escampen per l’ambient (ja sigui per la nostra activitat respiratòria, per contacte directe o descamació de la pell). Cada humà deixa una petjada microbiana (fingerprint en anglès) específica a aquells llocs on es troba.

fig_3b
Principals fonts d’emissió batceriania de les nostres llars. Com podem veure, la font més gran d’emissió són els pròpis humans (Imatge: G. E. Flores)

Podem observar que en certs llocs es troben microorganismes relacionats amb els nostres excrements. Si no rentem les nostres mans després d’anar al bany, segurament anem escampant bacteris fecals per tot arreu. No només és cosa dels bruts això, ja que tots escampem aquests bacteris de forma inconscient. Per exemple, si estirem la cadena del vàter amb la tapa oberta, es produeix una expansió en aerosol de bacteris fecals de fins a dos metres de distància, això implica que arriben al nostre raspall de dents o al sabó de mans.

Per altra banda, la diversitat microbiana està molt condicionada pel nombre i tipus d’ocupants de la casa, és a dir, no hi haurà les mateixes espècies  a una casa amb dos ocupants que a la casa d’una família de set persones. A més, s’ha observat que no trobem els mateixos microorganismes a cases on hi ha una major proporció de dones que a les que hi ha major proporció d’homes. Generalment, els homes alliberen una major quantitat de  microorganismes a l’ambient. 

f5a
Gràfic de la influència del gènere dels ocupants a la diversitat microbiana de les cases. (Imatge: Albert Barberán).

Un altre factor molt important que condiciona aquesta diversitat microbiana és la presència d’animals a casa. Si tenim gossos o gats, segurament conviurem amb comunitats totalment diferents de les que trobem en cases sense animals. En aquests casos, trobem normalment microorganismes relacionats amb els excrements, pell i saliva dels nostres animals.

f5-large
Diferències d’abundància de determinades espècies bacterianes per la presència d’animals domèstics (Imatge: Albert barberán).

Tot i que les principals fonts d’emissió són els ocupants d’aquestes cases, el microbioma de les nostres llars està relacionat estretament amb les espècies microbianes que trobem a l’exterior. En el cas dels fongs aquesta relació és més pronunciada que en el cas dels bacteris. Cal destacar, però, que hi ha una major quantitat d’espècies diferents de dins les nostres llars que a l’exterior.

fig_4
Comparació de la riquesa microbiana entre l’interior i exterior de les nostres llars. (Imagen: Albert barberán)

·

Ja ho diven “com a casa no s’està enlloc”. Efectivament, cada casa és un univers únic i específic de comunitats microscòpiques. No n’hi ha dos iguals! 

REFERÈNCIES

Maribel-català

 

La infección más letal

Ébola. Seguro que conoces de que se trata. Seguro que sabes el número de muertes e infectados que dejó a su paso desde el año 2014. Seguro que has visto en la televisión como cundía el pánico, como te daban consejos para evitar contagios y como lo nombraban el virus más letal del mundo. ¿Sabes, pero, si es realmente el virus más letal del planeta? Veámoslo con perspectiva. 

ENFERMEDADES INFECCIOSAS Y DEFUNCIONES

La Organización Mundial de la Salud (OMS) realiza periódicamente informes de cúales son las principales causas de defunciones en el mundo. Entre ellas encontramos una gran variedad de enfermedades y patologías provocadas por infecciones. El Ébola fue un gran problema infeccioso, pero las muertes producidas por este no llegan ni por asomo al número de muertes producidas por otras enfermedades por las que no se cierran fronteras.

La mayoría de las defunciones producidas por enfermedades infecciosas se producen en lugares donde las condiciones clínicas y sanitarias no son buenas, ya que en muchos casos existen tratamientos preventivos, curativos o paliativos que ayudan a alargar la vida de los afectados.

Sin título
Gráfico representativo de los datos de la OMS sobre las defunciones por causas infecciosas en el año 2014. (Elaboración propia)

Según los últimos datos de la OMS, la enfermedad infecciosa que provoca más muertes en el mundo es el VIH. El Virus de la inmunodeficiencia humana causa un total de 1,6 millones de muertes al año. Aún así, cabe destacar, que las muertes producidas por esta enfermedad se deben generalmente a infecciosas secundarias, como por ejemplo por tuberculosis. Esta última es la segunda enfermedad infecciosa que produce más defunciones al año, con un total de 1,4 millones.

La neumonía produce anualmente unas 922.000 muertes al año de niños menores de cinco años. La infección vírica del hígado o hepatitis B produce a finales de año un total de 780.000 defunciones. Seguidamente, encontramos las enfermedades diarreicas, como por ejemplo cólera, producen un total de 760.000 muertes al año si no son tratadas correctamente.

TASA DE LETALIDAD

En epidemiología no se habla del número total de defunciones para determinar la peligrosidad de un patógeno. En este caso existe una medida conocida como tasa de letalidad. Esta tasa se define como la proporción de casos de una enfermedad que resultan mortales respecto al total de casos diagnosticados en un tiempo determinado. 

images
Fórmula de la tasa de letalidad donde F representa el total de defunciones y E el número total de enfermos diagnosticados en un mismo período de tiempo.

