Arxiu d'etiquetes: Nematoda

Paràsits zombis: una realitat de ciència ficció

Moltes pel·lícules es basen en éssers estranys que controlen la ment i la voluntat de les seves víctimes. Per molt sorprenent que pareixi, hi un tipus de paràsits (i parasitoides) que comparteixen aquesta capacitat amb els éssers ficticis. En aquesta entrada parlarem sobre alguns exemples d’aquests paràsits zombis. 

INTRODUCCIÓ

El parasitisme és una forma de depredació on una de les espècies (el paràsit) extreu un benefici d’un altre organisme (l’hostatger) que no rep cap tipus de benefici. Aquesta és una relació obligatòria  (el paràsit no pot sobreviure fora l’hostatger), ja que els paràsits han perdut la capacitat de produir certes molècules que obtenen dels hostes. Un dels exemples més interessants de parasitisme són els coneguts com a paràsits zombis. Aquests no solament provoquen la mort a la seva víctima, sinó que són capaços de controlar els seus moviments i conductes per dur a terme aquest propòsit.

Els paràsits zombis pertanyen a diferents grups (protozous, fongs, nematodes, artròpodes…) però tots tenen en comú la modificació del comportament i fisiologia del seu hostatger per assegurar la seva reproducció. En certs casos, s’indueix a l’hostatger a suïcidar-se de diferents formes i en altres, com en el cas dels parasitoides provoquen que el seu hostatger realitzi alguna acció en contra de la seva voluntat.

MODIFICACIÓ DE LA CONDUCTA

Les vespes parasitoides del gènere Glyptapanteles sp. són un exemple clar de modificació de la conducta. En aquest cas, les femelles infecten a larves de Thyrinteina leucocerae (un lepidòpter) en les seves primeres fases de desenvolupament. Les erugues creixen normalment, però en les darreres etapes alliberen les pupes (fase de la metamorfosi entre les larves i l’adult d’alguns insectes) a les branques properes. Un cop s’ha alliberat, l’eruga canvia per complet el seu comportament, a causa d’una modificació endocrina que han provocat els parasitoides abans d’abandonar l’hoste. L’eruga deixa d’alimentar-se i no es separa mai de les pupes per protegir-les de qualsevol perill. Un cop l’adult emergeix de la pupa, l’eruga mor al cap de poc temps d’esgotament i fam.

jose_lino_neto
Eruga de Thyrinteina leucocerae protegint les pupes de Glyptapanteles sp. (Foto: José Lino-Neto)

 

Un altre exemple interessant és la infecció d’aranyes de l’espècie Plesiometa Argyra per part d’una espècie de vespa parasitoide (Hymenoepimecis argyraphaga). Aquest himenòpter aferra a l’abdomen de la seva víctima els seus ous. Després de descloure, les larves (que s’alimenten de la sang de l’aranya) injecten una substància química a l’aranya que l’obliga a crear una teranyina molt diferent de les que sol crear, ja que està destinada a suportar el capoll i no a la captura d’insectes. A continuació la larva s’alimenta de la sang de l’aranya fins que aquesta mor.

william_eberhard
Diferències entre una teranyina normal de Plesiometa Argyra  i una teranyina d’una aranya infectada. Fotografia modificada de William G. Eberhard (Nature, 2000).

 

En els darrers exemples hem vist que els parasitoids acaben amb la vida del seu hostatger després de modificar la seva conducta, però existeix una espècie de vespa pararasitoide (Dinocampus coccinellae) que infecta marietes de l’espècie Coccinella septempunctata. La vespa injecta els ous a l’abdomen de la marieta i aquesta els incuba al seu interior. Un cop s’ha desenvolupat la larva, aquesta surt del cos de l’hostatger i forma un capoll que protegirà la marieta. Si aquesta és capaç de sobreviure set dies (mentre es desenvolupa la vespa adulta) quedarà lliure, és a dir, podrà retornar a la seva vida normal i reproduir-se.

