Arxiu d'etiquetes: murciélago

Conoce a los micromamíferos

Felinosloboselefantessimios… Conocemos los grandes mamíferos pero, qué hay de los más pequeños? ¿Qué es un desmán o un almiquí? Sigue leyendo para conocer los mamíferos de tamaño pequeño y su importancia.

¿QUÉ ES UN MICROMAMÍFERO?

La palabra micromamífero no tiene valor taxonómico, Es decir, no se trata de ningún nombre que la biología utilice en la clasificación de los mamíferos. Sin embargo, este término coloquial, al igual que la palabra “dinosaurio“, sí se utiliza en publicaciones científicas para agrupar varios órdenes de mamíferos de tamaño pequeño, aunque en un mismo grupo taxonómico haya especies de gran tamaño. La consideración de qué es o no un micromamífero pues, puede variar según los autores.

El erizo europeo (Erinaceus europaeus), un micromamífero. Fuente
El erizo europeo (Erinaceus europaeus), un micromamífero. Fuente

En general, se consideran micromamíferos los individuos de los siguientes grupos:

  • Quirópteros (murciélagos)
  • Roedores (Ratas, ratones, ardillas, marmotas, castores, perritos de las praderas, hámsters, lemmings, jerbos, topillos, chinchillas…)
  • Lagomorfos (Conejos, liebres y picas)
  • Insectívoros (Musarañas, erizos, topos, desmán …)

MURCIÉLAGOS (QUIRÓPTEROS)

Como vimos en un artículo anterior, los murciélagos son animales imprescindibles para los ecosistemas, además de poseer ciertas características peculiares que los hacen merecedores de varios récords: son los únicos mamíferos capaces de volar activamente, están distribuidos por casi todos los continentes, no suelen enfermar… para conocerlos a fondo, entra en ¿Para qué sirve un murciélago?

Crías de zorro volador rescatadas por la Australian Bat Clinic después de las inundaciones de 2010. Fuente
Crías de zorro volador rescatadas por la Australian Bat Clinic después de las inundaciones de 2010. Fuente

En la Península Ibérica habitan ocho especies. Puedes conocer más de ellas en la página Fauna Ibérica.

ROEDORES

Los roedores son el orden más numeroso de mamíferos: representan más del 40% del total y habitan en todos los continentes excepto la Antártida. Algunos roedores no se consideran micromamíferos por su gran tamaño, como las capibaras o los puercoespines. La mayoría son cuadrúpedos con cola larga, garras, bigotes largos y grandes dientes incisivos de crecimiento continuo. Esto les obliga a roer constantemente gracias a sus mandíbulas especializadas, para desgastarlos y mantenerlos siempre afilados. Sus sentidos suelen estar desarrollados, especialmente el olfato y oído, así como el sentido del tacto en sus bigotes. Se comunican por el olor y vocalizaciones diversas.

Topillo común (Pitymys duodecimcostatus). Foto: Herminio M. Muñiz
Topillo común (Pitymys duodecimcostatus). Foto: Herminio M. Muñiz

La mayoría de las especies son sociales y forman grandes comunidades. Su anatomía está más generalizada que la de otros mamíferos, lo que les permite adaptarse a hábitats diferentes. Sumado al alto índice de natalidad, pueden mantener las poblaciones estables en condiciones adversas. La rata campestre por ejemplo, puede tener camadas cada mes de más de 10 crías a partir de los 2 meses de edad.

Lirón gris (Glis glis). Foto: Miguel Ángel Castaño Ortega
Lirón gris (Glis glis). Foto: Miguel Ángel Castaño Ortega

Algunos roedores, sobre todo ratas y ratones, ocupan los mismos hábitats que los humanos y son considerados una plaga: además de consumir alimentos humanos, pueden contaminarlos con su orina y heces y son transmisores de más de 20 enfermedades, entre ellas el tifus y la peste.

Ardilla roja (sciurus vulgaris). Foto: Peter Trimming
Ardilla roja (sciurus vulgaris). Foto: Peter Trimming

En la Península Ibérica habitan unas 23 especies, repartidas en 5 familias:

  • Cricetidae: topillos (8 especies), rata de agua, rata almizclera (esta última alóctona), hámsters, lemmings.
  • Gliridae: lirón gris y lirón careto.
  • Sciuridae: ardilla común, roja o europea.
  • Muridae: ratones (ratón de campo, ratón doméstico, ratón común…) y ratas (rata común, rata negra)
  • Myocastoride: coipú (alóctona)

    Coipú (Myocastor coypus). Foto: www.simbiosisactiva.org
    Coipú (Myocastor coypus). Foto: http://www.simbiosisactiva.org

CONEJOS, LIEBRES Y PICAS (LAGOMORFOS)

Al contrario de lo que cree mucha gente por su anatomía y costumbres, los conejos y liebres no son roedores, sino que pertenecen al orden de los lagomorfos. A diferencia de ellos, tienen la cola pequeña y redonda, patas con piel espesa y pelos en las plantas que ayudan a la adherencia mientras corren.

pica-de-ili
Pica de Ili. En peligro de extinción, fue vista nuevamente después de 10 años desaparecida. Foto: Le Weidong

Todas las especies son terrestres y se distribuyen por casi todo el mundo. Se encuentran entre los animales más cazados, por lo que su cuerpo presenta adaptaciones para eludir a sus depredadores:

  • Orejas largas para una buena audición
  • Ojos en la parte alta de la cabeza con una visión de casi 360º
  • Patas traseras alargadas para llegar hasta 56 km/h

Al igual que los roedores, los incisivos también son de crecimiento continuo, pero detrás de ellos hay otro par más pequeño (“dientes de clavija”) y también tienen altas tasas de reproducción (algunas especies pueden concebir una segunda camada antes de parir la primera), madurez sexual a los pocos meses de vida y gestaciones cortas.

