Arxiu d'etiquetes: marsh frog

Hybrids and sperm thieves: amphibian kleptons

In biology a hybrid is the result of the reproduction of two parents of genetically different species, although in most cases hybrids are either unviable or sterile. Yet in some species of amphibians, sometimes hybrids are not only viable, but also become new species with special characteristics. In this entry we’ll show you two cases of amphibian hybrids that form what is known as a klepton and that make the definition of species a little less clear.

WHAT IS A KLEPTON?

A klepton (abbreviated kl.) is a species which requires another species to complete its reproductive cycle. The origin of the word klepton comes from the Greek word “kleptein” which means “to steal”, as the klepton “steals” from the other species to reproduce. In the case of amphibians, kleptons have originated from hybridation phenomena. The amphibian’s potent sexual pheromones and the multispecies choirs in the case of anurans, causes some males and females of different species to try to mate together. Yet hybrids are only viable between closely related species.

Among the different klepton species we can encounter two different methods depending on the type of conception: zygokleptons, in which there’s fusion between the egg and the sperm’s genetic material, and gynokleptons, in which the egg needs the stimulation from the sperm but doesn’t include its genetic material.

The different amphibian kleptons are usually constituted entirely by females (there are usually few or no males) that use the sperm of another species to perpetuate the klepton. As some kleptons depend on various related species, this can promote the creation of “species complexes” in which various similar species present hybridization areas and very complicated relationships among them. Below you’ll find two klepton examples, one in European anurans and the other in American urodeles.

HYBRIDOGENESIS IN WATER FROGS

The European water frogs (Pelophylax genus) form what is known as a “hybridogenetic complex” in which the hybrids from different species form kleptons which can’t reproduce among each other but, which must reproduce with a member of one of the parental species, “stealing” or “parasitizing” its sperm in order to survive.

Pelophylax_esculentus_-_Amplexus_01
Photo by Bartosz Cuber of two edible frogs (Pelophylax kl. esculentus) in amplexus. This is the best known hybrid both because of its wide distribution, and for being considered a delicacy in France.

In the hybridogenesis of water frogs the genetic material of both parents combines to form the resulting hybrid (zygoklepton). This hybrids (almost always females) will have half their genome from one species and half from the other. Yet, not being able to reproduce with a similar hybrid, during gametogenesis the hybrids eliminate the genetic material from one of the parent species. This way, when reproducing with an individual from the species whose genetic material has been deleted, they will form another hybrid.

Hybirds
Scheme of the genetic composition of the different Pelophylax kleptons. In this hybridogenetic complex four “natural” species intervene: the marsh frog (Pelophylax ridibundus, RR genome), the pool frog (Pelophylax lessonae, LL genome), the Iberian waterfrog (Pelophylax perezi, PP genome)  and the Italian pool frog (Pelophylax bergeri, BB genome).

The edible frog (Pelophylax kl. esculentus, RL genome) comes from the hybridization between the marsh frog and the pool frog. The Italian edible frog (Pelophylax kl. hispanicus, RB genome) stems from a hybrid between the marsh frog and the Italian pool frog. Finally, the Graf’s hybrid frog (Pelophylax kl. grafi, RP genome) originated from the hybridization between the edible frog (in which the DNA of the pool frog is eliminated from their gametes) and the Iberian waterfrog.

Hybridogenesiisisisi
Schemes by Darekk2 of the hybridogenetic processes in the different European water frog’s kleptons. The bigger circles represent the individual’s genome and the smaller circles the gametes’ genetic material.

As we can see, the genetic information of the marsh frog is the only one present in all three kleptons. These kleptons delete the genetic material of the species with which they share their habitat from their gametes but keep the genetic material of the marsh frog (R). So for example, the edible frog (P. kl esculentus) deletes form its eggs the DNA of the pool frog (L) with which it encounters and breeds in its natural range, resulting in more edible frogs (RL). The marsh frog seldom reproduces with some of its hybrids and if it does, they produce normal marsh frogs.

SALAMANDERS WITH SEVERAL GENOMES

The salamanders of the Ambystoma genus, usually known as mole salamanders, are a genus endemic of North America and are the only living representatives of the Ambystomatidae family. Five of these species form what is known as the “Ambystoma complex”, in which these species contribute to the genetic composition of a unisexual lineage of salamanders which reproduce by gynogenesis (gynoklepton). Based on the mitochondrial DNA of the unisexual populations, it is thought that this complex originated from a hybridization event of about 2.4-3.9 million years ago.

ambystomert complexx
This complex consists of the five following species: the blue-spotted salamander (Ambystoma laterale LL genome, photo by Fyn Kynd Photography), the Jefferson salamander (Ambystoma jeffersonianum JJ genome, photo by Vermont Biology), the small-mouthed salamander (Ambystoma texanum TT genome, photo by Greg Schechter), the streamside salamander (Ambystoma barbouri BB genome, photo by Michael Anderson) and the tiger salamander (Ambystoma tigrinum TiTi genome, photo by Carla Isabel Ribeiro).