Guilles_san_martin
Marieta (Coccinella septempunctata) protegint un capoll de la vespa (Dinocampus coccinellae). (Foto: Gilles San Martín)

INDUCCIÓ AL SUÏCIDI

El nematode Myrmeconema neotropicum infecta les formigues tropicals de l’espècie Cephalotes atratus. Aquestes formigues tenen l’abdomen completament negre, però quan són infectades per aquest nematode el seu abdomen es torna de color vermell. Aquest canvi cromàtic provoca que la formiga es mimetitzi amb els fruits, fet que augmenta la probabilitat de ser capturat per un ocell frugívor (que s’alimenta de fruits). Aquests són un hostatger intermediari que ajuda a la dispersió dels nematodes a través dels seus excrements.

steven_yanoviak
Diferències entre una formiga Cephalotes atratus normal i una formiga infectada. (Foto: Steven Yanoviak)

 

Una altra espècie de nematode (Spinochordodes tellinii) infecta l’espècie de grills Meconema thalassinum (Orthoptera). Les larves del nematode es troben a l’aigua, on són ingerides per mosquits. Aquests són hostatgers intermedis que alliberen les larves del paràsit (que no són digerits sinó que creixen a l’interior de l’intestí de l’hostatger final). S’alimenta dels nutrients que ingereix el grill i creix fins a arribar a triplicar la mida de l’hostatger final. Quan el paràsit és adult, modifica el comportament de l’insecte i provoca que aquest vagi cap a una zona amb aigua, on es suïcida per alliberar al paràsit al medi aquàtic on es reprodueix.

alastair_rae
Imatge d’un nematode Spinochordodes tellinii paràsit dels grills (Meconema thalassinum). (Foto: Alastair Rae)

Un altre exemple molt interessant és el del cuc pla o platihelmint Leucochloridium paradoxum. Aquest platihelmint infecta caragols de l’espècie Succinea putris, a través del sistema digestiu (el caragol es menja les larves del paràsit). Un cop es troba a l’interior de l’hostatger passa per diferents fases de desenvolupament, fins arribar a la fase d’esporocist. Aquest és una espècie de sac on es troba una gran quantitat de cercaries (larves de certs tipus de platihelmints). Aquests esporocists es dirigeixen cap a les banyes del caragol, provocant per una part una inflamació de la banya molt similar a una eruga i una modificació del comportament del caragol (es dirigeix cap a zones desprotegides). Aquesta banya modificada crida l’atenció dels ocells, que es mengen el caragol. Un cop les cercaries es troben al digestiu dels ocells, es transformen en platelmints adults, que es reprodueixen. Els ous seran alliberats amb els excrements que infectaran per l’aliment altres caragols.

dick_belgers
Cicle vital de Leucochloridium paradoxum de Ophiguris 2009. La segona imatge mostra el paràsit a una banya del caragol (Succinea putris) imitant una eruga. (Foto: Dick Belgers)

Un dels paràsits més fascinants és Ophiocordyceps unilateralis (un fong ascomicet que infecta formigues tropicals de l’espècie Camponotus leonardi). Les espores arriben a l’interior de la formiga per l’alimentació i provoquen que aquest insecte modifiqui el seu comportament. Indueix a la formiga a pujar a un lloc alt, on es fixa a una fulla amb les seves mandíbules. Allà germinen les espores i travessen l’exosquelet de les formigues per alliberar les seves estructures reproductives.

alex_wild
Formiga infectada per Ophiocordyceps sp. (Foto: Alex wild)

 

Avui dia, però, la informació dels mecanismes de modificació de la conducta que porten a terme aquests paràsits és objecte de moltes investigacions. Oi que pareix una pel·lícula? Doncs no, no és ciència ficció.

REFERÈNCIES

Maribel-català

Parásitos zombis: una realidad de ciencia ficción

Estamos acostumbrados a ver en películas de terror, seres extraños que tienen la capacidad de controlar la mente y la voluntad de sus víctimas. Pero, ¿que tienen de reales esos seres? Existen un tipo de parásitos y parasitoides con esa capacidad. En esta entrada hablaremos sobre algunos ejemplos de estos parásitos zombis. 

