Arxiu d'etiquetes: mutualism

Plants and animals can also live in marriage

When we think about the life of plants it is difficult to imagine without interaction with the animals, as they establish different symbiotic relationships day after day. These symbiotic relationships include all the herbivores, or in the contradictory way, all the carnivorous plants. But there are many other super important interactions between plants and animals, such as the relationships that allow them to help each other and to live together. So, this time I want to present mutualism between plants and animals.

And, what is mutualism? it is the relationship established between two organisms in which both benefit from living together, i.e., the two get a reward when they live with the other. This relationship increase their biological effectiveness (fitness), so there is a tendency to live always together.

According to this definition, both pollination and seed dispersal by animals are cases of mutualism. Let’s see.

POLLINATION BY ANIMALS

Many plants are visited by animals seeking to feed on nectar, pollen or other sugars they produce in their flowers and, during this process, the animals carry pollen from one flower to others, allowing it reaches the stigma in a very effective way. Thus, the plant gets the benefit of fertilization with a lower cost of pollen production, which would be higher if it was dispersed through the air. And the animals, in exchange, obtain food. Therefore, a true relationship of mutualism is stablished between the two organisms.

 “Video:The Beauty of Pollination” – Super Soul Sunday – Oprah Winfrey Network (www.youtube.com)

The extreme mutualism occurs when the species evolve depending on the other organism, i.e., when there is coevolution. We define the coevolution such as these evolutionary adaptations that allow two or more organisms to establish a deep relationship of symbiosis, due that the evolutionary adaptations of one specie influence the evolutionary adaptations of another organism. For example, this occurs between various orchids and their pollinators, as is the well- known case of Darwin’s orchid. But there are many other plants that also have co-evolved with their pollinators, as a fig tree or cassava.

In no way, this should be confused with the trickery produced by some plants to their pollinators, that is, when they do not obtain any direct benefit. For example, some orchids can attract their pollinators through odours (pheromones) and their curious forms that resemble female pollinator, stimulating them to visit their flowers. The pollinators will be impregnated with pollen, which will be transported to other flowers due to the same trickery.

14374841786_121feb4632_o.jpg
Bee orchid (Ophrys apifera) (Autnor: Bernard DUPONT, flickr).

SEED DISPERSAL BY ANIMALS

The origin of seed dispersal by animals probably had occurred thanks to a co-evolutionary process between animals and mechanisms of seed dispersal in which both plants and animals obtain a profit. The most probably is that this process began in the Carboniferous (~ 300MA), as it is believed that some plants like cycads developed a false fleshy fruits that could be consumed by primitive reptiles that would act as seed dispersers. This process could have intensified the diversification of flowering plants (angiosperms), small mammals and birds during the Cretaceous (65-12MA).

The mutualism can occur in two ways within the seed dispersal by animals.

The first case is carried out by animals that eat seeds or fruits. These seeds or some parts of the fruits (diaspores) are expelled without being damaged, by defecation or regurgitation, allowing the seed germination. In this case, diaspores are carriers of rewards or lures that result very attractive to animals. That is the reason why fruits are usually fleshy, sweet and often have bright colours or emit scents to attract them.

For example, the red-eyed wattle (Acacia cyclops) produces seeds with elaiosomes (a very nutritive substance usually made of lipids) that are bigger than the own seed. This suppose an elevated energy cost to the plant, because it doesn’t only have to produce seeds, as it has to generate the award too. But in return, the rose-breasted or galah cockatoo (Eolophus roseicapillus) transports their seeds in long distances. Because when the galah cockatoo eats elaiosomes, it also ingest seeds which will be transported by its flight until they are expelled elsewhere.

Cacatua_Acacia.jpg
On the left,  Galah  cockatoo (Eolophus roseicapillus) (Autnor: Richard Fisher, flickr) ; On the right, red-eyed wattle’s seeds (black) with the elaiosome (pink) ( Acacia cyclops) (Autnor: Sydney Oats, flickr).

And the other type of seed dispersal by animals that establishes a mutualistic relationship occurs when the seeds or fruits are collected by the animal in times of abundance and then are buried as a food storage to be used when needed. As long as not all seed will be eaten, some will be able to germinate.