Comparación entre el cráneo de los lagomorfos (arriba) y roedores (abajo). Fuente
Comparación entre el cráneo de los lagomorfos (arriba) y roedores (abajo). Fuente

Los lagomorfos son herbívoros. Practican la cecotrofia: las sustancias que no pueden digerir las evacuan por el ano en forma de bolas blandas que se vuelven a comer, para que sufran una segunda digestión. Si tienes un conejo como mascota, ¡este comportamiento es completamente normal!

En la Península Ibérica habita el conejo de campo y 4 especies de liebres (ibérica, europea, del piornal y del Cabo (alóctona).

Conejo (izquierda) y liebre (derecha). Fuente
Conejo (izquierda) y liebre (derecha). Fuente

MICROMAMÍFEROS INSECTÍVOROS

Actualmente el orden Insectivora está en desuso y los micromamíferos que se alimentan de insectos (y otros animales) los podemos clasificar en 5 órdenes:

  • Erizos y ratas lunares o gimnuros (Erinaceomorpha)
  • Musarañas, musgaños, topos y desmanes, solenodontes y almiquíes (Soricomorpha).
  • Tenrecs, musarañas-nutria africanas y topos dorados africanos (Afrosoricida)
  • Musarañas elefante (Macroscelidea)
  • Tupayas (Scandentia)
solenodonte de La Española (Solenodon paradoxus
Solenodonte de La Española (Solenodon paradoxus). Foto de Eladio M. Fernández.

Se consideran los mamíferos más primitivos. Muchas especies se caracterizan por:

  • Morro alargado, delgado y móvil. Tienen buen olfato
  • Orejas y ojos pequeños o subdesarrollados en algunas especies, como en los topos
  • 5 dedos con garras en cada pata
  • Cuerpo alargado (musarañas nutria), cilíndrico (topos) o redondeado (erizos)
  • Son plantígrados (se desplazan colocando la planta y el talón del pie al mismo tiempo)
  • Algunas especies, como erizos y tenrecs, presentan púas
  • Los solenodontes, musarañas y musgaños son de los pocos mamíferos venenosos que existen. Lee este artículo para saber más.
Musgaño (Neomys anomalus). Foto de Rollin Verlinde.
Musgaño (Neomys anomalus). Foto de Rollin Verlinde.

La mayoría son nocturnos y su dieta se basa en insectos, arañas y gusanos, aunque también consumen plantas y otros animales. Además, no son los únicos mamíferos que comen insectos.

Tenrec rayado (Hemicentetes semispinosus). Foto de Robert Siegel
Tenrec rayado (Hemicentetes semispinosus). Foto de Robert Siegel

En la Península Ibérica habitan el desmán, 2 especies de erizo, unas 5 especies de musarañas, 2 especies de musgaño y el topo ibérico. Si quieres conocer más sobre el desmán, en la página de El Bichólogo encontrarás más información.

Desmán Ibérico (Galemys pyrenaicus). Foto: David Pérez
Desmán Ibérico (Galemys pyrenaicus). Foto: David Pérez

IMPORTANCIA DE LOS MICROMAMÍFEROS

  • En Paleozoología, los fósiles de micromamíferos aportan mucha información ya que suelen encontrarse más a menudo en los yacimientos que los de otros mamíferos. Además, muchas veces sus huesos se encuentran acumulados debido a las costumbres de sus depredadores. Aportan valiosa información sobre el clima de tiempos pasados (paleoclimatología) y sobre la clasificación de las rocas en estratos según su presencia en forma de fósiles (bioestratigrafía).
  • A pesar de su mala fama, algunas especies de roedores son beneficiosas, controlando poblaciones de insectos y destruyendo malezas, contribuyendo a la salud de los bosques esparciendo hongos… aunque su uso actualmente está cuestionado, también les debemos avances médicos debido de la investigación en laboratorios.
  • Muchas especies son responsables de la dispersión del polen o semillas.
  • Son vitales en estrategias de conservación y mantenimiento de sus especies depredadoras en declive, como el mochuelo boreal o el lince ibérico.
  • Como algunos viven en madrigueras (conejos) o son excavadores, contribuyen a la ventilación de los suelos y su fertilidad.

Esperamos que a partir de ahora, cuando pienses en mamíferos, ya no sólo te vengan a la mente de los más emblemáticos, sino que los de talla pequeña también tengan el protagonismo que merecen.

REFERENCIAS

Mireia Querol Rovira

¿Para qué sirve un murciélago?

Los murciélagos son los únicos mamíferos capaces de volar activamente. Representan el 22% de todas las especies de mamíferos y están distribuidos por todos los continentes, exceptuando la Antártida. A pesar de ello, son unos grandes desconocidos y pesan grandes prejuicios sobre ellos. Conoce más sobre estos fascinantes animales, descubre su importancia ecológica y por qué es vital su conservación.

¿QUÉ NO SON LOS MURCIÉLAGOS?

NO SON RATAS VOLADORAS

A pesar de su aspecto, los murciélagos no son roedores como las ratas, sino que pertenecen al orden de los quirópteros, con dos subórdenes y unas 1.240 especies:

  • Megaquirópteros (zorros voladores): tienen una cara parecida al zorro y sólo una especie (Rousettus aegyptiacus) tiene la capacidad de ecolocación (detección del entorno por ultrasonidos). El más grande es el  zorro volador filipino (Acerodon jubatus), con una envergadura de 1,5 m.
  • Microquirópteros: de tamaño menor, todos utilizan la ecolocación. El más pequeño, el murciélago moscardón (Craseonycteris thonglongyai) mide hasta 3,3 cm, ostentando el récord de mamífero más pequeño del mundo.
Megachiroptera, macrochiroptera, comparison
Megaquiróptero (izquierda) y microquiróptero (derecha). Observa la diferencia de desarrollo de las orejas y ojos. Fuente

A modo de curiosidad “murciégalo“, como algunas personas los llaman, proviene del latín mus, muris “ratón” y cæculus, diminutivo de cæcus, ciego.  Pero no son ratones… ni ciegos.