INTRODUCCIÓN

El parasitismo es considerado una forma de depredación donde una de las especies implicadas (el parásito) extrae un beneficio a expensas de la otra (el hospedador). Esta relación es obligatoria, ya que los parásitos han perdido la capacidad de producir ciertas moléculas que deben obtener a costa del hospedador. Un ejemplo muy interesante es el de los parásitos zombis, que no solo acaban con la vida de su hospedador, sino que son capaces de modificar su conducta para llegar a dicho fin.

Este tipo de parásitos se pueden encontrar clasificados en diferentes grupos (protozoos, hongos, nematodos, artrópodos…). Todos tienen en común la capacidad de modificar los comportamientos y fisiología de los hospedadores para asegurar su propia reproducción. Hay diferentes mecanismos para realizar ese objetivo: inducir el suicidio del hospedador o modificar su conducta en contra de su voluntad.

ALTERACIÓN DE LA CONDUCTA

 Un ejemplo muy interesante de parásito que utiliza este mecanismo son las avispas del género Glyptapanteles sp.  Las hembras infectan a lepidópteros de la especie Thyrinteina leucocerae en su fase larval. Las larvas se transforman en orugas que crecen y se alimentan de forma normal. En las últimas etapas de desarrollo de la oruga, se liberan de su interior las pupas de la avispa (estadio de la metamorfosis entre las larvas y el adulto) que se posan justo al lado de la oruga. En ese momento, se libera una substancia endocrina que induce al hospedador a quedarse junto a las pupas para protegerlas, impidiendo cualquier movimiento voluntario por parte del lepidóptero. Este último deja de alimentarse y muere de hambre justo después de la metamorfosis de la pupa a avispa adulta.

jose_lino_neto
Oruga de Thyrinteina leucocerae protegiendo un grupo de pupas de Glyptapanteles sp. (Foto: José Lino-Neto)

Otro ejemplo de avispa parasitoide muy interesante, es el caso de la especie Hymenoepimecis argyraphaga que infecta a Plesiometa argyra (una especie de araña costarriqueña). En este caso, la hembra pega al abdomen de la araña su huevo. Cuando este eclosiona, las larvas hematófagas (que se alimentan de sangre) inyectan una substancia química que induce al hospedador a crear una telaraña capaz de soportar el peso del capullo, en lugar de una telaraña destinada a atrapar insectos. A continuación, la larva se alimenta del hospedador hasta que este muere.

william_eberhard
Diferencias entre una telaraña normal de Plesiometa argyra y una telaraña modificada. Imagen modificada de William G. Eberhard (Nature, 2000).

Los casos anteriores muestran parasitoides que acaban finalmente con la vida de su hospedador, pero existen casos donde una vez el parasitoide se libera del hospedador este puede continuar con su vida. Este es el caso de la infección de la mariquita Coccinella septempunctata por parte de una avispa de la especie Dinocampus coccinellae. La hembra de la avispa inyecta los huevos en el abdomen de la mariquita que las incuba en su interior. Cuando las larvas se han desarrollado (sin tocar ningún órgano vital de la mariquita), se liberan y forman un capullo que la mariquita protegerá. Si el hospedador consigue sobrevivir durante siete días, cuando las larvas se conviertan en adultos la mariquita se recuperará y podrá continuar con su ciclo vital.

Guilles_san_martin
Coccinella septempunctata protegiendo el capullo de la avispa Dinocampus coccinellae. (Foto:Gilles San Martín)

INDUCCIÓN AL SUICIDIO

Myrmeconema neotropicum es un nematodo que infecta hormigas tropicales de la especie Cephalotes atratus. Estas hormigas son completamente negras, pero al estar infectadas con el parásito, su abdomen se vuelve de color rojizo. Este cambio cromático permite a la hormiga mimetizarse con los frutos de ciertos árboles. Así pues, el objetivo del parásito es que el hospedador sea reconocido por pájaros frugívoros y se lo coman. Los pájaros son los hospedadores intermediarios, ya que gracias a sus excrementos consiguen una mayor dispersión de sus huevos. Lo interesante de este parásito es que es capaz de modificar la conducta de la hormiga y obligarla a subir a lugares más despejados y desprotegidos para ser localizada por los depredadores.