3748563123_eeb32302cf_o.jpg
A squirrel that is recollecting som nuts (Author: William Murphy, flickr)

But this has not finished yet, since there are other curious and less well-known examples that have somehow made that both animals and plants can live together in a perfect “marriage.” Let’s see examples:

Azteca and Cecropia

Plants of the genus Cecropia live in tropical rain forests of Central and South America and they are very big fighters. The strategy that allow them to grow quickly and capture sunlight, avoiding competition with other plants, resides in the strong relationship they have with Azteca ants. Plants provide nests to the ants, since their stems are normally hollow and with separations, allowing ants to inhabit inside. Furthermore, these plants also produce Müllerian bodies, which are small but very nutritive substances rich in glycogen that ants can eat. In return, the ants protect Cecropia from vines and lianas, allowing them to success as a pioneer plants.

Ant Plants: CecropiaAzteca Symbiosis (www.youtube.com)

Marcgravia and Bats

Few years ago, an interesting plant has been discovered in Cuba. This plant is pollinated by bats, and it has evolved giving rise to modified leaves that act as satellite dish for echolocation performed by these animals. That is, their shape allow bats to locate them quickly, so they can collect nectar more efficiently. And at the same time, bats also pollinate plants more efficiently, as these animals move very quickly each night to visit hundreds of flowers to feed.

6762814709_6dfaf49fff_o.jpg
Marcgravia (Author: Alex Popovkin, Bahia, Brazil, Flickr)

In general, we see that the life of plants depends largely on the life of animals, since they are connected in one way or another. All the interactions we have presented are part of an even larger set that make life a more complex and peculiar one, in which one’s life cannot be explained without the other’s life. For this reason, we can say that life of some animals and some plants resembles a marriage.

Difusió-anglès

REFERENCES

  • Notes from the Environmental Biology degree (Universitat Autònoma de Barcelona) and the Master’s degree in Biodiversity (Universitat de Barcelona).
  • Bascompte, J. & Jordano, P. (2013) Mutualistic Networks (Chapter 1. Biodiversity and Plant-Animal Coevolution). Princeton University Press, pp 224.
  • Dansereau, P. (1957): Biogeography: an Ecological Perspective. The Ronald Press, New York., pp. 394.
  • Fenner M. & Thompson K. (2005). The Ecology of seeds. Cambridge: Cambridge University Press, 2005. pp. 250.
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica ªEdición. McGraw-Hill, pp. 906.
  • Murray D. R. (2012). Seed dispersal. Academy Press. 322 pp.
  • Tiffney B. (2004). Vertebrate dispersal of seed plants through time. Annual Review of Ecology, Evolution and Systematics. 35:1-29.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, pp. 424.
  • National Geographic (2011). Bats Drawn to Plant via “Echo Beacon”. http://news.nationalgeographic.com/news/2011/07/110728-plants-bats-sonar-pollination-animals-environment/

Evolution for beginners 2: coevolution

After the success of Evolution for beginners, today we’ll continue  knowing the basics of biological evolution. Why  exist insects that seem orchids and vice versa? Why gazelles and cheetahs are almost equally fast? Why your dog understands you? In other words, what is coevolution?

WHAT IS COEVOLUTION?

We know that it is inevitable that living beings establish symbiotic relationships between them. Some depend on others to survive, and at the same time, on elements of their environtment as water, light or air. These mutual pressures between species make that evolve together, and as one evolve as a species, in turn it forces the other to evolve. Let’s see some examples:

POLLINATION

The most known process of coevolution is pollination. It was actually the first co-evolutionary study (1859) by Darwin, although he didn’t use that term. The first to use the word coevolution were Ehrlich and Raven (1964).

Insects existed long before the appearance of flowering plants, but their success was due to the discovery that nectar is a good reserve of energy. In turn, the plants found in the insects another way more effectively to carry pollen to another flower. Pollination by the wind (anemophily) requires more production of pollen and a good dose of luck to at least fertilize some flowers of the same species. Many plants have developed flowers that trap insects until they are covered with pollen and then set them free. These insects have hairs in their body to enable this process. In turn some animals have developed long appendages (beaks of hummingbirds, butterflies’ proboscis…) to access the nectar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Darwin’s moth (Xantophan morganii praedicta). Photo by Minden Pictures/Superstock

It is the famous case of the Darwin’s moth (Xanthopan morganii praedicta) of which we have already talked about. Charles Darwin, studying orchid Christmas (Angraecum sesquipedale) saw that the nectar was 29 cm inside the flower. He sensed that there should exist an animal with a proboscis of this size. Eleven years later, Alfred Russell Wallace reported him that the Morgan’s sphinxs had proboscis over 20 cm long, and a time later they were found in the same area where Darwin had studied that species of orchid (Madagascar). In honor of both it was added “praedicta” to the scientific name.

