Arxiu d'etiquetes: mineralització

Coneixent els fòssils i la seva edat

A All You Need Is Biology sovint fem referència als fòssils per explicar el passat dels éssers vius. Però què és exactament un fòssil i com es forma? Per a què serveixen els fòssils? T’has preguntat mai com ho fa la ciència per saber l’edat d’un fòssil? Segueix llegint per descobrir-ho!

QUÈ ÉS UN FÒSSIL?

Si penses en un fòssil, segurament el primer que et ve al cap és un os de dinosaure o una petxina petrificada que et vas trobar al bosc, però un fòssil és molt més. Els fòssils són restes (completes o parcials) d’éssers vius que van viure en el passat (milers, milions d’anys) o rastres de la seva activitat que queden conservats (generalment en roques sedimentàries). Així doncs, existeixen diferents tipus de fòssils:

  • Petrificats i permineralitzats: són els que corresponen a la definició clàssica de fòssil en què les parts orgàniques o buides són substituïdes per minerals (veure apartat següent). La seva formació pot deixar motlles interns o externs (per exemple, de petxines) en el qual el material original pot desaparèixer. La fusta fossilitzada d’aquesta manera es coneix com a  xilòpal.

    cangrejo herradura, fósil, cosmocaixa, mireia querol rovira
    Fòssil petrificat de cranc ferradura i les seves petjades, CosmoCaixa. Foto: Mireia Querol Rovira
  • Icnofòssils: restes de l’activitat d’un ésser viu que queden registrades en la roca i donen informació sobre el comportament de les espècies. Poden ser modificacions de l’entorn (nius i altres construccions), empremtes (icnites), deposicions (copròlits excrements-, ous…) i altres marques com esgarrapades, mossegades…
    Cosmocaixa, huevos, dinosaurio, nido, mireia querol rovira
    Ous de dinosaure (niu). CosmoCaixa. foto: Mireia Querol Rovira

    coprolitos, cosmocaixa, excrementos fósiles, mireia querol rovira
    Copròlits, CosmoCaixa. foto: Mireia Querol Rovira
  • Ambre: resina fòssil de més de 20 milions d’antiguitat. Abans passa per un estat intermedi que s’anomena copal (menys de 20 milions d’anys). La resina, abans de passar a ambre, pot atrapar insectes, aràcnids, pol·len… en aquest cas es consideraria un doble fòssil.

    Pieza de ámbar a la lupa con insectos en su interior. CosmoCaixa. Foto: Mireia Querol Rovira
    Peça d’ambre a la lupa amb insectes al seu interior, CosmoCaixa. Foto: Mireia Querol Rovira
  • Fòssils químics: són els combustibles fòssils, com el petroli i el carbó, que es van formar per l’acumulació de matèria orgànica a altes pressions i temperatures juntament amb l’acció de bacteris anaerobis (que no utilitzen oxigen per al seu metabolisme).
  • Subfòssil: quan el procés de fossilització no s’ha completat (per haver passat poc temps, o les condicions perquè es donés la fossilització no van ser propícies) les restes es coneixen com subfòssils. No tenen més de 11.000 anys d’antiguitat. És el cas dels nostres avantpassats més recents (Edat dels Metalls).
Ötzi, un subfòssil. És la mòmia natural més antiga d’Europa. Va viure durant el Calcolític (Edat de Coure) i va morir fa 5.300 anys. Foto: Wikimedia Commons
    • Fòssil vivent: nom que es dóna a éssers vius actuals molt semblants a organismes ja extingits. El cas més famós és el del celacant, que es creia extingit des de feia 65 milions d’anys fins que va ser redescobert el 1938, però hi ha altres exemples com els nàutils.

      ammonites, nautilus, cosmocaixa, fósil, mireia querol rovira
      Comparació entre la closca d’un nautilus actual (esquerra) i un ammonit de milions d’anys d’antiguitat (dreta). CosmoCaixa. Foto :Mireia Querol Rovira
    • Pseudofòssils: són formacions a les roques que semblen restes d’éssers vius, però en realitat s’han format per processos geològics. El cas més conegut són les dendrites de pirolusita, que semblen vegetals.