steven_yanoviak
Diferencias entre el abdomen de una hormiga Cephalotes atratus normal y una infectada. (Foto: Steven Yanoviak)

Otra especie de nematodo, concretamente Spinochordodes tellinii, infecta a grillos de la especie Meconema Thalassinum (Orthoptera). Las larvas del parásito se encuentran en el agua y  son ingeridas por mosquitos (hospedador intermedio). Los mosquitos son ingeridos por los grillos y una vez en el intestino, el nematodo crece hasta triplicar el tamaño del insecto. Cuando el parasito es adulto, modifica el comportamiento del hospedador provocando que este se suicide en el agua. Así pues, el parásito queda libre en su medio para poder reproducirse.

alastair_rae
Grillo (Meconema thalassinum) infectado por el nematodo Spinochordodes tellinii. (Foto: Alastair Rae)

El gusano plano o platelminto Leucochloridium paradoxum infecta caracoles de la especie Succinea putris. Este último ingiere las larvas del parásito que se desarrolla dentro del sistema digestivo del hospedador para dar lugar a los esporocistos (una especie de sacos que contienen en su interior miles de larvas, conocidas como redias). Los esporocistos se dirigen hacia los tentáculos de los ojos del caracol donde provocan una inflamación muy exagerada que se parece a una oruga. También inducen un cambio en el comportamiento del caracol, alejándolo de zonas resguardadas y obligándoles a exponerse en lugares donde pueden ser vistos por los pájaros. El movimiento de los tentáculos llama la atención de las aves que se comen al caracol y esparcen mediante sus excrementos las cercarias (estadio siguiente a las redias) del parásito.

dick_belgers
Ciclo vital de Leucochloridium paradoxum de Ophiguris (2009). La segunda imagen muestra un parásito en el tentáculo del caracol (Succinea putris) imitando una oruga. (Foto de Dick Belgers)

En último lugar, pero no menos importante, destaca el hongo parásito Ophiocordyceps unilateralis que infecta hormigas tropicales de la especie (Camponotus leonardi). Las esporas del hongo llegan al interior del hospedador mediante la alimentación. Una vez en el sistema digestivo, se induce un cambio en el comportamiento de la hormiga, obligándola a subir a lugares altos donde se clava con las mandíbulas. Una vez allí, las esporas germinan atravesando el exoesqueleto de las hormigas para liberar sus estructuras reproductivas.

alex_wild
Hormiga infectada por Ophiocordyceps sp. Véase las estructuras reproductivas del hongo saliendo del exosqueleto del hospedador. (Foto: Alex Wild)

Hoy en día, sin embargo, la información de los mecanismos utilizados por estos parásitos zombis sigue siendo objeto de muchas investigaciones. ¿Creéis que parecen seres sacados de una película? Pues no, no se trata de ciencia ficción sino de realidad.

REFERENCIAS

Maribel-castellà

Zombie parasites: a reality of science fiction

Many horror films are based on organisms that have the ability to control the victim’s mind. In fact, there is some kind of real parasites and parasitoids which can control its host’s behaviour to guarantee its breeding. In this post, we will discuss some examples of those interesting parasites.

INTRODUCTION

Parasitism is a type of predation where an organism (parasite) extracts a benefit at the expenses of another one (host). The parasites have lost the ability to synthesize some essential molecules that get through hosts, as well as parasitism is a mandatory relationship. There are many types of parasites, but the most interesting examples are zombies parasites.

The parasitic zombies have in common the ability to control and modify the behavior and physiology of the host to guarantee its breeding. Can you find them in different taxonomic groups (fungi, protozoa, nematodes, arthropods…). There are differents mechanisms to fulfill its objective, but the most important are: control the behavior of the host or induce him to suicide.