Esta tasa es una medida estimada, ya que existen muchos factores influyentes, como por ejemplo los casos asintomáticos (que no se verían reflejados en el denominador de la ecuación, enfermos diagnosticados). Si las condiciones de prevención y sanitarias son las correctas, esta tasa suele disminuir.

¿Cúal dirías, teniendo en cuenta lo explicado, que es el patógeno más letal?

En la siguiente tabla exponemos los patógenos con mayor tasa de letalidad. Cabe destacar que en muchos casos existe una medicación apropiada que evita que estos acaben produciendo más muertes.

images2
Tabla resumen de las diferentes tasas de letalidad de ciertos patógenos. Datos de la OMS (Elaboración propia).

Algunos de los casos expuestos con un tratamiento esta tasa disminuye significativamente, como seria el caso de la rabia, la viruela, etc. En otros casos, como los priones, no existe cura ni tratamiento y por tanto, todos los infectados acaban falleciendo. En el caso del ébola, la tasa de letalidad de los últimos brotes fue del 50-60%, pero ciertas cepas del virus han llegado a una tasa de mortalidad del 90% en brotes anteriores. Por suerte, el tratamiento con el suero antivírico es un 90% efectivo.

Vemos que la tasa de letalidad de virus muy famosos como el ébola es muy inferior a la de otros casos como por ejemplo la rabia o el virus del SIDA. Entonces, ¿por que se ha dado tanto bombo a la epidemia del ébola si tiene menos tasa de letalidad y no produce tantas muertes al año? Eso fue debido a los tiempos: el ébola actúa de forma rápida mientras que el VIH tarda décadas en manifestar sus síntomas.

RABIA: el virus más letal

Esta es una enfermedad zoonótica, es decir, que se transmite de animales a humanos. Es producida por un virus de la familia Rhabdoviridae del género Lyssavirus. Presenta un tamaño de 180 nm de longitud y 75 nm de diámetro. Se trata de un virus de ARN que infecta el sistema nervioso central produciendo una encefalitis aguda que produce la muerte en menos de diez días (sino se trata). Su tasa de letalidad es del 100%, el más alto.

rabia-virus
Representación gráfica de la estructura del virus de la Rabia. (Foto: CDC)

Su estructura de caracteriza por presentar una envoltura de doble capa lípidica con glicoproteïnas G insertadas en su superficie. En su interior hay una hélice proteíca (formada por la nucleoproteína y el material genético, en este caso ARN). Su genoma esta formado por 1,2 Kb y contiene 5 genes (los que codifican para las proteïnas necesarias para su replicación).

genome
Representación gráfica del genoma del virus de la rabia. (Foto: CDC).

La rabia se transmite por la mordedura o por el contacto directo de mucosas con un mamífero infectado (pueden ser perros, murciélagos, zorros…). Se encuentra en todos los continentes excepto en la Antártida. En países subdesarrollados causan unas 55000 muertes al año y el mayor reservorio son los animales domésticos. En los países desarrollados el principal reservorio son los animales salvajes.

RABIA
Distribución geográfica del riesgo al contagio de Rabia. Los países en blanco no presentan riesgo de transmisión. (Foto: OMS)

·

Por suerte, la ciencia ha producido vacunas y tratamientos aptos para mantener a raya estos peligrosos patógenos. Recordad siempre que el mejor tratamiento, es la prevención. Mantened a vuestras mascotas sin Rabia. 

ES_RabiesVaccinateYourDog
Animación prevención rabia, Organización Mundial de Sanidad Animal.

REFERENCIAS

  • Organización Mundial de la Salud (OMS).
  • Centro para el control y prevención de enfermedades (CDC)
  • Microbios en la Red.
  • Organización mundial de Sanidad Animal (OiE)
  • Imagen portada: virus de la Rabia,  Elnuevocafelito

Maribel-castellà

La malaltia infecciosa més letal

Ebola. Segur n’has sentit parlar. Segur que vas seguir detingudament les notícies que arribaven des de l’Àfrica de la gran epidèmia que va tenir lloc cap al 2014. Segurament vas veure a la televisió tots els dispositius de màxima seguretat que es van desplegar. El van anomenar un dels virus més letals del món, però, és veritat? Analitzem-ho des del punt de vista epidemiològic. 

DEFUNCIONS PER INFECCIONS

L’Organització mundial de la Salut (OMS) realitza de forma periòdica estudis sobre les principals causes de defunció al món. Entre elles trobem les malalties infeccioses. L’Ebola va suposar un gran problema epidèmic el 2014 però no arribà a provocar un nombre significatiu de morts per entrar a la llista de l’OMS. Aquestes infeccions provoquen moltes morts per les quals no es tanquen fronteres ni es donen rodes de premsa d’emergència.

La majoria de les defuncions es donen a llocs on les condiciones sanitàries no són bones, ja que en molts casos existeix un tractament preventiu, curatiu o pal·liatiu que ajuden a perllongar la vida dels afectats.

Sin título2
Gràfic representatiu de les dades de l’OMS sobre les defuncions mundials per malalties infeccioses l’any 2014. (Elaboració pròpia).