NO SON CIEGOS

Aunque a veces son pequeños, los ojos de los murciélagos son plenamente funcionales, a pesar de ello, audición y olfato son más importantes que la vista, sobre todo en los microquirópteros.

Artibeus gnomus, Dermanura gnoma, murciélago frutero enano
Murciélago frutero enano (Dermanura gnoma). Se observa la hoja nasal y el trago, que ayudan a la ecolocación. Foto: Carlos Boada

La ecolocación es la capacidad de conocer el entorno (y sobre todo, localizar presas) que tienen algunos animales, como algunos murciélagos y algunos cetáceos, a través de la emisión de ultrasonidos y recepción del eco. El sonar de barcos y submarinos está basado en la ecolocación.

Los murciélagos producen ultrasonidos (“cliks“) de entre 14.000 y 100.000 Hz en la laringe, emitidos a través de la nariz o boca y dirigidos mediante la hoja nasal (si existe). Cuando el sonido refleja en un objeto, el eco que retorna es capturado por las orejas del murciélago, y el tiempo  que tarda en recibir el eco le da información sobre el tamaño y ubicación de lo que hay en su camino. A medida que se acerca a la presa, la frecuencia de los cliks aumenta, para obtener mayor precisión.

Algunas especies de murciélagos utilizan rangos de frecuencias muy concretos, lo que se puede utilizar en investigación para la identificación de estas especies. Desafortunadamente muchas especies solapan mismos rangos de frecuencias, por lo que la identificación no siempre es posible. Hay que tener en cuenta que investigar los murciélagos no es tan fácil como la observación visual de otros animales. Se utilizan grabadores ultrasónicos (detectores de murciélago) y luego se traducen las señales en frecuencia audibles para los humanos. En Wildlife Sound puedes escuchar algunas de esas señales.

Los miedos a que choquen con nosotros o se nos enreden en el pelo son totalmente infundados, debido a este sistema de orientación tan efectivo.

ecolocalización, ecolocación, delfín, murciélago, cetáceo
Comparativa entre la ecolocación de un murciélago y un delfín. Infografía de Antonio Lara. Fuente

NO SON VAMPIROS

De las más de mil especies existentes, sólo 3 se alimentan de sangre (hematófagas) y viven en centro y Suramérica: el vampiro común (Desmodus rotundus), el vampiro de patas peludas (Diphylla ecaudata) y el vampiro de alas blancas (Diaemus youngi).

Desmodus rotundus alimentándose de una vaca. Los vampiros no chupan la sangre, sino que la lamen. Fuente

El resto de especies son frugívoras (fruta),  insectívoras (insectos), carnívoras (peces, ranas, lagartijas, aves) y polinívoras (polen/néctar). A pesar de esto, los murciélagos siguen inspirando miedo debido a los hábitos nocturnos de algunos de ellos y mitos y leyendas populares, pero no son animales agresivos. Por eso, la probabilidad de transmisión de enfermedades como la rabia a través de murciélagos es bajísima, además que dentro de sus poblaciones, tiene una incidencia de sólo el 0,5-1%.

Murciélago pescando. Foto: Christian Ziegler
Murciélago pescando. Foto: Christian Ziegler

¿POR QUÉ SON IMPORTANTES LOS MURCIÉLAGOS?

SON GRANDES CONSUMIDORES DE INSECTOS

Un murciélago de ciudad puede devorar en una noche el 60% de su peso corporal en presas. En Nuevo México hay una colonia que come en una noche el peso equivalente a 25 elefantes en mosquitos. Esto les convierte en grandes reguladores de posibles plagas, ayudando a disminuir el uso de pesticidas en los cultivos.

Murciélago orejón comiendo un insecto. Foto: desconocido
Murciélago orejón comiendo un insecto. Foto: desconocido

También juegan un papel en el control de enfermedades, ya que muchas se transmiten a través de los mosquitos que ellos comen. Un caso conocido últimamente es el del virus del Zika, transmitido por el mosquito Aedes aegypti. Por estas razones muchas comunidades españolas, como Madrid,  Catalunya o Navarra  están instalando cajas refugio para favorecer las poblaciones de murciélagos y su reproducción.

Caja refugio en un huerto urbano de Barcelona. Fuente
Caja refugio en un huerto urbano de Barcelona. Fuente

SON GRANDES POLINIZADORES Y DISPERSORES DE SEMILLAS

Algunos murciélagos juegan un papel crucial en la polinización de más de 500 especies de plantas y de dispersión de semillas (quiropterocoria).  Muchas especies dependen exclusivamente de estos animales para reproducirse y sin ellos, se extinguirían. El caso más conocido es el de la flor del agave, planta de la que se obtiene el tequila. Sólo es polinizada por el murciélago Leptonycteris curasoae y los patrones de floración del agave están relacionados con los patrones de migración de esta especie en México.

Murciélago megueyero menor (Leptonycteris yerbabuenae) alimentándose del néctor de la flor del Agave.Foto: Barry Mansell
Murciélago megueyero menor (Leptonycteris yerbabuenae) alimentándose del néctor de la flor del Agave.Foto: Barry Mansell

Algunos casos de coevolución son sorprendentes, como el del murciélago con la lengua más larga (el 150% de la longitud de su cuerpo). También es el mamífero con la lengua más larga del mundo. Se trata de Anoura fistulata y es el único que poliniza una planta llamada Centropogon nigricans, a pesar de la existencia de otras especies de murciélagos en el mismo hábitat de la planta.

Anoura fistulata, murcielago, bat
El murciélago Anoura fistulata y su larga lengua. Foto de Nathan Muchhala

Las especies dispersoras de semillas juegan un papel fundamental en la regeneración de las selvas, ayudando a las plantas a colonizar nuevos territorios en hábitats fragmentados o después de catástrofes naturales. Se estima que dispersan de 1 a 8 veces más semillas que las aves en las regiones tropicales.