BEHAVIOUR MODIFICATION

Glyptapanteles is a genus of parasitoid wasp that infects species of Lepidoptera Thyrinteina leucocerae in its larval phase. The larvae become caterpillars which grow and feed normally. In the final stages of development of the caterpillar,  the pupae of parasitoid wasp (the metamorphosis between larvae and the adult stage) are released and settled next to the caterpillar. Before his release, the pupae excrete an endocrine substance that modifies the behavior of the caterpillar forcing him to protect the small pupae. caterpillar stops feeding and move until the adult wasp emerges. At that time, the Caterpillar dies from starvation and exhaustion.

jose_lino_neto
Thyrinteina leucocerae caterpillar protecting a group of pupae of Glyptapanteles sp. (Photo: José Lino-Neto)

Another example of  interesting parasitoid wasp, is the species Hymenoepimecis argyraphaga infecting Plesiometa argyra (a species of tropical spider). In this case, the female sticks to the abdomen of the spider its egg. When the hematophagous (which feed on blood) larvae hatches, injected a chemical substance that causes the host to create a cobweb that is capable of supporting the weight of the cocoon, rather than a cobweb to catch insects. The larvae then feeds the host until it dies and then create its cocoon in the cobweb. Then, it will transform into pupae and eventually will emerge as an adult.

william_eberhard
Differences between a normal cobweb of Plesiometa argyra and a modified cobweb. Modified image of William G. Eberhard (Nature, 2000).

The above examples are parasitoids that they finally finished with the life of its host, but there are cases where once the parasitoid releases from the victim’s body, the host can continue to live. This is the case of the infection of the Ladybird Coccinella septempunctata by wasp species Dinocampus coccinellae. The  female wasp injects the eggs in the abdomen of the Ladybird that incubates them inside. When the larvae have been developed (without touching any host’s vital organ), are released and form a cocoon that will protect the Ladybird.  If the host gets to survive for seven days, when the larvae become adult Ladybug will recover and can continue with normal life cycle.

Guilles_san_martin
Coccinella septempunctata protecting a cocoon of wasp Dinocampus coccinellae. (Photo:Gilles San Martin)

INDUCTION TO SUICIDE

Myrmeconema neotropicum is a nematode that infects tropical ants of the species Cephalotes atratus. These ants are completely black, but when they are infected with the parasite, their abdomen becomes reddish. This change allows the host camouflaged with certain berries and confuse frugivorous birds. In addition, this parasite is being able to change the behavior of ant and force her to rise to clear and unprotected areas to be located by the predators. The birds are hosts intermediaries, since thanks to their excrement, they get a greater dispersion of the eggs of parasites.

steven_yanoviak
Differences between the abdomen of a Cephalotes atratus normal and an infected. (Photo: Steven Yanoviak)

Another species of nematode, namely Spinochordodes tellinii, infects to crickets Meconema Thalassinum (Orthoptera) species. The larvae of the parasite are in the water and are ingested by mosquitoes (intermediate host). Mosquitoes are swallowed up by Crickets and once in the intestine, the nematode grows up to triple the size of the insect. When the parasite is adult, modifies the behavior of the host causing and induces him to commit suicide in the water. Thus, the parasite is free in its middle order to breed.

alastair_rae
Cricket (Meconema thalassinum) infected with the nematode Spinochordodes tellinii. (Photo: Alastair Rae)

The flatworm or platyhelminth Leucochloridium paradoxum infects snails of the species Succinea putris. The host eats the larvae of the parasite that develops into the digestive tract of the host to give rise to the sporocysts (a kind of sacks that contain thousands of larvae, known as cercarias). The sporocysts are directed towards the tentacles of the snail’s eyes and causes a very exaggerated inflammation that resembles a caterpillar. They also induce a change in the behavior of the snail, leading him away from protected areas and forcing them to expose in places where it can be seen by the birds. The movement of the tentacles draws the attention of the birds that eat the snail and spread through their feces the cercaria (next state of maturation of the parasite).

dick_belgers
Life cycle of Leucochloridium paradoxum from Ophiguris (2009). The second image shows a parasite in the tentacle of the snail (Succinea putris) imitating a caterpillar. (Photo by Dick Belgers)