There are also bee orchids that mimic female insects to ensure their pollination. To learn more about these orchids and the Christmas one, do not miss this post by Adriel.

Anoura fistulata, murcielago, bat
The bat Anoura fistulata and its long tongue. Photo by Nathan Muchhala

But many plants not only depend on insects, also some birds (like humming birds) and mammals (such as bats) are essential to pollination. The record for the longest mammal tongue in the world is for a bat from Ecuador (Anoura fistulata); its tongue measures 8 cm (150% of the length of its body). It is the only who pollinates one plant called Centropogon nigricans, despite the existence of other species of bats in the same habitat of the plant. This raises the question of whether evolution is well defined, and occurs between pairs of species or it is diffuse due to the interaction of multiple species.

PREDATOR-PREY RELATIONSHIPS

The cheetah (Acinonyx jubatus) is the fastest vertebrate on land (up to 115 km/h). Thomson’s gazelle (Eudorcas thomsonii), the second (up to 80 km/h). Cheetahs have to be fast enough to catch a gazelle (but not all, at risk of disappearing themselves) and gazelles fast enough to escape almost once and reproduce. The fastest gaelles survive, so nature selects in turn faster cheetahs, which are who eat to survive. The pressure from predators is an important factor that determines the survival of a population and what strategies should follow the population to survive. Also, the predators will find solutions to possible new ways of life of their prey to succeed.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi
Cheetah hunting a Thomson’s gazelle in Kenya. Photo by Federico Veronesi

The same applies to other predator-prey relationships, parasite-host relationships, plants-herbivores, improving their speed or other survival strategies like poison, spikes…

HUMAN AND DOGS … AND BACTERIA

Our relationship with dogs since prehistoric times, it is also a case of coevolution. This allows, for example, to create bonds with just looking at them. If you want more information, we invite you to read this post where we talk about the issue of the evolution of dogs and humans in depth.

Another example is the relationship we have established with the bacteria in our digestive system, essential for our survival. Or with pathogens: they have co-evolved with our antibiotics, so using them indiscriminately has favored these species of bacteria to develop resistance to antibiotics.

THE IMPORTANCE OF COEVOLUTION

Coevolution is one of the main processes responsible for the great biodiversity of the Earth. According to Thompson, is responsible for the millions of species that exist instead of thousands.

The interactions that have been developed with coevolution are important for the conservation of species. In cases where evolution has been very close between two species, if one become extint will lead to the extinction of the other almost certainly. Humans constantly alter ecosystems and therefore biodiversity and evolution of species. Just declining one species, we are affecting many more. This is the case of the sea otter (Enhydra lutris), which feeds on sea urchins.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Sea otter (Enhydra lutris) eating sea urchins. Photo by Vancouver Aquarium

Being hunted for their fur, urchins increased number, devastated entire populations of algae (consumer of CO2, one of the responsible of global warming), seals who found refuge in the algae nonexistent now were more hunted by killer whales… the sea otter is therefore a key species for the balance of this ecosystem and the planet, as it has evolved along with urchins and algae.

Coevolutive relations between flowers and animals depend on the pollination of thousands of species, including many of agricultural interest, so we must not lose sight of the seriousness of the issue of the disappearance of a large number of bees and other insects in recent years. A complex case of coevolution that directly affects us is the reproduction of fig.

TO SUMMARIZE

As we have seen, coevolution is the evolutionary change through natural selection between two or more species that interact reciprocally.

It is needed:

  • Specificity: the evolution of each feature of a species is due  to selective pressures of the feature of the other species.
  • Reciprocity: features evolve together.
  • Simultaneity: features evolve simultaneously.

REFERENCES

MIREIA QUEROL ALL YOU NEED IS BIOLOGY

Ocean alert: Coral bleaching is massively happening!

We would like that the main picture of this post had been modified using Photoshop, but unfortunately this is not the case. Thanks to the project XL Catlin Seaview Survey, we now know that coral bleaching is massively happening. What causes coral bleaching? How does coral become bleached? Which is the importance of coral in the ocean ecosystems? These questions and more are answered in this post. 