SU SISTEMA INMUNOLÓGICO ES ÚNICO

Los murciélagos son el huésped natural de muchas especies de virus. Pueden ser portadores de hasta 100 enfermedades a la vez, pero no suelen enfermar. ¿Cómo lo hacen?

A diferencia de nosotros, que sólo activamos el sistema inmunológico en respuesta a una infección, el de los murciélagos está activado todo el tiempo. Esto les permite ser inmunes a enfermedades graves como el ébola, la rabia, el virus de Hendra, el SARS (síndrome respiratorio agudo grave) y MERS (síndrome respiratorio de Oriente Medio). Investigando el funcionamiento de su sistema inmunológico, se podría encontrar la clave para controlar o erradicar estas enfermedades en personas.

Especies portadoras del virus del ébola. Fuente

Existen otras investigaciones en medicina basadas en los murciélagos, como el estudio de una enzima de la saliva del vampiro común (Desmodus rotundus).  Se estudia como una alternativa segura y eficaz en el tratamiento de los derrames cerebrales.

Desmodus rotundus. Foto:
Desmodus rotundus. Foto: Michael & Patricia Fogden

 SON BUENOS INDICADORES BIOLÓGICOS

Muchas especies son sensibles a la degradación de su hábitat. Por lo tanto, estudiando las variaciones en las poblaciones de murciélagos, se puede tener un conocimiento sobre el estado del ecosistema. Si quieres saber más sobre qué es un bioindicador, Irene te lo explica en su artículo sobre bioindicadores fluviales.

SON REGULADORES DEL ECOSISTEMA

Debido a su gran movilidad y actividad, los murciélagos en las regiones tropicales participan en el reparto heterogéneo de energía y nutrientes y en la distribución de las plantas. También son presa de numerosos animales como reptiles, aves y otros mamíferos.

Los murciélagos también crean nichos donde otros animales pueden vivir. Por ejemplo, el guano (excrementos) de las especies que viven en las cuevas proporcionan materia orgánica para el desarrollo de comunidades de invertebrados.

SON BENEFICIOSOS ECONÓMICAMENTE

Como hemos visto, los murciélagos dispersan semillas o polinizan muchas plantas. Al menos 163 de ellas tienen un interés económico. Además, el guano de murciélago puede ser usado como fertilizante.

Su efecto controlador de plagas de insectos y enfermedades también reporta beneficios económicos en el sector agrario, médico, turístico…

CONSERVACIÓN

Para finalizar, ya hemos visto que los murciélagos son clave para los ecosistemas y su desaparición comporta graves consecuencias en el resto de especies. Sin embargo, se enfrentan a las siguientes amenazas:

  • Fragmentación de su hábitat.
  • Perturbación de sus refugios.
  • Caza directa por parte de los humanos.
  • Enfermedades como el síndrome de la nariz blanca, causada por un hongo que ha matado a más de un millón de murciélagos en 4 años.
  • Contaminación, por ejemplo debido al uso de pesticidas que disminuye el número de insectos o se acumulan en su cuerpo al comerlos.

    Murciélagos con síndorme de la nariz blanca. Foto: Nancy Heaslip
    Murciélagos con síndrome de la nariz blanca. Foto: Nancy Heaslip

Un 21% de los microquirópteros están amenazados y un 23% en riesgo. En tus manos está difundir la importancia de estos animales, que a menudo están bien cerca nuestro, para que sean considerados como lo que son: unos seres fascinantes.

REFERENCIAS

Plantas y animales también pueden vivir en matrimonio

Cuando pensamos en la vida de las plantas se hace difícil imaginarla sin la interacción con los animales, puesto que estos día a día establecen diferentes relaciones simbióticas con ellas. Entre estas relaciones simbióticas encontramos la herbívora, o el caso contrario, el de las plantas carnívoras. Pero, hay muchas otras interacciones súper importantes entre plantas y animales, como la que lleva a estos organismos a ayudarse los unos a los otros y a convivir juntos. Por eso, esta vez os quiero presentar el mutualismo entre plantas y animales.

Y ¿qué es el mutualismo? Pues es la relación que se establece entre dos organismos en la que ambos se benefician de la convivencia en conjunto, es decir, los dos consiguen una recompensa cuando viven en compañía. Esta relación consigue aumentar su eficacia biológica (fitness) por lo que existe una tendencia de los dos organismos a convivir siempre juntos.

Según esta definición tanto polinización como dispersión de semillas a través de animales son casos de mutualismo. Veámoslo.

POLINIZACIÓN POR ANIMALES

Muchas plantas reciben visitas a sus flores por parte de animales que pretenden alimentarse del néctar, del polen o de otros azúcares que éstas producen y a cambio transportan polen hacia otras flores, permitiendo que este llegue al estigma de una manera muy eficaz. Así, la planta obtiene el beneficio de la fecundación con un coste de producción menor de polen que el que supondría dispersarlo por el aire (el cual llegaría con menor probabilidad al estigma de otras flores). Y los animales a cambio obtienen como recompensa el alimento. Se establece así una verdadera relación de mutualismo entre los dos organismos.

 “Video:The Beauty of Pollination” – Super Soul Sunday – Oprah Winfrey Network (www.youtube.com)

El caso extremo de mutualismo se da cuando estas especies evolucionan una dependiendo de la otra, es decir, cuando se da coevolución. Entendemos por coevolución esas adaptaciones evolutivas que permiten a los dos o más organismos establecer una relación de simbiosis estrecha, ya que las adaptaciones evolutivas de uno influyen en las adaptaciones evolutivas del otro organismo. Por ejemplo esto se da entre varías orquídeas  y sus polinizadores, como es el conocido caso de la Orquídea de Darwin. Pero hay muchas otras plantas que también han coevolucionado con sus polinizadores, como la higuera  o la yuca.