      Infiltraciones de priolusita en piedra calcárea. CosmoCaixa. Foto: Mireia Querol
      Infiltracions de priolusita en lloses calcàries, CosmoCaixa. Foto: Mireia Querol

Lògicament els fòssils es van fer més comuns a partir de l’aparició de parts dures (petxines, dents, ossos…), fa 543 milions d’anys (Explosió del Cambrià). El registre fòssil anterior a aquest període és molt escàs. Els fòssils més antics que es coneixen són els estromatòlits, roques formades per la precipitació de carbonat càlcic a causa de l’activitat de bacteris fotosintètics que encara existeixen en l’actualitat.

La ciència que estudia els fòssils és la Paleontologia .

stromatolite, estromatòli, estromatolito, mireia querol rovira, fossil, fósil
Estromatòlit de 2.800 milions d’anys d’antiguitat, Australian Museum. Foto: Mireia Querol Rovira

COM ES FORMA UN FÒSSIL?

La fossilització es pot donar de cinc maneres diferents:

    • Petrificació: és la substitució de la matèria orgànica per substàncies minerals de les restes d’un ésser viu enterrat. S’obté una còpia exacta de l’organisme en pedra. El primer pas de la petrificació és la permineralització: els porus de l’organisme estan farcits de mineral però el teixit orgànic està inalterat. És la fossilització més comú que pateixen els ossos.
    • Gelificació: l’organisme queda incrustat en el gel i no pateix gairebé transformacions.
    • Compressió: l’organisme mort queda sobre una capa tova del sòl, com el fang, i queda cobert per capes de sediments.
    • Inclusió : els organismes queden atrapats en ambre o petroli.
    • Impressió: els organismes deixen impressions en el fang i es conserva la marca fins que el fang s’endureix.
Processos de fossilització i fòssils resultants. Autor desconegut

UTILITAT DELS FÒSSILS

  • Els fòssils ens donen informació de com eren els éssers vius en el passat, resultant una evidència de la evolució biològica i una ajuda per establir els llinatges dels éssers vius actuals.
  • Permeten analitzar fenòmens cíclics com canvis climàtics, dinàmiques atmosfera-oceà i fins i tot les pertorbacions orbitals dels planetes.
  • Els que són exclusius d’una determinada època permeten datar amb força exactitud les roques en què es troben (fòssils guia).
  • Donen informació de processos geològics com el moviment dels continents, presència d’antics oceans, cadenes muntanyoses…
  • Els fòssils químics són la nostra principal font d’energia actual.
  • Donen informació sobre el clima del passat, per exemple, estudiant els anells de creixement dels troncs fòssils o les deposicions de matèria orgànica en les varves glacials.

    mireia querol rovira, tronco fósil, xilópalo, AMNH
    Troncs fòssils on s’observen anells de creixement. American Museum of Natural History. Foto: Mireia Querol Rovira

DATACIÓ DELS FÒSSILS

Per conèixer l’edat dels fòssils existeixen mètodes indirectes (datació relativa) i directes (datació absoluta). Com que no hi ha cap mètode perfecte i la precisió disminueix amb l’antiguitat, els jaciments se solen datar amb més d’una tècnica.

DATACIÓ RELATIVA

Els fòssils es daten segons el context en el qual han estat trobats, si estan associats a altres fòssils (fòssils guia) o objectes dels que es coneix l’edat i segons l’estrat en el qual es troben.

En geologia, els estrats són els diferents nivells de roques que s’ordenen segons la seva profunditat: segons la estratigrafia, els més antics són els que es troben a major profunditat, mentre que els més moderns són els més superficials, ja que els sediments no han tingut tant de temps per dipositar-se al substrat. Lògicament si hi ha moviments de terres i alteracions geològiques la datació seria incorrecta si només existís aquest mètode.

Esquema de las eras geológicas y estratso con sus correspondientes fósiles. Fuente
Esquema de les eres geològiques i estrats amb els seus corresponents fòssils. Font

DATACIÓ ABSOLUTA

És més precisa i es basa en les característiques físiques de la matèria.