Segons les darreres dades de l’OMS, la malaltia infecciosa que produeix més defuncions a l’any és el SIDA, produït pel virus VIH. Causa un total d’ 1,6 milions de morts. Tot i això, cal destacar que les morts produïdes per aquesta malaltia es deuen generalment a malalties infeccioses secundàries com per exemple la tuberculosi. Aquesta darrera és la segona malaltia infecciosa que provoca més morts al any, amb un total d’1,4 milions.

La pneumònia produeix un total de 922000 morts a l’any de nins menors de cinc anys. La infecció vírica del fetge o Hepatitis B produeix un total de 780000 morts a l’any. Seguidament trobem les malalties diarreiques i la malària. Si ho comparem amb els morts produïts per l’Ebola podem veure que aquest queda bastant enrere.

TAXA DE LETALITAT

Aquestes dades de l’OMS són en general, però quan parlem d’aspectes epidemiològics utilitzem una mesura coneguda com a taxa de letalitat. Aquesta representa la proporció de casos mortals d’una determinada malaltia respecte al nombre total de casos diagnosticats en un temps concret. La seva fórmula és:

images
Fórmula de la taxa de letalitat on la F representa les defuncions i la E representa els casos diagnosticats en el mateix període de temps.

Aquest càlcul és estimat, ja que existeixen molts factors que condicionen aquest valor, com per exemple l’existència de casos asimptomàtics. Un altre factor important és la qualitat del sistema sanitari, ja que si es té accés al tractament aquesta taxa queda pràcticament anul·lada i les víctimes mortals disminueixen significativament.

Així doncs, quin diries que és el patogen més letal del món?

A la taula següent exposem els principals patògens amb taxes de letalitat més grans. Recordem que molts d’ells tenen tractament, per tant aquestes dades representen el valor de les taxes en casos de no adquirir cap tractament.

Sin título3
Taula resum de les diferents taxes de letalitat segons la OMS. (Elaboració pròpia).

Alguns dels casos exposats a la taula amb un tractament adequat, presenten una taxa menor, com seria el cas de la ràbia o la verola. En altres casos, com els prions, no existeix cap tipus de tractament i per tant, tots els infectats acaben morint. En el cas de l’Ebola, la taxa de letalitat dels darrers episodis epidèmics fou del 50-60%, però certes variants del virus poden presentar fins a un 90% de letalitat. Per sort, el tractament en sèrum és un 90% efectiu.

Podem veure, doncs, que certs virus molt coneguts com l’Ebola presenten taxes de letalitat relativament baixes respecte virus com per exemple el VIH. Doncs, per què va tenir tant de ressò l’epidèmia d’Ebola? La qüestió es trobava al temps d’evolució: l’Ebola és una malaltia d’evolució ràpida (els símptomes i la mort arriben als pocs dies si no hi ha tractament) mentre que el VIH és més lent i silenciós, pot estar dècades a mostrar algun símptoma.

LA RÀBIA: la letalitat feta virus

Aquesta és una malaltia zoonòtica, és a dir, que es transmet d’animals a humans. És produïda per un virus en forma de bala de la família Rhabdoviridae i del gènere Lyssavirus. Presenta una mida aproximada de 180 nm de longitut i 75 nm de diàmetre. Es tracta d’un virus d’ARN que infecta el sistema nerviós central produint una encefalitis o inflamació del teixit nerviós de l’encèfal i produeix la mort en menys de deu dies (si no es tracta a temps). És una les malalties més letals, amb una taxa de letalitat del 100%.

rabia-virus
Representació gràfica de l’estructura del virus de la Ràbia. (Imatge: CDC)

La seva estructura es caracteritza per presentar una doble capa lipídica que actua d’envoltura amb tota una sèrie de Glicoproteïnes G inserides a la superfície. Al seu interior trobem una hèlix formada pel material genètic i les nucleoproteïnes. El seu genoma està codificat en forma d’ARN i té una longitud d’1,2 kb, on trobem cinc gens que codifiquen per les proteïnes necessàries per a la seva replicació.

genome
Representació gràfica del genoma del virus de la ràbia. (Imatge: CDC).

Aquesta malaltia es transmet per la mossegada o pel contacte directe entre mucoses d’un mamífer infectat (poden ser gossos, ratpenats, guineus…). Es troba a tots els continents, excepte a l’Antàrtida. Als països subdesenvolupats causa unes 55000 morts a l’any i el seu reservori principal són els animals domèstics. Per altra banda, als països desenvolupats el principal reservori són els animals salvatges.

RABIA
Distribució geogràfica del risc de contagi de la Ràbia. Els països en blanc no presenten risc de contagi (Imatge: OMS)

·

Per sort, aquestes malalties tan perilloses tenen un tractament efectiu. Cal recordar però que la millor cura és la prevenció. Per tant, mantingueu els vostres animals domèstics  sense ràbia. 

ES_RabiesVaccinateYourDog
Animació en castellà per la prevenció de la Ràbia. Organització Mundial de Sanitat Animal.