De ninguna manera esto se debe confundir con el engaño que algunas plantas producen sobre sus polinizadores, los cuales no obtienen ningún beneficio directo. Por ejemplo, algunas orquídeas también atraen a sus polinizadores a través de olores (feromonas) y de sus curiosas formas que se asemejan a las hembras del polinizador, haciendo que éste se acerque a ellas para copularlas y quede impregnado de polen que será transportado a otras flores gracias al mismo engaño.

14374841786_121feb4632_o.jpg
Orquídea abejera (Ophrys apifera) (Autor: Bernard DUPONT, flickr).

DISPERSIÓN DE SEMILLAS POR ANIMALES

La dispersión de semillas por animales se considera que ha tenido lugar gracias a un proceso coevolutivo entre los animales y los mecanismos de dispersión de las semillas en el cual tanto plantas como animales obtienen un beneficio. Lo más probable es que este proceso se iniciara en el Carbonífero (~300MA), donde ya se cree que algunas plantas como las cícadas desarrollaban unos falsos frutos carnosos que podrían ser consumidos por reptiles primitivos que actuarían de agentes dispersores de semillas. Este proceso se habría intensificado con la diversificación de las plantas con flores (Angiospermas) y de pequeños mamíferos y aves durante el Cretácico (65-12MA), hecho que permitió la diversificación de los mecanismos de dispersión y de las estructuras del fruto.

El mutualismo se puede dar de dos maneras dentro de la dispersión de semillas por animales.

El primer caso la llevan a cabo los dispersores que ingieren semillas o frutos que expulsaran posteriormente, sin ser digeridos, por defecación o regurgitación. Los frutos y semillas preparados para este caso son portadores de recompensas o señuelos, con los que a la vez atraen a sus agentes dispersantes, ya que los frutos suelen ser carnosos, dulces y a menudo tienen colores vistosos o emiten olores para atraer a los animales.

Por ejemplo, Acacia cyclops forma unas vainas que contienen semillas rodeadas por eleosomas (sustancias muy nutritivas formadas normalmente por aceites) que son mucho más grandes que la propia semilla. Esto supone un coste elevado de energía por parte de la planta, ya que no solo tiene que hacer las semillas sino que también tiene que formar esta recompensa. Pero a cambio, la cacatúa Galah (Eolophus roseicapillus) transporta a larga distancia sus semillas, ya que al alimentarse de este eleosoma ingiere las semillas que serán transportadas por su vuelo a larga distancia hasta que sean expulsadas por defecación en otros lugares.

Cacatua_Acacia.jpg
Izquierda, Cacatúa Galah (Eolophus roseicapillus) (Autor: Richard Fisher, flickr) ; Derecha, Vainas de Acacia cyclops (semillas negras, eleosoma rosa) (Autor: Sydney Oats, flickr).

Y el otro tipo de dispersión de semillas por animales que establece una relación de mutualismo es aquel donde las diásporas son recogidas por el animal en época de abundancia y las entierra para disponer de ellas como alimento cuando tenga necesidad. Pero no todas son comidas y algunas germinan.

3748563123_eeb32302cf_o.jpg
Ardilla recogiendo frutos (Autor: William Murphy, flickr)

Pero no todo acaba aquí, puesto que hay otros ejemplos bien curiosos y menos conocidos que de alguna manera han hecho que tanto animales como plantas vivan juntos en un perfecto “matrimonio”.  Veamos un par de ejemplos:

Azteca y Cecropia

Las plantas del género Cecropia viven en los bosques tropicales húmedos de Centroamérica y Sudamérica, siendo unas grandes luchadoras. Su estrategia por conseguir alzarse y captar luz evitando la competencia con otras plantas ha sido la firme relación que mantienen con las hormigas del género Azteca.

Las plantas proporcionan nidos a las hormigas, puesto que sus tallos terminales son normalmente huecos y septados (con separaciones) lo que les permite a las hormigas habitarlas por dentro, y además las plantas también producen cuerpos müllerianos, que son pequeños cuerpos alimenticios ricos en glicógeno de los cuales las hormigas se alimentan. A cambio, las hormigas protegen a Cecropia de lianas o bejucos, otorgando un gran éxito como planta pionera.

Ant Plants: CecropiaAzteca Symbiosis (www.youtube.com)

Marcgravia y murciélagos

Hace pocos años se ha descubierto que una planta de Cuba polinizada por murciélagos ha evolucionado dando pie a hojas modificadas que actúan como antena parabólica para la ecolocalización (radar) de los murciélagos. Es decir, su forma facilita que los murciélagos la localicen rápidamente lo que les permite recolectar néctar de manera más eficaz y a las plantas ser polinizadas con mayor éxito, ya que los murciélagos se desplazan rápidamente visitando cientos de flores cada noche para alimentarse.

6762814709_6dfaf49fff_o.jpg
Marcgravia (Autor: Alex Popovkin, Bahia, Brazil, Flickr)

 

En general, vemos que la vida de las plantas depende mucho de la vida de los animales, ya que estos están conectados de una forma u otra. Toda estas interacciones que hemos presentado forman parte de un conjunto aún mayor que hacen de la vida una más compleja y peculiar, en la que la vida de uno no se explica sin la vida del otro. Por este motivo, podemos decir que la vida de algunos animales y algunas plantas se asemeja a un matrimonio.