WHAT IS CORAL BLEACHING?

Coral bleaching is the result of the expulsion of symbiotic algae living in the coral tissues (zooxanthellae), producing them to become completely white.

Coral before and after a bleaching event (Picture: Kendall Kritzik, Creative Commons).
Coral before and after a bleaching event (Picture: Kendall Kritzik, Creative Commons).

The presence of zooxanthellae is frequent in marine cnidarians, especially in species that live in shallow waters, and they are the responsible of the greenish, bluish, yellowish or brownish colour of many coral species. In fact, each cubic millimetre of tissue of the host has 30,000 algae cells. These zooxanthellae are single-celled algae, usually dinoflagellates, that are able to live in mutualism with the coral. So, if zooxanthellae and coral live in mutualism, which are the benefits of this relationship? Coral gets the products of photosynthesis, organic carbon and nitrogen; while the algae receive nutrients, carbon dioxide, protection and a good position with access to sunshine.

Diagram of the location of zooxanthellae in a coral (Picture: Ocean Portal).
Diagram of the location of zooxanthellae in a coral (Picture: Ocean Portal).

WHAT CAUSES CORAL BLEACHING?

Several causes of coral bleaching have been detected:

  1. Increased ocean temperature. Climate change is the foremost responsible of the increase in ocean temperature and this is the main stress causing coral bleaching, but it is not the only one. The rise of temperatures may be also produced by El Niño phenomenon. With just an increase of 1ºC of the water for only one month, corals begin to become bleached.
  2. Reduced ocean temperature. As warmer water ocean may produce coral bleaching, colder water may also produce these events. Some proofs support this idea: in January 2010, cold water temperature in Florida might have produced coral bleaching that resulted in coral death.
  3. Runoff and pollution. Near-shore corals can be bleached due to the pollution carried by precipitation’s runoffs.
  4. Freshwater inundation. Due to a low salinity produced by a freshwater inundation, corals may start bleaching.
  5. Overexposure to sunlight. High solar irradiation causes bleaching.
  6. Extreme low tides. Long exposures to the air can produce bleaching in shallow corals.
  7. Disease. Diseases cause coral to be more susceptible.

All these causes produce a stress to the coral and, as a result, corals expel the algae living in their tissues.

HOW DOES CORAL BECOME BLEACHED?

When corals are in a healthy state, they are home to algae, so that they are in a symbiotic relationship. But, when corals are stressed, the photosynthetic machinery of algae produce toxic molecules that cause the corals to expel the symbionts. If the stress is not severe, corals can recover, but they become bleached in severe and prolonged stresses. As a result, corals death because they loose their main source of food and are more susceptible to disease.

Coral bleaching process (Picture: Great Barrier Reef Marine Park Authority, Australian Government).
Coral bleaching process (Picture: Great Barrier Reef Marine Park Authority, Australian Government).

MASSIVE CORAL BLEACHING EPISODES

Two worldwide episodes of coral bleaching were detected in the 1998 (which killed 16% of the coral reefs around the world) and 2010, but a recent study carried out by the NOAA and the University of Queensland confirm a more severe coral bleaching episode this year (2015). This new episode, which is triggered by El Niño of this year (together with the global change), is predicted to affect the 38% of the worldwide coral reefs, killing 12,000 square kilometres of reefs. The more altered zones will be Australia and the Pacific and Indian oceans.

Bleaching in American Samoa. The first picture (before) was taken in December 2014 and the second (after) in February 2015 (Picture: XL Catlin Seaview Survey).
Bleaching in American Samoa. The first picture (before) was taken in December 2014 and the second (after) in February 2015 (Picture: XL Catlin Seaview Survey).

Nevertheless, coral bleaching doesn’t only occur in massive episodes. Each year, during summer months, some limited coral bleaching is reported all over the globe.

WHY ARE CORALS IMPORTANT?

Despite the fact that coral reefs comprise less than 1% of the underwater ecosystems, they play a major role in the ocean. One quarter of marine life depends on coral because they are the nursery of the sea, so they are an important protein source for animals and humans. Moreover, they protect shorelines from waves and tsunamis. In addition, from an economical point of view, they are one of the most important places of tourist interest and support fishing industries. In fact, they provide food and livelihoods for more than 500 million people around the world.

WHAT CAN YOU DO?