REFERÈNCIES

  • Organizació Mundial de la Salut (OMS). Castellà
  • Centre pel control i prevenció de malalties (CDC). Castellà.
  • Microbios en la Red. Castellà
  • Organizació mundial de Sanitat Animal (OiE). Castellà
  • Imatge de portada: virus de la Ràbia,  Elnuevocafelito

Maribel-català

Parasites: signs on our way

The mysteries of human evolution, their development and their movementsthroughout history continue to create great interest and expectation. There are stillmany things to discover and understand about ancient societies, but thanks to thehelp of the science we are increasingly closer. Can parasites of the past shed light on those communities? We will discover it in thehands of the paleoparasitology.

WHAT IS PALEOPARASITOLOGY?

This is a branch of paleontology that study parasitological evidences in archaeological records, i.e.,studying parasites or remains of these found in ancient archaeological sites. The objective of these studies is to shed light on the origin and evolution of parasitic diseases that exist, as well as determine their phylogenetic relationships.  The study of ancient parasites allows us to know socio-cultural aspects of ancient societies as for example their diets, their level of hygiene, if human  were nomadic or sedentary, their migrations etc.

The materials studied by the paleoparasitology are generally fossilized tissueremains, mummies, fossils, coprolites (feces mummified) or sediments that have been able to be in contact with those who were the hosts of these parasites.

img_5
Mummified human coprolites. (Image: M. Beltrame)

Find remains of a parasite in some of the samples is difficult, since the passage oftime destroys all evidence. Even so, usually eggs or Oocyst parasites found (since theyare forms of resistance that have managed to stay over the millennia).

Sin título
A egg of a louse (Pediculus humanus) found in a mummy of Brazil (12,000 years old). B. egg of Trichuris sp. found in Cape virgins, Argentina (6000 years old). (Image: Araujo).

In certain cases, manuscripts and drawings of ancient societies have providedinformation on the presence of certain parasites, such as for example ceramics thatwe observe below, where lesions that presents a person who suffers from cutaneous leishmaniasis is faithfully represented. In the next image we see a fossilized skull which presents very similar lesions.

Sin título1
A. Modified image of a ceramic moche representing (red circle) lesions caused by leishmaniasis. (Image: Oscar Anton, Pinterest) B. mummified skull that shows very similar injuries. (Image: Karl J. Reinhard).

THE ARRIVAL TO AMERICA: HUMAN MIGRATIONS AND PARASITES

About 150,000 years ago appeared a new species of hominid in Africa: Homo sapiens. It began to expand in several waves to the rest of the continent, Europe, and Asia,carrying with them some parasites that had inherited from his ancestors (known as heirloom parasites). At the same time, they were acquiring along their journey a range of parasites due to interactions with other humans and animals (souvenir parasites).

Following the archaeological remains and parasitological  clues what ancient humans have left during their migrations, is possible to determine the routes followed by them. One of these routes was the arrival in the new world (America). We have always believed that the first inhabitants of the Americas came across the Beringia Strait (which joined at some point by ice Siberia with Alaska) about 13,000 years ago.

inside_map
Representation of the path followed by the first American settlers by the Beringia Strait Bridge. (Image: The siberian Times).
A few very interesting parasites that can be found in the American archaeological remains are Trichuris trichiura (nematode known as whipworm  and Ancylostoma duodenale (hookworm). These parasites need tropical or subtropical climatic conditions since the eggs are expelled with faeces and mature in the ground.
Sin título3
A. At the top adult A. duodenale (Christopher Noble). At bottom we can view an A.duodenale egg (Image: Universidad Antioquia) B. Adult Trichuris trichiura (Invertebrate zoology Virtual collection) and at bottom its egg. (Microbiolgia blogspot).

How do they then survived the cold conditions of the regions of Siberia and Alaska in the last ice age? They could not. These parasites would have not survived those harsh climatic conditions, since to their maturation and transformation infective they need warm and moist environments. In addition, signs of infections not found by these parasites in Arctic populations, such as the Inuit.

So, researchers believe that migration across the Bering Strait was not the only one. Paleoparasitologic experts  Adauto Aráujo and Karl J. Reinhard proposed that there were two alternative routes. On the one hand proposed a costal route (along the coast, route b in the image) and a trans-pacific route (crossing the Pacific Ocean, route c). By these routes parasites had been able to survive and continue infecting humans.

img_1
The arrival of man in America routes proposed by Aráujo and Reinhard based on paleoparasitologic remains. (Image: Aráujo, et al.)

Could they have been already there? This question has an easy answer. These intestinal parasites are specific from man, therefore, they need human hosts to complete their life cycles. If there were no humans in America, surely there would be this kind of parasites.

Another  parasitological fact that confirm this theory is the presence of Enterobius vermicularis, popularly known as pinworm. This parasite was linked for the first time to the ancestors of Homo sapiens and throughout history, has coevolved with them to give rise to several different subspecies. On the American continent have been found remains of two lineages of E.vermicularis, that could be because arrived hominids from different places with different parasites. In this case, the parasite if he could get through the Beringia Strait, since its life cycle does not depend so strongly on the environmental conditions.

·

“Parasites suffer the same phenomena for evolution that humans and other organisms, as selection, extinction and colonization. For this reason, these specific parasites of man are excellent evidence that shed light on the movements of our ancestors”Adauto Aráujo, 2008.