DATACIÓ RADIOMÈTRICA

Es basa en la velocitat de desintegració d’isòtops radioactius presents en roques i fòssils. Els isòtops són àtoms del mateix element però amb diferent quantitat de neutrons en el seu nucli . Els isòtops radioactius són inestables, pel que es transformen en altres més estables a una velocitat coneguda pels científics emetent radiació. Comparant la quantitat d’isòtops inestables amb els estables en una mostra, la ciència pot estimar el temps que ha transcorregut des que es va formar el fòssil o roca.

carbono 14
Esquema del cicle del Carboni 14. Font
  • Radiocarboni (Carboni-14): en organismes vius, la relació entre el C12 i el C14 és constant, però quan moren, aquesta relació canvia ja que el C14 deixa de incorporar-se al cos i el que queda es descomposa radioactivament en un període de semidesintegració de 5730 anys. Coneixent la diferència entre el C12 i C14 de la mostra, podrem datar quan va morir l’organisme. El límit màxim de datació per aquest mètode són 60.000 anys, per tant només s’aplica a fòssils recents.
  • Beril·li 10-Alumini 26: té la mateixa aplicació que el C14, però té un període de semidesintegració molt més gran, de manera que permet datacions de 10 milions d’anys, i fins i tot de fins a 15 milions d’anys.
  • Potassi-Argó (40K/40Ar): s’utilitza per datar roques i cendres d’origen volcànic de més de 10.000 anys. És el mètode que es va utilitzar per datar les petjades de Laetoli , el primer rastre de bipedisme del nostre llinatge deixat per Australopithecus afarensis.
  • Sèries de l’Urani (Urani-Tori): s’utilitzen diverses tècniques mitjançant els isòtops de l’urani. S’utilitzen en materials de carbonat de calci, (com coralls) i dipòsits minerals en coves (espeleotemes ).
  • Calci 41: permet datar restes òssies en un interval de temps entre 50.000 i 1.000.000 d’anys.

DATACIÓ PER PALEOMAGNETISME

El pol nord magnètic ha anat canviant al llarg de la història de la Terra, i es coneixen les coordenades geogràfiques en diferents èpoques geològiques.

Alguns minerals tenen propietats magnètiques i es dirigeixen cap al pol nord magnètic quan estan en suspensió aquosa, per exemple en les argiles. Però si es dipositen a terra, queden fixats cap a la posició que tenia el pol nord magnètic en aquell moment. Si observem cap a quines coordenades estan orientats aquests minerals al jaciment, el podem associar amb una època determinada.

Deposición de partículas magnéticas orientadas hacia el polo norte magnético. Fuente: Understanding Earth, Press and Seiver, W.H. Freeman and Co.
Deposició de partícules magnètiques orientades cap al pol nord magnètic. Font: Understanding Earth, Press and Seiver, W.H. Freeman and Co.

Aquesta datació s’utilitza en restes dipositades sobre fons argilosos i com el pol nord magnètic ha estat diverses vegades en les mateixes coordenades geogràfiques, s’obté més d’una data de datació. Segons el context del jaciment, es podran descartar algunes d’aquestes dates fins arribar a una definitiva.

DATACIÓ PER TERMOLUMINISCÈNCIA I LUMINISCÈNCIA ÒPTICA SIMULADA

Certs minerals (quars, feldspat, calcita…) acumulen modificacions en la seva estructura cristal·lina degudes a la desintegració radioactiva de l’entorn. Aquestes modificacions són acumulatives, contínues i dependents del temps d’exposició a la radiació. Quan se sotmet al mineral a estímuls externs, emet llum a causa d’aquestes modificacions. Aquesta luminiscència és molt feble i diferent segons se li apliqui calor (TL), llum visible (OSL) o infrarojos (IRSL).

Termoluminiscencia de la fluorita. Foto: Mauswiesel
Termoluminiscència de la fluorita. Foto: Mauswiesel

Només es poden datar mostres que hagin estat protegides de la llum solar o del calor a més de 500 ºC, ja que llavors es reinicia “el rellotge” en alliberar l’energia de manera natural.