Finally, but no less important, highlights the parasitic fungus Ophiocordyceps unilateralis infecting species tropical ants (Camponotus leonardi). The host ingests the spores of the fungus. Once in the digestive system, it induces a change in the behaviour of the Ant, forcing her to climb to high places where anchor with jaws. Once there, the spores germinate through the host’s exoskeleton to release their reproductive structures.

alex_wild
Ant infected by Ophiocordyceps sp. See the reproductive structures of the fungus out of the exoskeleton of the host. (Photo: Alex Wild)

Today, however, the mechanisms used by these parasites zombies information continue to be investigated. Do you think that they seem to beings from a horror film? No,  it is not science fiction. It’s our surprising nature.

REFERENCES

Maribel-anglès

What do insects tell us about the health of our rivers?

Nowadays, concern about the health of inland waters (rivers, lakes, etc.) is growing, mainly due to increased use (and abuse) of these for human consumption. A few years ago, an expansion of the use of biotic indices took place, which allow us to determine the health of aquatic ecosystems; these indices usually use data such as presence, absence or/and abundance of different organisms known as ‘bioindicators’, that is, species that can be used to monitor the health of an environment or ecosystem. Among these organisms, there are a lot of arthropods.

Along this article, I will briefly explain what bioindicators are, the main role of arthropods as bioindicators and also introduce some of the most used bioindication indices to monitor the quality of riverine ecosystems in the Iberian Peninsula.

What is a bioindicator?

The term ‘bioindicator’ is used to refer to those biological processes, species or/and communities of organisms which can be used to assess the quality of an ecosystem and also how this ecosystem evolves over time, which is especially useful when changes take place due to anthropogenic disturbances, such as pollution.

Thus, in accordance with the above, a bioindicator can be:

  • A particular species, whose presence/absence or abundance rate informs us of the state of health of a studied ecosystem, or
  • A population or a community composed of various organisms which varies functionally or structurally according to the conditions of  environment.

Example: Lecanora conizaeoides lichen is highly resistant to pollution. Its presence on the studied ecosystem, coupled with the disappearance of another lichens, is indicative of high air pollution.

Lecanora conizaeoides (Picture by James Lindsey).

What do we consider a ‘good bioindicator’?

Do all the organisms have the necessary traits to become bioindicator subjects? The answer is no. Even though there is not a bioindicator prototype (because all depends on the studied ecosystem), we can resume here some of the traits that scientists take into account to select good bioindicator organisms:

  • They have to respond to disturbances that take place on their ecosystem to a greater or lesser degree. This response should be comparable to that emitted by the rest of the organisms of the same species, and this response also has to be well correlated with the studied environment disturbances.
  • Their response have to be representative of all the community or population.
  • They must be native of the studied ecosystem and also be ubiquitous (that is, to be present in almost all ecosystems of the same or similar characteristics).
  • They have to be abundant (rare species aren’t optimum subjects).
  • They must be relatively stable to moderate climate changes (i.e. a storm or a natural temperature change does not affect them more than normal).
  • They should be easy to detect and, as possible, they have to be sedentary.
  • They have to be well studied, both from an ecological point of view as taxonomic (to know, therefore, their tolerance to environmental disturbances).
  • Finally, they should be easy to manipulate and monitor in the laboratory.

The use of bioindicators will be optimized if we use entire communities or populations instead of using a single or a couple species, because this allows us to cover a wide interval of environmental tolerances: from organisms with a narrow tolerance range (that is, stenotopic) and sensitive to pollution, to very tolerant organisms that can survive in very polluted environments.

Thus, we will be able to know if an ecosystem is highly altered if we find only a very tolerant species and none of the considered sensitive species.

Bioindicator animals from inland waters

Nowadays, scientists use a lot of animals as bioindicators: from microorganism and microinvertebrates to terrestrial and aquatic vertebrates (micromammals, birds, fishes, etc.). In inland waters, and especially in the context of studies of riverine water quality, scientists mostly use aquatic macroinvertebrates to assess the quality of these ecosystems. Next, let’s see what a macroinvertebrate is.

What are macroinvertebrates?