REFERENCES

Parásitos: señales en nuestro camino

Los misterios sobre la evolución humana, su desarrollo y sus movimientos a lo largo de la historia siguen creando mucho interés y expectación. Aún nos quedan muchas cosas por descubrir y entender sobre las sociedades antiguas, pero gracias a la ayuda de la ciencia cada vez estamos más cerca. ¿Pueden los parásitos del pasado arrojar luz sobre esas comunidades? Vamos a descubrirlo de la mano de la paleoparasitología. 

¿QUE ES LA PALEOPARASITOLOGÍA?

Esta es una rama de la paleontología que estudia los registros parasitológicos en restos arqueológicos, es decir, estudia los parásitos o restos de éstos encontrados en yacimientos arqueológicos antiguos. El objetivo de estos estudios es dar luz sobre el origen y evolución de las enfermedades parasitarias que existen, así como determinar sus relaciones filogenéticas y su evolución a lo largo de la historia. A parte de esta información biológica, el estudio de los parásitos antiguos nos permite conocer aspectos socioculturales de las sociedades antiguas como por ejemplo sus dietas, su nivel de higiene, si eran nómadas o sedentarios, las migraciones humanas, etc.

Generalmente los materiales estudiados por la paleoparasitología son restos de tejido fosilizados, momias, fósiles, coprolitos (excrementos momificados) o sedimentos que hayan podido estar en contacto con los que fueron los hospedadores de dichos parásitos.

img_5
Coprolitos humanos momificados. (Imagen: M. Beltrame)

Encontrar restos de un parásito en alguna de las muestras es complicado, ya que el paso del tiempo destruye todas las pruebas. Aún así, generalmente se encuentran huevos o ooquistes de los parásitos (ya que son formas de resistencia que han conseguido mantenerse a lo largo de los milenios).

Sin título
A. Huevo de piojo (Pediculus humanus) encontrada en una momia de Brasil (12.000 años de antigüedad). B. Huevo de Trichuris sp. encontrado en Cabo Vírgenes, Argentina (6000 años antigüedad). (Imagen: Araujo).

En ciertos casos, los manuscritos y dibujos de las antiguas sociedades han aportado información sobre la presencia de ciertos parásitos, como por ejemplo la cerámica que observamos a continuación, donde se representaron fielmente las lesiones que presenta una persona que sufre leishmaniasis cutánea. En la imagen contigua podemos ver un cráneo fosilizado que presenta lesiones muy parecidas.

Sin título1
A. Imagen modificada de una cerámica moche que representa las lesiones (círculo rojo) producidas por la leishmaniasis. (Imagen: Oscar Anton, Pinterest) B. Cráneo momificado que muestra lesiones muy parecidas. (Imagen: Karl J. Reinhard).

LA LLEGADA AL NUEVO MUNDO: MIGRACIONES HUMANAS Y PARÁSITOS

Hace unos 150.000 años apareció en África una nueva especie de homínido: el Homo sapiens. Empezó a expandirse en diversas oleadas hacia el resto del continente, Europa y Asia, llevándose consigo algunos parásitos que habían heredado de sus antepasados (heirlooms parasites en inglés). A su vez, fueron adquiriendo a lo largo de su travesía toda una serie de parásitos gracias a las interacciones con otros humanos y animales (parásitos souvenirs).

Siguiendo los restos arqueológicos y las pistas parasitológicas que han ido dejando a lo largo de sus migraciones, se ha podido determinar las rutas seguidas por los antiguos humanos. Una de estas rutas fue la llegada al Nuevo Mundo (América). Siempre hemos creído que los primeros pobladores del continente americano llegaron por el Estrecho de Bering (que unió en algún momento mediante hielo Siberia con Alaska) hace unos 13.000 años.

inside_map
Representación de la ruta seguida por los primeros pobladores americanos por el puente del Estrecho de Bering. (Imagen: The siberian Times).

Unos parásitos muy interesantes que se pueden encontrar en los restos arqueológicos americanos son Trichuris trichiura (nematodo conocido como tricocéfalo o gusano látigo, debido a que presenta una parte muy fina y alargada) y Ancylostoma duodenale. Estos parásitos necesitan unas condiciones climáticas tropicales o subtropicales ya que los huevos son expulsados con las heces y maduran en el suelo.

Sin título3
A. En la parte superior ejemplar adulto de A.duodenale (Christopher Noble) y en la parte inferior sus huevos (Imagen: Universidad Antioquia) B. En la parte superior ejemplar adulto de Trichuris trichiura (Invertebrate zoology Virtual collection) y en la parte inferior su huevo (Microbiolgia blogspot).

¿Como sobrevivieron entonces a las condiciones frías de las regiones de Siberia y Alaska en plena edad de Hielo? No pudieron. Estos parásitos no hubieran sobrevivido a aquellas duras condiciones climáticas, ya que para su maduración y transformación infectiva necesitan ambientes cálidos y húmedos. Además, no se han encontrado indicios de infecciones por estos parásitos en poblaciones árticas, como los Inuits.