All the activities you do to lessen your carbon dioxide production are good to prevent the Earth from global change and, therefore, are good to avoid coral bleaching. Keep doing like that! Share with us: which are the actions that you take to prevent global change? 

REFERENCES

Difusió-anglès

The fig and its reproduction

Has anyone ever seen a fig flower? Surely even if you really look for it, you will not find any of them. In fact, neither Linnaeus, the great Swedish botanist, could discover the enigma of fig flowers and when he described the species and gave him a scientific name (Ficus carica L.), he said the fig had no flowers! But then how does the fig reproduce himself and origins its delicious summer fruit; the fig?

A CASE OF OBLIGATE MUTUALISM

The flowers of the fig tree cannot be seen as they grow hidden inside the receptacle that supports them, the fig. They have developed a close relationship of mutualism with their pollinators so they don’t need to bloom externally offering sweet rewards. Indeed, each species of Ficus (including 750 species in family Moraceae) is pollinated by a unique wasp species (family Agaonidae; Blastophaga psenes in the case of the Mediterranean fig). It is a very complex case of coevolution between a plant and its pollinator in which neither species could survive without the other.

The mechanism of fig pollination works as a perfect gear. Female wasps are the first to visit the fig, where they arrive attracted by the smell of the mature female flowers. The female wasps possess special adaptations to penetrate the fig and achieve their ultimate goal: to leave their eggs inside. They have inverted teeth in the jaws and special hooks in the legs that let them to advance into the fruit. However, they have only one opportunity to deposit their eggs since most wasps lose their wings and antennae once they have entered the fig and therefore can no longer look for another. Once the eggs hatch, the wasp larvae feed on the contents of the fig. The male wasp larvae are the first to complete its development and when they reach sexual maturity, they seek female wasps, fertilize them and die inside the fig. The female wasps leave the figs a few days later, coinciding with the male flowers maturation and thus favoring that their exit will be carrying pollen. These fertilized and full of pollen wasps will look for a fig fruit again where to leave the pollen and eggs. Then the cycle begins again.

Open fig with its pollinator wasp (Foto: Royal Society Publishing).
Open fig with its pollinator wasp (Foto: Royal Society Publishing).

IS IT THE FIG ACTUALLY A FRUIT?

The fig is actually an infructescence (an ensemble of fruits that act as a single unit to facilitate the dispersion) with a special morphology called syconium. The syconium is a type of pear-shaped receptacle, thickened and fleshy with a small opening, the ostiole, that allows the entry of pollinators. Both male and female flowers (fig is monoecious) are together in the syconium, enveloped by bracts (white filaments found in the fig), but each one maturates in different time to avoid autopollination. Once the flowers are fertilized, the fruits originate within the same structure, thus flowers and fruits mix up.

Fig with the ostiole, hole by which wasps get into the flowers (Foto: barresfotonatura)
Fig with the ostiole, hole by which wasps get into the flowers (Foto: barresfotonatura)

WHERE DO THE FIGS COME FROM?

Who would have said that the fig tree would have a so complex fructification mechanism? In fact, the fig tree is native to Asia but is now naturalized in the Mediterranean since prehistoric times. There is evidence of its consumption and cultivation from the Neolithic. The fig tree is considered as one of the first plants cultivated by mankind. In spring it produces fertilized figs (breba), increasing its production with two harvests per year.

Eivissa‘s fig tree (Ficus carica; Foto: barresfotonatura)
Eivissa‘s fig tree (Ficus carica; Foto: barresfotonatura)

Main Ficus species grow in tropical climates. In temperate areas, some of this species were brought for its interest in gardening. Many cities have grown these giants in their public gardens because their dramatic appearance. They can reach up to 30 meters high and they develop aerial roots that end up reaching the ground acting as buttress that hold their weight. The have become unique elements of our urban landscape; such as in the Parque Genovés, Cadiz or the magnificent specimen of Ficus rubiginosa located in the Botanic Garden of Barcelona.