The term ‘macroinvertebrate’ does not correspond to any taxonomic classification, but with an artificial concept that includes different aquatic invertebrate organisms.

Generally, is said that macroinvertebrates are organisms that can be trapped by a net with holes about 250μm.

9895263846_fd51b55e3f_c
Collecting macroinvertebrates by using a kick seine (Picture by USFWS/Southeast , Creative Commons).

Macroinvertebrates are mainly benthic, that is, animals that inhabit the substrate of aquatic ecosystems at least during some stage of their life cycle (although there are some that swim freely in water column or on its surface).

We can find a lot of macroinvertebrate groups in rivers and lakes, which can be classified in two main groups:

Picture sources: (1) Luis Silva Margareto ©, (2) DPDx Image Library, (3) Oakley Originals, Creative Commons, (4) Ryan Hodnett, Creative Commons, (5) Will Thomas, Creative Commons, (6) Duncan Hull, Creative Commons.

Among these groups, there are both tolerant organisms to environment distrubances (i.e. leeches) and sensitive organisms (i.e. a lot of larvae insects).

Most inland aquatic macroinvertebrates (≃80%) are arthropods (of which I will discuss in the next section), among which there are many insects and, especially, their larvae (which are generally benthic), whose study and observation play an essential role on calculating indices of water quality.

Importance of insects in bioindication

As I’ve said above, about 80% of macroinvertebrates of inland waters are arthropods and, mostly, different orders of insects in its larval or nymphal form. Let’s see some of the most common groups we can find in rivers and lakes:

Trichoptera (or caddisflies)

They are insects closely related to the Lepidoptera order (butterflies and moths). Their aquatic nymphs can build a shelter around their bodies made of substrate materials. We can distinguish them from other aquatic insect larvae because they have a couple of anal filaments provided with strong hoofs. They usually inhabit clear and clean waters with a lot of currents.

Trichoptera nymph (inside its shelter, left) and adult (right). Picture of the nymph by Matt Reinbold (Creative Commons) and picture of the adult by Donald Hobern (Creative Commons).

Ephemeroptera (or mayflies)

One of the most ancient orders of flying insects. Their aquatic nymphs, which usually inhabit rivers, are characterized for having three long anal filaments. Adults, which fly over the water surface, are very fragile and have a short life cycle in comparison with nymphs (the name Ephemeroptera is derived from Greek ‘ephemera’ meaning sort-lived, and ‘ptera’ meaning wings).

Ephemeroptera nymph (left) and adult (right). Picture of the nymph by Keisotyo (Creative Commons) and picture of the adult by Mick Talbot (Creative Commons).

Plecoptera (or stoneflies)

Flying insects very similar to Ephemeroptera order. Like these, they have anal filaments, but they differentiate from them because they have two apical hooks in each leg. They usually inhabit lakes and streams.

Plecoptera nymph (left) and adult (right). Picture of the nymph by Böhringer (Creative Commons) and picture of the adult by gailhampshire (Creative Commons).

Other groups of insects with aquatic larvae or nymphs

Among the most common insects inhabiting rivers and lakes we can also find species of Odonata order (dragonflies and damselflies), Coleoptera (beetles), Diptera (mosquitoes and flies), etc.

Among all the organisms mentioned above, there are very tolerant species to pollution (i.e. some Diptera larvae; this is the case of some species of Chironomidae family, which are very tolerant to organic and inorganic pollution due to the presence of heavy metals in their environment) and also very sensitive species (i.e. some species of Trichoptera order).

Depending on their tolerance to environment disturbances, scientists group these organisms (plus the rest of macroinvertebrates) into different categories that are assigned a value. This values, at the end, allow us to calculate water quality indices.

Biotic indices for riverine waters

The different pollution tolerance degrees among macroinvertebrates of a community allow us to classify them and to assign them a qualitative value (the bigger the number is, more sensitive are organisms to pollution). Thanks to these values, we can calculate different biotic indices, which are no more than qualitative values assigned to a community in order to classify it according to its quality: the greater the value is, better is the water quality.