Difusió-castellà

REFERENCIAS

  • Apuntes obtenidos en diversas asignaturas durante la realización del Grado de Biología Ambiental (Universidad Autónoma de Barcelona) y el Máster de Biodiversidad (Universidad de Barcelona).
  • Bascompte, J. & Jordano, P. (2013) Mutualistic Networks (Chapter 1. Biodiversity and Plant-Animal Coevolution). Princeton University Press, pp 224.
  • Dansereau, P. (1957): Biogeography: an Ecological Perspective. The Ronald Press, New York., pp. 394.
  • Fenner M. & Thompson K. (2005). The Ecology of seeds. Cambridge: Cambridge University Press, 2005. pp. 250.
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica ªEdición. McGraw-Hill, pp. 906.
  • Murray D. R. (2012). Seed dispersal. Academy Press. 322 pp.
  • Tiffney B. (2004). Vertebrate dispersal of seed plants through time. Annual Review of Ecology, Evolution and Systematics. 35:1-29.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, pp. 424.
  • National Geographic (2011). Bats Drawn to Plant via “Echo Beacon”. http://news.nationalgeographic.com/news/2011/07/110728-plants-bats-sonar-pollination-animals-environment/

¿Cómo ven el mundo los animales?

¡ATENCIÓN!

ESTE ARTÍCULO HA QUEDADO OBSOLETO.

LEE EL ARTÍCULO ACTUALIZADO Y MEJORADO AQUÍ

——

¿Has escuchado alguna vez que los perros ven en blanco y negro? ¿O que los gatos ven en la oscuridad? ¿Por qué tenemos los ojos delante de la cara? ¿Y por qué las cabras tienen la pupila horizontal? En este artículo daremos respuesta a estas y otras cuestiones sobre los ojos y la visión, centrándonos en los mamíferos.

¿CÓMO SE FORMA UNA IMAGEN?

Los ojos son los receptores encargados de captar la luz y enviar la señal a través del nervio óptico al cerebro, que hará la interpretación. La luz no es más que una onda electromagnética, igual que los infrarrojos, ultravioletas, rayos X, microondas, etc. En este artículo nos referiremos a la luz visible, es decir, la parte del espectro que captamos los humanos y la mayoría de mamíferos.

Partes del ojo humano. Imagen del Dr. Soler.
Partes del ojo humano. Imagen del Dr. Soler

Básicamente, la luz pasa a través de la pupila. Ésta puede regular la cantidad de luz que pasa cambiando de tamaño gracias a músculos asociados al iris (que da el color al ojo). El cristalino sería la lente que permite enfocar los objetos. La imagen se proyecta invertida en la retina, para ser enviada como señal eléctrica al cerebro.

¿POR QUÉ VEMOS EN COLOR?

En la retina se encuentran dos principales tipos de células fotorreceptoras: conos y bastones. La principales diferencias son:

BASTONES
  • Más sensibles en pocas condiciones de luz
  • No permiten ver en color
  • Sensibles al movimiento
  • Poco detalle de la imagen
CONOS
  • Se activan en condiciones elevadas de luz
  • Permiten ver en color
  • Sensibles al contraste
  • Alto detalle de la imagen

Es por eso que cuando hay poca luz, los vertebrados vemos en blanco y negro y la imagen no es clara, ya que los bastones están activados al máximo pero los conos permanecen inactivos. Algunos primates disponemos de tres tipos diferentes de conos (visión tricromática), que responden a la luz roja, verde y azul (RGB, de las siglas de estos colores en inglés).  Otros primates y animales tienen visión monocromática (sólo disponen de un tipo de cono) o dicromática (dos). Algunos animales tienen visión tetracromática, como las aves.

Los conos son sensibles a diferentes longitudes de onda, es decir, a diferentes colores. Foto tomada de Asociación Primatológica Colombiana.
Los conos son sensibles a diferentes longitudes de onda, es decir, a diferentes colores. Foto tomada de Asociación Primatológica Colombiana.

Generalizando mucho, vertebrados diurnos tienen más conos que bastones, en cambio los nocturnos tienen más bastones que conos, lo que les permite ver mejor en la oscuridad. ¿Pero realmente ven en la oscuridad?

VER EN LA OSCURIDAD

En ausencia total de luz es imposible ver, aunque algunos animales puedan detectar otras radiaciones como los infrarrojos (serpientes) o los ultravioletas (abejas). Además de la relación entre conos y bastones, otros factores que mejoran la vista en condiciones de poca luz son:

LA CÓRNEA

Cuanto más grande sea el ojo y la córnea, mejor aprovechamiento de luz. El mamífero con la córnea más grande respecto al ojo es el tarsero de Filipinas (Carlito syrichta), de vida nocturna.

Tarser de Filipines (Foto: Kok Leng Yeo)
Tarsero de Filipinas. (Foto: Kok Leng Yeo)

LA PUPILA

Otra manera de aprovechar al máximo las pocas condiciones de luz es aumentando el tamaño de la pupila. Según la forma de ésta, el control de luz que entra es más preciso: es el caso de muchos felinos. Comparada con una pupila redonda, la alargada se abre y cierra más porque lo hace hacia los lados y según la posición del párpado, la superficie de pupila expuesta a la luz puede controlarse mejor.

Los félidos con pupila vertical pueden abrirla horizontalmente y controlar mejor la entrada de luz que una circular. Imagen de autor desconocido, adaptada de
Pupila de un gato en diferentes condiciones de luz. Autor desconocido, adaptada de Aquarium- Muséum de Liège

EL TAPETUM LUCIDUM

Felinos, cánidos, murciélagos, caballos, cetáceos, cocodrilos, bóvidos y algunos primates nocturnos poseen en la retina o detrás de ella una capa brillante llamada tapetum lucidum, que aumenta hasta 6 veces la capacidad de captar luz comparado con los humanos. Como si de un espejo se tratara, el tapetum lucidum refleja la luz que llega al ojo para devolverla de nuevo a la retina y aprovechar la luz al máximo.

Reflexión de la luz debido al tapetum lucidum. Imagen tomada de Exclusively cats.
Reflexión de la luz debido al tapetum lucidum. Imagen tomada de Exclusively cats.

El tapetum lucidum es el responsable de que los ojos de los gatos parezca que brillen en la oscuridad o veamos la pupila de los perros verdosa/azulada según incida la luz.

Tapetum lucidum brillando en un perro en una foto tomada con flash. foto de Mireia Querol
Tapetum lucidum reflejando la luz en un perro. Foto de Mireia Querol

¿POR QUÉ HAY ANIMALES CON LOS OJOS DELANTE DE LA CARA Y OTROS EN LOS LADOS?