Así pues los investigadores creen que la migración por el Estrecho de Bering no fue la única. Los expertos en Paleoparasitología, Adauto Aráujo y Karl J. Reinhard proponen que existieron dos rutas alternativas. Por una parte proponen una ruta costal (siguiendo la costa, ruta b en la imagen) y una ruta trans-pacífica (cruzando el océano pacífico, ruta c). Por estas rutas los parásitos hubieran podido sobrevivir y seguir infectando a los humanos.

img_1
Rutas de la llegada del hombre a América propuestas por Aráujo y Reinhard basándose en restos paleoparasitológicos. (Imagen: Aráujo, et al. )

¿Podrían haber estado ya allí? Esta pregunta tiene una respuesta fácil. Estos parásitos intestinales son específicos del hombre, por tanto, lo necesitan para completar su ciclo vital. Si en América no había humanos, seguramente no habría este tipo de parásitos.

Otra prueba parasitológica que confirma esta teoría es la presencia de Enterobius vermicularis, conocidas popularmente como lombrices intestinales. Este parásito se relacionó por primera vez con los antepasados de Homo sapiens y a lo largo de la historia ha coevolucionado con ellos hasta dar lugar a diversas subespecies diferentes. En el continente americano se han encontrado restos de dos linajes diferentes de E. vermicularis, hecho que podría ser debido a que llegaron homínidos de diferentes lugares con parásitos diferentes. En este caso, el parásito si pudo llegar por el Estrecho de Bering, ya que su ciclo biológico no depende tan fuertemente de las condiciones ambientales.

·

“Los parásitos sufren los mismos fenómenos de la evolución que los humanos y el resto de organismos, como la selección, extinción y colonización. Por eso, estos parásitos específicos del hombre son excelentes pruebas que arrojan luz sobre los movimientos de nuestros antepasados” Adauto Aráujo, 2008.

REFERENCIAS

Paràsits: senyals del nostre camí

Els misteris sobre l’evolució humana, el seu desenvolupament i els seus moviments al llarg de la història de la Terra segueixen sent un dels temes que aixequen més interès i expectació. Encara queden molts aspectes per esclarir i entendre, però gràcies a la ciència anem avançant a grans passes. Pot, doncs, la parasitologia ajudar a esclarir fets del passat? Ho descobrirem de la mà de la paleoparasitologia. 

QUÈ ÉS LA PALEOPARASITOLOGIA?

Es tracta d’una branca de la paleontologia que estudia els registres parasitològics trobats en restes arqueològics, és a dir, estudia els paràsits o les seves restes que es poden trobar en restes arqueològics. Aquests estudis pretenen descobrir l’origen i evolució de les diferents malalties parasitàries que afecten  l’home, així com determinar les seves relacions filogenètiques. A part d’obtenir aquesta informació biològica, ens permet conèixer aspectes socioculturals dels antics humans com per exemple la seva dieta, el seu nivell d’higiene, si eren nòmades o sedentaris, les seves migracions, etc.

Generalment, els materials estudiats per la paleoparasitologia són restes de teixit fossilitzat, mòmies, fòssils, copròlits (excrements momificats) o sediments que hagin pogut estar en contacte amb els fossin els hostatgers d’aquests paràsits.

img_5
Copròlits humans momificats (Imatge: M. Beltrame)

Trobar restes d’un paràsit a les mostres és una feina molt complicada, ja que el pas del temps destrueix i erosiona totes les restes orgàniques. Tot i així, es poden trobar molts ous o ooquistes al teixit momificat, ja que són estructures de resistència que es poden mantenir durant llargs períodes de temps.

Sin título
A. Ou de poll (Pediculus humanus) trobat als cabells d’una mòmia al Brasil (12.000 anys d’antiguitat. B.Ou de Trichuris sp. trobat a Cabo Vírgenes, Argentina (6000 anys antiguitat). (Imatge: Araujo).

En certs casos, els escrits i dibuixos de les antigues societats ens permeten obtenir informació adiccional de la presència d’un determinat paràsit. A la imatge següent observem una ceràmica Moche del Perú on es representen les ferides típiques d’un cas de leishmaniosi. A la imatge del costat trobem un crani momificat que presenta unes lesions molt semblants. Això indica, que el contagi de leishmània ja es donava a les societats antigues precolombines.

Sin título1
A. Imatge modificada d’una ceràmica Moche amb lesions de leishmaniosi (cercle vermell). (Imatge: Oscar Anton, Pinterest) B. Crani momificat que presenta lesions típiques d’un quadre clínic de leishmaniosi. (Imatge: Karl J. Reinhard).

L’ARRIBADA AL CONTINENT AMERICÀ: MIGRACIONS HUMANES I PARÀSITS

Fa uns 150000 anys va aparèixer a Àfrica una nova espècie d’homínid: l’Homo sapiens. Es va començar a expandir en diverses onades cap a la resta del continent, Europa i Àsia. En aquest viatge s’emportà paràsits que ja afectaven els seus avantpassats (coneguts com a paràsits d’herència o heirloom parasites en anglès) i va anar adquirint noves parasitosis al llarg del seu camí (paràsits souvenirs), a causa de les relacions que anava establint amb altres homínids i animals.