RESSONÀNCIA PARAMAGNÈTICA ELECTRÒNICA (ESR)

La ESR (electro spin ressonance) consisteix a sotmetre la mostra a radiació i mesurar l’energia absorbida per la mostra en funció de la quantitat de radiació a la qual ha estat sotmesa durant la seva història. És un mètode complex del que pots obtenir més informació aquí.

REFERÈNCIES

mireia querol rovira

Plantes carnívores

El carnivorisme és un tipus de nutrició que normalment associem als animals, al món dels  heteròtrofs. Però s’ha vist que hi ha plantes que també són capaces d’alimentar-se d’altres organismes. Aquestes són les anomenades plantes carnívores i les seves estratègies per capturar a les preses són ben diferents i curioses.

QUÈ ÉS UNA PLANTA CARNÍVORA?

Una planta carnívora és aquella planta que tot i ser autòtrofa obté un suplement nutritiu gràcies a que s’alimenta d’animals, sobretot d’insectes.

Per a que una planta sigui carnívora ha de complir  tres requisits bàsics:

  • Han d’atreure la presa per capturar-la i matar-la. Per tal d’atreure normalment presenten coloració vermellosa i també secreten nèctar. I per a capturar les preses han de constar de trampes, adaptacions morfològiques i anatòmiques que permeten retenir i matar la presa.
  • També han de ser capaces de digerir i absorbir els nutrients alliberats per la presa que han capturat.
  • I finalment han d’extreure un benefici significatiu de tot el procés.
Dionaea muscipula
Venus atrapamosques (Dionaea muscipula) (Autor: Jason).

ON VIUEN?

Les carnívores resulten poc competitives en ambients normals i a més acostumen a presentar un sistema radicular petit, per això requereixen d’aquesta especialització que els permet créixer més ràpidament. Generalment es troben en llocs amb poca mineralització, però alta concentració de matèria orgànica i zones d’humitat elevada i assolellades, ja que totes les  carnívores fan la fotosíntesi.

Normalment també són plantes calcífugues, és a dir, no estan ben adaptades a sòls alcalins i prefereixen ambients àcids on la font de calci és la presa. També tendeixen a viure en ambients reductors, per tant apareixen en sòls amb poc oxigen i carregats d’aigua. Algunes fins i tot són aquàtiques i viuen surant o submergides però prop de la superfície.

TIPUS DE TRAMPES I EXEMPLES

El sistema de captura és bastant divers, però es pot classificar segons si hi ha moviment o no.  Considerem actives aquelles que tenen moviment mecànic o per succió. En segon lloc hi hauria les semiactives; aquestes tenen moviment i consten de pèls adhesius. I finalment hi ha les passives, és a dir, que capturen sense moviment gràcies a pèls adhesius o estructures de caiguda com els cucurutxos o les urnes. A continuació veurem les estratègies a través de varis exemples.

TRAMPES ACTIVES

Venus atrapamosques

En el cas d’aquesta planta les trampes són mecàniques i estan formades per dues valves unides a un eix central. Aquestes valves són el resultat de la transformació de les fulles, les quals ja no són fotosintètiques. En conseqüència la tija és l’encarregada d’actuar com a pecíol i de fer la fotosíntesis; per això es troba eixamplada, augmentant la seva superfície facilita el procés. D’altra banda, les valves consten de glàndules de nèctar que atrauen a la presa i a més estan envoltades en el seu perímetre per dents que faciliten el tancament, ja que queden superposades per encaixar perfectament i evitar que l’animal s’escapi.

Però, què acciona el seu tancament?  Els encarregats són una sèrie de pèls disparadors que es troben al interior de la valva. Quan la presa es situa sobre la trampa i mou dos cops el mateix pèl o en mou dos en menys de 20s les valves es tanquen immediatament.

A continuació podem veure un vídeo on s’explica aquest procés. El vídeo és originari d’un reportatge emès per La 2 de TVE (Canal de Youtube: Luis Estévez):

Utricularia, la succionadora

Aquesta planta aquàtica que viu submergida prop de la superfície consta de sàculs o utricles que actuen com a trampes. Els sàculs es caracteritzen per tenir a l’entrada uns pèls sensitius que activen el mecanisme de succió de l’animal cap a l’interior, ja que en conseqüència el sàcul genera una pressió interna molt forta. D’aquesta manera succionen l’aigua i arrosseguen l’animal a la trampa. En el moment que entra l’aigua al sàcul, aquest pot arribar a augmentar un 40% el seu volum. La pressió interna és tan gran que quan l’animal és capturat s’escolta la succió.