Ornamental fig tree at the Parque Genovés, Cadiz (Foto: barresfotonatura)
Ornamental fig tree at the Parque Genovés, Cadiz (Foto: barresfotonatura)

Ficus socotrana with aerial roots in Ethiopia (Foto: barresfotonatura)
Ficus socotrana with aerial roots in Ethiopia (Foto: barresfotonatura)

REFERENCES

  • Byng W (2014). The Flowering Plants Handbook: A practical guide to families and genera of the world. Plant Gateway Ltd., Hertford, UK.
  • Cruaud A, Cook J, Da-Rong Y, Genson G, Jabbour-Zahab R, Kjellberg F et al. (2011). Fig-fig wasp mutualism, the fall of the strict cospeciation paradigm? In: Patiny, S., ed., Evolution of plant-pollinator relationships. Cambridge: Cambridge University Press, pp. 68–102.
  • Font Quer P (1953). Diccionario de Botánica. Ed. Labor
  • Machado CA, Robbins N, Gilbert MTP & Herre EA (2005). Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences of the USA 102: 6558–6565.
  • Ramirez WB (1970). Host specificity of fig wasps (Agaonidae). Evolution 24: 680–691.
  • Serrato A & Oyama K (2012). Ficus y las avispas Agaonidae. ContactoS 85: 5–10.

Laia-anglès

Symbiosis: relationships between living beings

Predation, parasitism, competition… all living beings, besides interacting with the environment, we relate to other living beings. What types of relationships in addition to those you know? Do you feel like to know them?

INTRODUCTION

The group of all living beings in an ecosystem is called biocenosis or community. The biocenosis is formed in turn by different populations, which would be the set of individuals of the same species occupying an area. For survival, it is imperative that relations between them are established, sometimes beneficial and sometimes harmful.

INTERESPECIFIC RELATIONSHIPS

They are those that occur between individuals of different species. This interaction it is called symbiosis. Symbiotic relationships can be beneficial to a species, both, or harmful to one of the two.

Detrimental to all the species involved:

Competition: occurs when one or more resources are limiting (food, land, light, soil …). This relationship is very important in evolution, as it allows natural selection acts by promoting the survival and reproduction of the most successful species according to their physiology, behavior …

Las selvas son un claro ejemplo de competencia de los vegetales en busca de la luz. Selva de Kuranda, Australia. Foto de Mireia Querol
Rainforests are a clear example of competition between vegetals in the search for light. Kuranda rainforest, Australia. Photo by Mireia Querol

One species has benefits and the other is detrimented:
  • Predation: occurs when one species (predator) feeds on another (prey). This is the case of cats, wolves, sharks

foca, león marino,
Great white shark (Carcharodon carcharias) jumping to depretade a marine mamal, maybe a sea lion. Photo taken from HQ images.

  • Parasitism: one species (parasite) lives at the expense of other (host) and causes it injury. Fleas, ticks, pathogenic bacteria are the best known, but there are also vertebrate parasites, like the cuckoo that lay their eggs in the nests of other birds, which will raise their chicks (brood parasitism). Especially interesting are the “zombie parasites”, which modify the behavior of the host. Read this post to learn more!

    Carricero (Acrocephalus scirpaceus) alimentando una cría de cuco (Cuculus canorus). Foto de Harald Olsen
    Reed warbler (Acrocephalus scirpaceus) feeding a cuckoo’s chick (Cuculus canorus). Photo by Harald Olsen

    Parasites that live inside the host’s body are called endoparasites (such as tapeworms), and those who live outside ectoparasites (lice). Parasitism is considered a special type of predation, where predator is smaller than prey, although in most cases does not cause the death of the host. When a parasite causes illness or death of the host, it is called pathogen.

    Cymothoa exigua es un parásito que acaba sustituyendo la lengua de los peces por su propio cuerpo. Foto de Marcello Di Francesco.
    Cymothoa exigua is a parasite that replaces the tongue of fish with their own body. Picture by Marcello Di Francesco.

Kleptoparasitism is stealing food that other species has caught, harvested or prepared. This is the case of some raptors, whose name literally means “thief.” See in this video a case of kleptoparasitism on an owl:


Kleptoparasitism can also occur between individuals of the same species.

One species has benefits and the other is not affected:
  • Commensalism: one species (commensal) uses the remains of food from another species, which does not benefit or harm. This is the case of bearded vultures. It is also commensalism the use as transportation from one species over another (phoresy), as barnacles attached to the body of whales. The inquilinism is a type of commensalism in which a species lives in or on another. This would apply to the woodpeckers and squirrels that nest in trees or barnacles living above mussels. Finally, metabiosis is the use of the remains of a species for protection (like hermit crabs) or to use them as tools.