Gràcies a les restes arqueològiques i pistes que van anar deixant al seu pas, s’ha pogut reconstruir els passos que van seguir els nostres avantpassats. Una de les rutes que emprengueren fou per l’Estret de Bering (que fa 13.000 anys estava congelat i unia les costes de Sibèria i Alaska) per arribar al continent americà. Sempre s’ha cregut que aquesta fou l’única ruta d’arribada al nou món, però troballes parasitològiques demostren una teoria molt diferent.

inside_map
Representació gràfica de la possible ruta que seguiren els primers pobladors per arribar al continent americà. (Imatge: The Siberian Times).

Uns paràsits molt interessants que es poden trobar a jaciments arqueològics precolombins són Trichuris trichiura (nemàtode) i Ancylostoma duodenale. Aquests paràsits necessiten unes condicions climàtiques tropicals i subtropicals, ja que una part important de maduració en el seu cicle vital es duu a terme a l’ambient. Els seus ous són expulsats del cos amb els excrements i maduren a l’exterior.

Sin título3
A. Part superior: exemplar adult de A. duodenale (Christopher Noble). Part inferior un dels seus ous. (Imatge: Universidad Antioquia) B. A la part superior exemplar adult de Trichuris trichiura (Invertebrate zoology Virtual collection) i a la part inferior un dels seus ous (Microbiolgia blogspot).

Com van aconseguir, doncs, sobreviure a les dures condicions antàrtiques que es donaven a l’Estret de Bering? No van poder. Aquests paràsits no haurien pogut sobreviure a les condicions climàtiques d’aquesta regió i menys s’haguessin pogut expandir i reproduir, ja que els seus ous no podrien madurar. Per altra banda, cal destacar que tampoc s’han trobat evidències  que aquests paràsits afectin poblacions àrtiques actuals com els Inuits.

Així doncs, els principals experts en paleoparasitologia afirmen que la migració per l’Estret de Bering no va ser l’única forma d’arribada al continent americà. Adauto Aráujo i Karl Reinhard proposen que van existir, almenys, dues formes més de colonització de continent per part dels primers pobladors. Per una banda proposen una ruta costal (seguit la costa. Ruta b a la imatge inferior) i per l’altra una ruta transpacífica (trevessant l’oceà Pacífic, ruta c). En aquestes condicions climàtiques els paràsits intestinals que hem comentat abans podrien haver conservat les seves capacitats infectives i seguir afectant els nous americans.

img_1
Rutes proposades pels investigadores de l’arribada dels humans al continent americà basades en evidències paleoparasitològiques (Imagen: Aráujo, et al.)

Una de les preguntes que es formulen dels escèptics d’aquestes teories és si els paràsits ja es podrien trobar al continent americà. La resposta és ben senzilla. Aquests paràsits són específics de l’home i el seu origen és més antic que l’arribada a Amèrica. Per tant, necessitarien humans per poder completar el seu cicle biològic. Així doncs, segurament no hi havia paràsits intestinals al continent americà abans de l’arribada dels primers pobladors.

Una altra prova parasitològica que confirma aquesta teoria de les tres rutes és la presència del paràsit intestinal Enterobius vermicularis (cucs intestinals). Aquest paràsit es va relacionar per primera vegada amb avantpassats de l’Homo sapiens i altres homínids anteriors. Al llarg de l’evolució ha anat coevolucionant amb els seus hostatgers fins al punt de produir-se una diferenciació en diverses subespècies. En el continent americà s’han trobat restes de dos llinatges diferents de E. vermicularis, fet que es podria explicar a què no arribaren amb un sol grup d’humans, sinó que Amèrica va ser colonitzada per diferents grups humans que portaven paràsits diferents. En aquest cas, E. vermicularis si hauria pogut arribar per l’Estret de Bering ja que el seu cicle biològic no està determinat per les condicions climàtiques.

·

“Els paràsits, així com els seus hostatgers, sofreixen els fenòmens de l’evolució com la selecció, extinció i colonització. Per això, aquests paràsits específics de l’home són proves excel·lents sobre els moviments i migracions dels nostres avantpassats”. Adauto Aráujo (2008).

REFERÈNCIES

Bioluminescence: shining light

Some of the most commented images of landscapes are the known as “seas of stars” of Jervis Bay (Australia) or the caves of stars in New Zealand. Places that glow in the dark. Is it a photomontage? In fact, it is a natural process whereby organisms that have the ability to shine with their own light.

fig1
A fascinating sea of stars in Jervis Bay (image: maxres) B. Waitomo Glowworms cave in New Zealand (image: Forevergone).

WHAT IS BIOLUMINESCENCE?

Although it seems a magical landscape of a fairy tale, this is not a magical process. The bioluminescence is a type of chemiluminescence (chemical production process of light) by which living organisms are capable of producing light. It must not be confused with fluorescence. The latter is characterized by the reception of aphoton of the medium which then is sent, while the bioluminescence is the production of lightby the same body.