En el següent curt podem veure a l’Utricularia en acció. El vídeo és originari d’un reportatge emès per La 2 de TVE (Canal de Youtube: Schoolbox):

TRAMPES SEMIACTIVES

Quan t’agafi ja no podràs escapar 

La presència de pèls adhesius no és exclusiva de plantes carnívores, moltes plantes els utilitzen com a defensa o per evitar pèrdua d’aigua. Però algunes carnívores, com la Drosera, els utilitzen per a capturar animals.

Els pèls adhesius o glàndules que presenta Drosera a les seves fulles estan formats per un peu i una cèl·lula apical que allibera mucílag. Aquesta substància atrau les preses per l’olor i pel gust. Quan la presa es situa a les fulles, les gotes de mucílag es van fusionant entre elles fins que formen una massa viscosa que acaba lubricant tota la presa fent impossible que pugui escapar. Cal remarcar que les glàndules tenen certa mobilitat i es desplacen per posar-se en contacte amb l’animal. A més, això provoca el tancament de la fulla facilitant la posterior digestió.

El següent vídeo mostra el funcionament d’aquest mecanisme (Canal de Youtube: TheShopofHorrors):

TRAMPES PASIVES

Compte que t’enganxes!

El cas de Drosophyllum és molt semblant al de Drosera, però aquesta vegada els pèls adhesius no tenen moviment i en conseqüència la fulla tampoc. El insecte queda atrapat simplement perquè s’enganxa i no es pot alliberar.

Drosophyllum
Insectes atrapats pels pèls adhesius de Drosophyllum (Autor: incidencematrix).

Vigila que caus!

Finalment veiem les trampes passives de caiguda, els cucurutxos i les urnes. Aquests a vegades presenten una tapa immòbil que no forma part del mecanisme de captura, però que protegeix la trampa de l’excés d’aigua, evitant que s’ompli. Els cucurutxos i urnes poden estar formats per la pròpia fulla o bé ser una estructura addicional originada pel nervi foliar. Aquest baixa fins l’altura del terra i desprès forma la trampa.

Nepenthes
Urna de Nepenthes (Autor: Nico Nelson).

Les preses es senten atretes cap aquests paranys degut a les glàndules de nèctar situades al interior. Un cop dins sortir és ben complicat! Les parets d’aquestes trampes poden ser viscoses, presentar pèls orientats cap a baix que dificulten la sortida o bé tenen taques translúcides que fan pensar a l’animal que hi ha una sortida, però que en realitat no ho és i llavors l’animal cau esgotat al fons intentant escapar. D’altres a més alliberen substàncies que atordeixen a la presa impedint la fugida.

Heliamphora
Cucurutxos de Heliamphora (Autor: Brian Gratwicke).

Cal dir que els animals grans que acostumen a caure en aquestes trampes és perquè estan malalts o perquè el seu desenvolupament no els permet distingir la trampa, tot i que n’hi ha que arriben a fer 20cm de llarg.

FALSES CARNÍVORES

Hi ha algunes plantes que sembla que en un futur podrien arribar a ser carnívores, però que no ho són per que no tenen un mecanisme especialitzat, és a dir, no compleixen un o més dels requisits necessaris.

És el cas de Dipsacus fullonum.  Aquesta espècie consta d’unes fulles que emmagatzemen aigua al voltant de la tija. Això evita que els insectes no voladors puguin pujar i alhora actua com a trampa potencial de caiguda. De tal manera que alguns insectes poden morir ofegats a l’aigua. Per tant, en un futur podria ser carnívora, ja que capturaria els insectes i a partir d’aquesta aigua absorbiria els nutrients.

Dipsacus fullonum
Acumulació d’aigua amb insectes morts a les fulles de Dipsacus fullonum (Autor: Wendell Smith).

Difusió-català

REFERÈNCIES