La posición de los ojos en los mamíferos puede ser frontal, como en un gato, o lateral, como en un conejo. Esto les supone distintas ventajas:

  • Visión binocular (estereoscópica): permite un buen cálculo de las distancias, aunque el campo de visión es menor. La imagen generada es tridimensional. Es típico de carnívoros que deben focalizar la atención hacia sus presas o primates que deben calcular la distancia entre las ramas.
  • Visión lateral (periférica): permite que cada ojo mande una señal distinta al cerebro, por lo que les es más fácil percatarse de lo que les rodea al tener un campo de visión de casi 360º. Es típico de mamíferos herbívoros, que deben estar atentos a la presencia de posibles depredadores.
Campo visual de un gato y un caballo. La visión binocular o tridimensional es más amplia en el gato, pero tiene más área ciega. La visión monocular en el caballo reduce sus puntos ciegos. Fuente: Sjaastad O.V., Sand O. and Hove K. (2010) Physiology of domestic animals, 2nd edn., Oslo: Scandinavian Veterinary Press. Foto tomada de Eye Opener
Campo visual de un gato y un caballo. El área ciega es menor en los herbívoros. Fuente: Sjaastad O.V., Sand O. and Hove K. Foto tomada de Eye Opener

¿POR QUÉ LAS CABRAS TIENEN LA PUPILA HORIZONTAL?

Además de la posición de los ojos, la forma de la pupila también tiene relación según si se es depredador o presa. La cabra o el caballo tienen la pupila horizontal, mientras que felinos como el margay la tienen vertical.

Pupila d euna cabra (horizontal) y un gato (vertical). Foto: Wikimedia commons
Pupila de una cabra (horizontal) y un gato (vertical). Foto: Wikimedia Commons

Según Banks, para calcular la distancia los depredadores se basan en la visión estereoscópica (funciona mejor con una pupila pequeña) y la nitidez (funciona mejor con una grande).  Las pupilas verticales son pequeñas horizontalmente y grandes verticalmente.

En el caso de las presas atacadas por depredadores terrestres, la tendencia de la pupila es ser horizontal porque “permite recoger más luz a los lados y menos arriba y abajo y también reduce la luz del sol, que podría deslumbrarlos”. Las excepciones, como conejos o ratones con pupila circular, se deben a que tienen que vigilar depredadores que les vengan des del cielo, como rapaces.

¿QUÉ ES EL TERCER PÁRPADO?

Algunos animales poseen la membrana nictitante (“tercer párpado”), una membrana transparente o translúcida que sirve para proteger el ojo y humedecerlo sin perder visibilidad. Camellos, focas y osos polares la tienen completa, mientras que en otros mamíferos, como en el perro o el humano sólo se conserva reducida.

Membrana nictitante en un felino. Foto de Editor B
Membrana nictitante en un felino. Foto de Editor B

¿ES VERDAD QUE LOS PERROS Y LOS TOROS VEN EN BLANCO Y NEGRO?

En realidad los perros y gatos son capaces de detectar los colores, concretamente grises, amarillos y azules en tonos más suaves. Los gatos quizá puedan percibir algún color más.

Espectro visible por un perro y por un humano. Fuente
Espectro visible por un perro y por un humano. Fuente

En el caso de los toros, también está extendido el mito de que o bien se enfurecen ante el color rojo o ven en blanco y negro. En realidad los toros tienen visión dicromática, como la mayoría de mamíferos diurnos, puesto que sólo tienen conos sensibles al azul y al verde. Por lo tanto, no ven el rojo, pero no significa que vean en blanco y negro.

¿Y OTROS MAMÍFEROS?

Los equinos, ven en tonos azules y rojos.  La mayoría de roedores ven en blanco y negro. La mayoría de especies de la familia de las cabras, ovejas y toros ven del verde al violeta. Además, estudios recientes indican que muchos mamíferos (sobretodo nocturnos), contrariamente a lo que se creía, también pueden percibir radiación ultravioleta: ratas y ratones, renos, posiblemente gatos y perros, vacas, cerdos, hurones, okapis…

Terminamos con un vídeo de BuzzFeed con la simulación de la vista de algunos animales y si crees que ha quedado alguna pregunta en el tintero ¡déjala en los comentarios!

REFERENCIAS

Mireia Querol Rovira

Evolución para principiantes 2: la coevolución

Después del éxito de Evolución para principiantes, seguimos con un artículo para seguir conociendo aspectos básicos de la evolución biológica. ¿Por qué hay insectos que parecen orquídeas y viceversa? ¿Por qué gacelas y guepardos son casi igual de rápidos? ¿Por qué tu perro te entiende? En otras palabras, ¿qué es la coevolución?

¿QUÉ ES LA COEVOLUCIÓN?

Ya sabemos que es inevitable que los seres vivos establezcan relaciones de simbiosis entre ellos. Unos dependen de otros para sobrevivir, y a la vez, del acceso a elementos de su entorno como agua, luz o aire. Estas presiones mutuas entre especies hacen que evolucionen conjuntamente y según evolucione una especie, obligará a su vez a la otra a evolucionar. Veamos algunos ejemplos:

POLINIZACIÓN

El proceso más conocido de coevolución lo encontramos en la polinización. Fue de hecho el primer estudio coevolutivo (1859), a cargo de Darwin, aunque él no utilizara este término.  Los primeros en acuñarlo fueron Ehrlich y Raven (1964).