    El pinzón carpintero (Camarhynchus pallidus) utiliza espinas de cactus o pequeñas ramas para extraer invertebrados de los árboles. Foto de
    The woodpecker finch (Camarhynchus pallidus) uses cactus spines or small branches to remove invertebrates from the trees. Picture by Dusan Brinkhuizen.

    Both species have benefits:
  • Mutualism: the two species cooperate or are benefited. This is the case of pollinating insects, which get nectar from the flower and the plant is pollinated. Clownfish and anemones would be another typical example, where clown fish gets protection and food scraps while keeps predators away and clean parasites of the sea anemonae. Mutualism can be optional (a species do not need each other to survive) or forced (the species can not live separately). This is the case of mycorrhizae, an association of fungi and roots of certain plants, lichens (mutualism of fungus and algae), leafcutter ants

    Las hormigas Atta y Acromyrmex (hormigas cortadoras de hogas) establecen mutualismo con un hongo (Leucocoprinus gongylophorus), en las que recolectan hojas para proporcionarle nutrientes, y ellas se alimentan de él. Se trata de un mutualismo obligado. Foto tomada de Ants kalytta.
    Atta and Acromyrmex ants (leafcutter ants) establish mutualism with a fungus (Leucocoprinus gongylophorus), in which they gather leaves to provide nutrients to the fungus, and they feed on it. It is an obligate mutualism. Photo taken from Ants kalytta.

INTRAESPECIFIC RELATIONSHIPS

They are those that occur between individuals of the same species. They are most beneficial or collaborative:

  • Familiars: grouped individuals have some sort of relationship. Some examples of species we have discussed in the blog are elephants, some primates, many birds, cetaceans In such relationships there are different types of families.
  • Gregariousness: groups are usually of many unrelated individuals over a permanent period or seasonal time. The most typical examples would be the flocks of migratory birds, migration of the monarch butterfly, herds of large herbivores like wildebeest, shoal of fish

    El gregarismo de estas cebras, junto con su pelaje, les permite confundir a los depredadores. Foto tomada de Telegraph
    Gregariousness of these zebras, along with their fur, allow them to confuse predators. Photo taken from Telegraph
  • Colonies: groups of individuals that have been reproduced asexually and share common structures. The best known case is coral, which is sometimes referred to as the world’s largest living being (Australian Great Barrier Reef), but is actually a colony of polyps (and its calcareous skeletons), not single individual.
  • Society: they are individuals who live together in an organized and hierarchical manner, where there is a division of tasks and they are usually physically different from each other according to their function in society. Typical examples are social insects such as ants, bees, termites

Intraspecific relations of competition are:

  • Territorialityconfrontation or competition for access to the territory, light, females, food can cause direct clashes, as in the case of deer, and/or develop other strategies, such as marking odor (cats, bears), vocalization

    Tigres peleando por el territorio. Captura de vídeo de John Varty
    Tiger figthing for territory. Video caption by John Varty
  • Cannibalism: predation of one individual over another of the same species.

And you, as a human, have you ever thought how do you relate with individuals of your species and other species?

MIREIA QUEROL ALL YOU NEED IS BIOLOGY

REFERENCES

Orchids: different colours and shapes for everyone

The orchid family is composed of a big number of species, about 20.000. Even they are almost around all world, the most live in tropical places and they are epiphytes, that is, they live over other plants. Nowadays, the number of the species is boosted by the commercial interest. Trying to find new characters and colours, many gardeners and hobbyists have created new varieties from the breeding of two distinct species of orchids, that is, they have made artificial hybridization. Even so, it can also happen in nature as usual.

MORPHOLOGICAL CHARACTERISTICS

The orchid flower owns a single structure. The most representative part is the column or gynostemium, which is the result of masculine and feminine reproductive parts combined. The perianth, consisting of the calyx (the outermost whorl of parts that form a flower. Its pieces are the sepals) and the corolla (composed of all of the petals), has free pieces and is zygomorphic (single symmetry plane). A much differentiated petal can be seen, it’s the lip. It adopts a different attractive shape and it can own macules (attractive spots for the pollinators). The lip is also adapted to capture the pollinators’ attention and can possess a long prolongation called spur and it has nectar. The flowers may be accompanied by a bract, a modified or specialized leaf.

parts orchidStructure of orchid flowers (Photo taken by Gisela Acosta).