In the gynogenesis of this all-female lineage, the egg needs activation by a sperm to start division and development but, it first has to duplicate its genetic material by endomitosis to avoid the formation of an unviable haploid (with half the genetic information) zygote. Yet, as in parthenogenetic reptiles, in the long term the lack of genetic recombination can take its toll on the individuals. That’s why this lineage of unisexual salamanders has the capacity of occasionally incorporating the whole genome from the males of four of the species which constitute the complex (currently the reproduction of streamside salamanders with members of the unisexual lineage hasn’t been documented).

ginogino
Scheme from Bi, Bogart & Fu (2009) in which we can see the different paths that the gynogenetic mole salamanders can take while reproducing.

These individuals don’t mix the newly acquired genome, they add it. Therefore, among the members of this lineage we can find diploid, triploid, tetraploid and even pentaploid individuals (even if as the ploidy increases the individuals are less apt to survive) depending on how many different genomes the previous generations had incorporated.

mes ibrids
Among the klepton, the most common genome combination is that of triploids based on the blue-spotted salamander and the Jefferson salamander, with the genomes LLJ (left, image by David Misfud) and JJL (right, image by Nick Scobel), even though the number of combinations is incredibly large. For this reason why scientists haven’t been able to decide a valid scientific name for this group of hybrid origins.

Unlike the water frogs, it is very difficult to define a scientific name for the klepton inside Ambystoma, as the genomes of the different species can be found in different combinations and proportions in different unisexual individuals.

REFERENCES

The following sources have been consulted during the elaboration of this entry:

Difusió-anglès

Open-air concerts: the call of frogs and toads

Well into mid-spring, when the nights get warmer, it’s in the more temperate latitudes where we can start hearing the songs of the frogs. If we get close to any humid area in summer we’ll hear the frog’s and toad’s choirs which sing to attract a mate and proclaim their territories. In this entry we’ll explain the functioning and secrets hidden behind the different calls and songs of the anuran world.

CALL ANATOMY

Anurans are the amphibian order with the greatest vocal abilities. Practically all species make different kinds of calls which they use to communicate and transmit information to their own kind. That’s why frogs and toads have developed a much more specialized vocal systems than the rest of lissamphibians to generate their famous calls.

2051850298_88d3937dae_o
New Granada cross-banded tree frog (Smilisca phaeota) in the midst of a call. Photo by Santiago Ron.

Anuran calls originate when the air passes from the lungs through the larynx where the vocal cords are found. Anurans are the only lissamphibians with true vocal cords, while urodeles and caecilians don’t have them. Lissamphibians must pump air to their lungs to breath (although they also breathe through their skin) and in most frogs the call is generated during exhalation.

Fire Bellied Toad
The oriental fire-bellied toad (Bombina orientalis) differs from the rest of anurans in that it emits its call both during exhalation and inhalation. Photo by Flickpicpete.

Most frogs and toads also present vocal sacs that amplify the sound of their calls, some of which can be heard up to one kilometre away. Anurans may have one vocal sac in their throat, or two vocal sacs in the corners of their mouth. To emit their famous calls they must have their mouths and nasal openings closed, to direct the air to the vocal sacs. Even if some species do not have vocal sacs, most species emit calls in some form or another.

Pelophylax_ridibundus_call
The marsh frog (Pelophylax ridibundus) is an example of a frog with two vocal sacs in the corner of its mouth. Photo by Xavier Robin.

THE REASON WHY THEY SING

Toads and frogs use their calls for one main reason: to mate. In anurans singing is a method to distinguish animals of their own species, to help males and females find each other and to detect receptive individuals. Normally the males are the ones who sing to attract females and that’s why there’s a sexual dimorphism in the vocal sacs, with males having more developed sacs than females and more elaborated calls.

Oak_toad,_sexual_dimorphism,_eshashoua_pd
Even if it’s hard to appreciate, here we can see how in oak toads (Anaxyrus quercicus) the males (left) present a bigger skin fold corresponding to a more developed vocal sac than the females (right). Image by Eric Shashoua.