Los insectos ya existían mucho antes de la aparición de plantas con flor, pero su éxito se debió al descubrimiento de que el polen es una buena reserva de energía. A su vez, las plantas encuentran en los insectos una manera más eficaz de transportar al polen hacia otra flor. La polinización gracias al viento (anemofilia) requiere más producción de polen y una buena dosis de azar para que al menos algunas flores de la misma especie sean fecundadas. Muchas plantas han desarrollado flores que atrapan a los insectos hasta que están cubiertos de polen y los dejan escapar. Estos insectos presentan pelos en su cuerpo para permitir este proceso. A su vez algunos animales han desarrollado largos apéndices (picos de los colibríes, espiritrompas de ciertas mariposas…)  para acceder al néctar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock

Es famoso el caso de la polilla de Darwin (Xanthopan morganii praedicta) del que ya hemos hablado en una ocasión. Charles Darwin, estudiando la orquídea de Navidad (Angraecum sesquipedale), observó que el néctar de la flor se encontraba a 29 cm del exterior. Intuyó que debería existir un animal con una espiritrompa de ese tamaño. Once años después, el mismo Alfred Russell Wallace le informó que había esfinges de Morgan con trompas de más de 20 cm y un tiempo más tarde se encontró en la misma zona donde Darwin había estudiado esa especie de orquídea (Madagascar). En honor de ambos se añadió el “praedicta” al nombre científico.

También existen las llamadas orquídeas abejeras, que imitan a hembras de insectos para asegurarse su polinización. Si deseas saber más sobre estas orquídeas y la de Navidad, no te pierdas este artículo de Adriel.

Anoura fistulata, murcielago, bat
El murciélago Anoura fistulata y su larga lengua. Foto de Nathan Muchhala

Pero muchas plantas no sólo dependen de los insectos, también algunas aves (como los colibríes) y mamíferos (como murciélagos) son imprescindibles para su fecundación. El récord de mamífero con la lengua más larga del mundo y segundo vertebrado (por detrás del camaleón) se lo lleva un murciélago de Ecuador (Anoura fistulata); su lengua mide 8 cm (el 150% de la longitud de su cuerpo). Es el único que poliniza una planta llamada Centropogon nigricans, a pesar de la existencia de otras especies de murciélagos en el mismo hábitat de la planta. Esto plantea la pregunta si la evolución está bien definida y se da entre pares de especies o por contra es difusa y se debe a la interacción de múltiples especies.

RELACIONES DEPREDADOR-PRESA

El guepardo (Acinonyx jubatus) es el vertebrado más rápido sobre la tierra (hasta 115 km/h).  La gacela de Thomson (Eudorcas thomsonii), el segundo (hasta 80 km/h). Los guepardos tienen que ser lo suficientemente rápidos para capturar alguna gacela (pero no todas, a riesgo de desaparecer ellos mismos) y las gacelas suficientemente rápidas para escapar alguna vez y reproducirse. Sobreviven las más veloces, así que a su vez la naturaleza selecciona los guepardos más rápidos, que son los que sobreviven al poder comer. La presión de los depredadores es un factor importante que determina la supervivencia de una población y qué estrategias deberá seguir la población para sobrevivir. Así mismo, los depredadores deberán encontrar soluciones a las posibles nuevas formas de vida de sus presas para tener éxito.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi
Guepardo persiguiendo una gacela de Thomson en Kenya. Foto de Federico Veronesi

Lo mismo sucede con otras relaciones depredador-presa, parásito-hospedador o herbívoros-plantas, ya sea con el desarrollo de la velocidad u otras estrategias de supervivencia como venenos, pinchos…

HUMANOS Y PERROS… Y BACTERIAS

Nuestra relación con los perros, que data de tiempos prehistóricos, también es un caso de coevolución. Esto nos permite, por ejemplo, crear lazos afectivos con sólo mirarlos. Si quieres ampliar la información, de invitamos a leer este artículo pasado donde tratamos el tema de la evolución de perros y humanos en profundidad.

Otro ejemplo es la relación que hemos establecido con las bacterias de nuestro sistema digestivo, indispensables para nuestra supervivencia. O también con las patógenas: han coevolucionado con nuestros antibióticos, por lo que al usarlos indiscriminadamente, se ha favorecido la resistencia de estas especies de bacterias a los antibióticos.

IMPORTANCIA DE LA COEVOLUCIÓN

La coevolución es uno de los principales procesos responsables de la gran biodiversidad de la Tierra. Segun Thompson, es la responsable que existan millones de especies en lugar de miles.

Las interacciones que se han desarrollado con la coevolución son importantes para la conservación de las especies. En los casos donde la evolución ha sido muy estrecha entre dos especies, la extinción de una llevará a la otra casi con seguridad también a la extinción. Los humanos alteramos constantemente los ecosistemas y por lo tanto, la biodiversidad y evolución de las especies. Con sólo la disminución de una especie, afectamos muchas más. Es el caso de la nutria marina, que se alimenta de erizos.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium

Al ser cazada por su piel, el siglo pasado los erizos aumentaron de número, arrasaron poblaciones enteras de algas (consumidoras de CO2, uno de los responsables del calentamiento global), las focas que encontraban refugio en las algas ahora inexistentes, eran más cazadas por las orcas… la nutria es pues una especie clave para el equilibrio de ese ecosistema y del planeta, ya que ha evolucionado conjuntamente con los erizos y algas.

De las relaciones coevolutivas entre flores y animales depende la polinización de miles de especies, entre ellas muchas de interés agrícola, por lo que no hay que perder de vista la gravedad del asunto de la desaparición de un gran número de abejas y otros insectos en los últimos años. Un complejo caso de coevolución que nos afectaría directamente es la reproducción de la higuera.

EN RESUMEN

Como hemos visto, la coevolución es el cambio evolutivo entre dos o más especies que interactúan, de manera recíproca y gracias a la selección natural.

Para que haya coevolución se debe cumplir:

  • Especificidad: la evolución de cada carácter de una especie se debe a presiones selectivas del carácter de la otra especie.
  • Reciprocidad: los caracteres evolucionan de manera conjunta.
  • Simultaneidad: los caracteres evolucionan al mismo tiempo.

REFERENCIAS

Mireia Querol Rovira