Species of all kingdoms have this capability: bacteria, fungi, fish, insects etc. It is estimatedthat 90% of the species that live in the deepest regions of the ocean are capable ofproducing light. Marc Arenas talks about these fascinating organisms in his two articles “Voyage to thebottom os the deep sea I and II“. At ground level this number drops, yet we all know thecase of fireflies (family Lampyridae) and bioluminescent fungi (genus Amarillia, Mycena…).

mycena chlorophos_national geographic
Firefly (Fam Lampyridae) and fungus Mycena chlorophos. (Image: National Geographic)

The bioluminescence reaction is an oxidation that produces no heat. The organisms present a protein known as Luciferine which by the action of an enzyme luciferase, it is oxidized. In the next image we see a simple representation of this reaction. The luciferase allows Luciferine protein join to the oxygen. The resulting energy of this oxidation is emitted as light. To carry out this process organisms have to spend energy, consuming ATP (energy molecule used for the functioning of the cells).

bioluminescence-luciferin
The bioluminescence scheme (Image: the HuffPostworks)

There are two different types of bioluminescence: intracellular (the chemical reaction occurs in specialized bodies) and extracellular (molecules are synthesized in the body and are then expelled to the outside where the reaction occurs). In the case of the intracellular, we can find those organisms that synthesize the necessary molecules or those that have a symbiotic relationship with luminescent bacteria.

BIOLUMINESCENCE FUNCTIONS

As we have said, the majority of organisms that have the ability to synthesize its own light live in dark places (caves, deep ocean…). These creatures have had to adapt to these harsh conditions. The bioluminescence is used for a wide variety of situations.

    • Intraspecific communication. Used for communication between organisms of the same species, e.g. for mating. In the article “How do insects communicate?” Irene tells of the different methods used, including bioluminescence, used by the fireflies.
    • Defense. There are certain living organisms that being disturbed or attacked produce light intracellularly or extracellularly to scare away the predator. A very interesting example is Vampire squid (Vampyrotethis infernalis) that spits out a bioluminescent mucus to fool predators.
    • Attracting the prey. Certain organisms possess organs producing light that attract their prey. As for example the belonging to the genus Lophiiformes.
    • Camouflage. In certain cases the bioluminescence is used for camouflage in the shadows of the ocean, it would be the case of lantershark.

BIOLUMINESCENCE IN MICROORGANISMS

Many microorganisms have the ability to produce their own light, and their intentions are not very different from the of higher organisms. In certain cases, the bioluminescence is used as a method of detoxification of the oxygen, i.e., a simple way to remove the excess oxygen. In others, used as a method of communication.

Some dinoflagellates, such as  Pyrodinium bahamense, have the ability to produce light when environmental conditions have been very favourable and its population has undergone exponential growth. At that time, when the water is moved the light reaction occurs as it would be the case of the famous beaches of stars.
fig_1a
Overgrowth of dinoflagellates which produce bioluminescence in the sea. (Image: Ies Rey Pelayo)
In the specialized organs of certain animals are strains of bacteria such as Vibrio fischeri or Photobacterium. These microorganisms receive nutrients from the animals and as a result of their metabolic activity,  produce light.
fischeri
Image of the Hawaiian squid (Euprymna scolopes) and magnification of its light organ. Inside it, we can see bioluminescent bacteria Vibrio fischeri. (Image: Eric Stabb)
In many cases, the production of bacterial light is conditioned with population density, i.e. only produces light when there are many bacteria. This system of regulation is called quorum sensing.  But, what is it?

 QUORUM SENSING

Microorganisms release inducing substances (favor a process) to the environment. When the concentration of these substances is very large due to a high population density, activate certain processes regulated genetically, as it would be the case of the bioluminescence.
This is a form of communication among microorganisms, since many processes depend on population density. In the case of Vibrio Fischeri, this only produces light when the population density has reached a certain size. When inducing molecules come in contact with bacteria, begins a genetic process that regulates the production of the enzyme luciferase and, therefore, the bioluminescence.
luxI picture
Image of the bioluminescence simplified genetic process regulated by quorum sensing. (Image: Cornell Institute for Biology teachers).

BIOTECHNOLOGY AND BIOLUMINESCENCE

Biomimicry, science uses nature as a source of inspiration to create technologies that solve human problems, it has the adaptation of these mechanisms of lighting as next frontier. Do you imagine to replace the streetlights by bioluminescent trees?
Currently it is not possible yet, but there are large companies that focus their efforts on changing cities electricity by cheaper and renewable energy. Through the genetic modification of plants, it would introduce the gene responsible for the bioluminescence and these plants would be capable of producing light.
Trees
Recreation of the lighting of the future with bioluminescent plants. (Image: iluminet)
This form of energy, apart from reducing energy costs and pollution, is quick and simple to maintain. Only through a nutrient-rich gel and a colony of Vibrio fischeri could have a brilliant and continuous lighting. Is this the new way of lighting in our cities?

 ·

Nature is majestic and continues to give us lessons, you just have to learn to observe.

REFERENCES

  • Brock, biología de los microorganismos. Michael T, Madigan. Ed. Pearson. (Spanish)
  • Ocean Today. NOAA.
  • The bioluminescence Web Page.
  • Cover Photo: Andy Hutchinson

Maribel-anglès