It is thought that during the evolution of anurans a process of sexual selection has taken place with females selecting the males with the more adequate calls. As a general rule females prefer males with louder and deeper calls. Probably, this is due to the fact that the bigger males (which generally have the deeper voices) are usually the stronger and older ones, indicating that they have been able to survive for a longer time and that they have better genes to transmit to their offspring.

In this video by Pocketbattleship we can hear the song of the American bullfrog (Lithobates catesbeianus), which is deep and powerful.

Yet there are some species with very high-pitched calls in which the selection by females is focused on other factors. Most anuran females also prefer very frequent (with many repetitions of the sound) and longer calls (long-lasting sounds). This is because singing is a really intense activity that requires a lot of energy, indicating the males that have been able to store enough energy to carry out such an exhausting activity.

The call of the golden poison frog (Phyllobates terribilis) is really high-pitched and is characterized by its high frequency, as we can see in this video by Mavortium.

The mating season usually comes after some rainy weather in the more arid habitats and during the summer nights in the colder latitudes. Males usually form what we call “choirs” near bodies of water, as it’s in those where mating will take place. Anuran species can be separated into two groups based on their reproduction strategy: explosive breeders and continuous breeders.

Explosive breeders are usually found in dry habitats, where water availability is scarce most of the year. After some heavy rains, males congregate in the recently-formed water zones and form the choirs, singing for one or two nights. In these species females arrive simultaneously. This brings great numbers of males and females to congregate in one night and in the same area and, once the females arrive, the males quit singing and start competing energetically to make sure they mate.

scouchiiamplextx607
Couch’s spadefoot toad (Scaphiopus couchii) is a desert living amphibian from the south of the United States, which is characterized by its explosive mating. Image by CaliforniaHerps.

The most complex behaviours occur in species which breed continuously (the majority of the anurans). In these species the breeding season can last for six months and, while males come first to the mating spots and start to form the choirs, females arrive sporadically, mate and then abandon the mating ponds. This implies that when a female arrives there are many males in the mating spot, creating a strong selection of males by the females.

Bufo_bufo_couple_during_migration(2005)
Common toads (Bufo bufo) are one of the best examples of continuous breeders. Photo by Janek.

Instead of chasing the females like the explosive breeders, these use different calls both to stand out from the rest of the males and therefore be chosen by the females, and to warn male rivals not to approach their territory. Even if usually the males that are able to maintain their territories for the longest time are normally the ones that will have more offspring, there are also are the so-called “satellite males” which instead of singing, stay close to the males with the more powerful calls and intercept the females attracted by them.

A CALL FOR EACH SPECIES

Obviously, the calls also allow the females to differentiate the individuals of their own species from others. This can also help us, as anurans are usually secretive and nocturne animals and their calls allow us to identify which species we have around us, even if darkness covers it all.

Down below we share with you the calls and songs of some anurans from the Iberian Peninsula, in case you go on an evening out, to help you identify the most common toads and frogs you can find in humid zones.

The common midwife toad (Alytes obstetricans) normally sings at night and on land usually far from water, using underground shelters as echo chambers because, as the rest of midwife toads (Alytes genus), it has no vocal sacs. The call is a clear and flute-like note which is repeated regularly, as we can hear in this video by The Nature Box.

The call of the Iberian spadefoot toad (Pelobates cultripes) is similar to a hen’s cluck. The deep song of the spadefoot toad is usually hard to hear, because this anuran usually sings underwater, although in this video by Versicolora we can hear it pretty well.

The spiny toads (Bufo spinosus) usually sing alone, sporadically and without forming choirs, with their body half-submerged and their head out of the water. The call consists in a series of harsh and pretty high-pitched sounds as we can hear in this recording by Martiño Cabana Otero.

The natterjack toads (Bufo calamita) sing at night, in very shallow waters, with their body pretty upright and inflating their huge vocal sac. Their call is pulsatile, powerful and boomy, and is repeated without rest as we can see in this video by Florian Begou.

The Mediterranean tree frog (Hyla meridionalis) usually sings at dusk and at night, both in water, on land or, as we can see in this video by Pedroluna, perched in the vegetation. The call consists in a single intense, nasal and monotonous note, which is repeated in long and irregular intervals.

Perez’s frogs (Pelophylax perezi) present a wide range of sounds which go from the typical “croak” to a sonorous call similar to a cackle. The choirs of these frogs are usually numerous and really loud, as we can hear in this video by Martiño Cabana Otero.

REFERENCES

The following sources have been consulted during the elaboration of this entry:

Difusió-anglès