The flower development is very singular in some orchids. Some flowers are born backwards and when they are maturing the ovary twist 180º to help flower stay in proper position, being the own ovary who acts as a peduncle, linking flower and stem. This kind of flower development is called resupinate. The flowers can be solitary or grouped in inflorescences.

orchis masculaResupinate development of flowers (Orchis mascula) (Photo taken by Jonathan Billinger).

The orchids are entomophilous, that is, are pollinated by insects. Depending of the specie, the orchid will be pollinated by a type of insect or other. Even so, this relation or form of pollination (the position in which bees, bumblebees and other hymenoptera get to copulate) cannot be used to describe how evolution happened in orchids; this pollination mechanism was used in the past to classify species, but molecular analyses have denied its worth.

One singular characteristic of tropical species is the velamen radicum: a multi-layered coating on the roots that acts as a sponge. In drought periods this coating protects from the drying and doesn’t allow the losing of water. And in rainy periods, this coating is swollen of water, which will be available to roots. Also, as these orchids are epiphytes, are adapted to drought places.

Pleione_limprichtii_Epiphytic orchid on a tree (Pleione limprichtii) (Photo taken by Adarsh Thakuri)

Orchids live in mutualism with fungus, that is, they establish a relationship in which both organisms are benefited when live together. The orchid seeds need the fungus’ aid to germinate. Many several fungus can stimulate their germination, but  Rhizoctonia (Basidiomycota) is predominant. The fungus degrades the seed coat and releases of dormancy period. Then, the seed begins to germinate and emits filaments, underground organs, and establishes an orchid mycorrhizae. The seed dormancy can last 20-30 years without germinating, but it will not be possible without the fungus action.

DIVERSITY

Within the great diversity of orchids, some flowers of diferent species create such original shapes that they seem animals, such as monkey orchid (Orchis simia), or insects, such as genus Phalaenopsis; their flowers supposedly resemble moths in flight, and that’s why they are known as the moth orchids.

Orchis simia & Phalaenopsis schillerianaOn the left, monkey orchid (Orchis simia) (Photo taken by Ian Capper); On the right, orchids that resemble moths in flight (Phalaenopsis schilleriana) (Photo taken by Amos Oliver Doyle).

The bee orchids (Ophrys), for example, have a specialized lip that can really attract the hymenopterans. It’s because it reminds female shape and colours and it also emits smells which are similar to female pheromones, doing the pollination more effective.

Ophrys apiferaBee orchid (Ophrys apifera) (Photo taken by Hans Hillewaert).

On the other hand, there are also many curious cases like the Darwin’s orchid (Anagraecum sesquipedale). It’s characterized by its long spur between 25 and 35 cm in length. Darwin guessed it should exist a butterfly that could take the nectar located in the spur and pollinates the flower at the same time. Xanthopan morgani is able and it’s the only one, so it’s one coevolution case.

Angraecum_sesquipedale & XanthopaOn the left, Darwin's orchid (Anagraecum sesquipedale)(Photo taken by Michael Wolf); On the right, Xanthopan morgani (Photo taken by Esculapio).

We can also see species with a high ornamental value, being the most of them from Asia and America. For example, the Cattleya genus has one of the highest floral value and it was used extensively for create new varieties. So, Cattleya has become very popular until today.  A good example is the easter orchid (Cattleya mossiae), which is also the national flower of Venezuela.

Cattleya mossiaeEaster orchid (Cattleya mossiae) (Photo taken by KENPEI).

When we speak of floral value, we can’t forget Rothschild’s slipper orchid (Paphiopedilum rothschildianum). It’s the most expensive orchid in world and it’s considered one of the most expensive flowers, too. Rothschild’s slipper orchid only lives in Mt. Kinabalu, on the island of Borneo, and it’s also one of the rarest orchids in nature of all of the species of Asian Slipper orchids.

Paphiopedilum_rothschildianum_Orchi_108Rothschild's Slipper Orchid (Paphiopedilum rothschildianum) (Photo taken by Orchi).

Furthermore, orchids are important in alimentation, being surely Vanilla planifolia the most relevant. It’s native to Mexico and vanilla is obtained of its fruits.

Vanilla planifoliaVanilla (Vanilla planifolia) (Photo taken by Michael Doss).

REFERENCES

The following sources have been consulted in the elaboration of this entry:

In conclusion, orchids are important in different aspects and that’s why a biggest knowledge of their diversity and biology is necessary. If you liked this article, wouldn’t forget to share it. Thanks for your interest.

Licencia Creative CommonsLicencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.