One of the most used indices on the assessment of ecological state of rivers from the Iberian Peninsula is the IBMWP index (Iberian Bio-Monitoring Working Party), an adaptation by Alba Tercedor (1988) of the British index BMWP. In rough outlines, the greater the value is, better is the water quality. On this website you will find more details about this index, and also the pre-established values assigned to each macroinvertebrate (available in Spanish only).

In additions, there is also used the IASPT index, a complementary index which is the result of divide the IBMWP value by the number of identified taxa. This index give us information about the dominant community in the studied location. You can see more details on this website (available in Spanish only).

.      .      .

As you probably have seen while reading of this article, macroinvertebrates, and insects especially, play an important role in the study of inland water quality. Furthermore, their presence or absence is extremely important for the rest of the organisms of their ecosystem, because of what we must become aware of the problems deriving from the reduction of their number or diversity.

REFERENCES

Head photography by U.S. Fish and Wildlife Service Southeast Region.

Difusió-anglès

¿Qué nos dicen los insectos sobre la salud de nuestros ríos?

En la actualidad, la preocupación por el estado de salud de las aguas continentales (ríos, lagos, etc.) va en aumento, sobre todo debido al creciente uso (y abuso) de éstas para el consumo humano. Desde hace ya unos años, se ha ido expandiendo el uso de índices que, en base a datos de presencia, ausencia o abundancia de ciertos organismos en el medio de estudio (conocidos como “organismos bioindicadores”), nos permiten determinar la calidad de las aguas. Entre estos organismos, encontramos muchos artrópodos.

En este artículo, trataré de explicaros brevemente qué son los bioindicadores, el papel de los artrópodos en la bioindicación y algunos de los índices de bioindicación más usados para medir la calidad de los ecosistemas fluviales de la Península Ibérica.

¿Qué es un bioindicador?

El término bioindicador se usa para referirse a aquellos procesos biológicos, especies y/o comunidades de organismos que nos sirven para evaluar cualitativamente la calidad o estado de un ecosistema y la forma cómo éste evoluciona en el tiempo, lo que es especialmente útil en el caso de cambios introducidos por perturbaciones antropogénicas (p.ej. contaminación).

Un bioindicador puede ser, por lo tanto:

  • Tanto una especie en concreto, cuya presencia/ausencia o abundancia en el lugar de estudio nos informa del estado de salud del ecosistema.
  • Una población o una comunidad de distintos organismos que varíe, funcional o estructuralmente, acorde con las condiciones de su medio.

Ejemplo: el líquen Lecanora conizaeoides es muy resistente a la contaminación. Su presencia, sumada a la desaparición de otros líquenes, es indicativo de una elevada contaminación atmosférica.

Lecanora conizaeoides (Foto por James Lindsey).

¿Qué consideramos un “buen bioindicador”?

No todos los organismos son aptos para ser usados como bioindicadores. Aunque no existe un prototipo de bioindicador, pues todo depende del ecosistema que se estudie, sí que podemos resumir algunos de los principales requisitos para que uno o varios organismos sean considerados “buenos bioindicadores”:

  • Han de responder a las perturbaciones que acontecen en su medio en mayor o menor grado. Esta respuesta debe ser equiparable al resto de organismos de la misma especie y correlacionarse bien con la perturbación.
  • Su respuesta debe ser representativa de la de toda la comunidad o población.
  • Deben localizarse de forma natural en el medio que se estudia y ser ubicuos (es decir, estar presentes en casi todos los ecosistemas de similar o igual índole).
  • Ser abundantes (las especies raras no suelen ser óptimas).
  • Ser relativamente estables ante cambios moderados del clima (es decir, que una tormenta o un cambio natural de la temperatura no les afecte más allá de lo normal).
  • Ser fáciles de detectar y, a poder ser, de poca movilidad (sedentarios).
  • Estar bien estudiados, tanto desde un punto de vista ecológico como taxonómico (saber, por lo tanto, cuál es su tolerancia a las perturbaciones).
  • Ser fáciles de manipular y testear en el laboratorio.

El uso de bioindicadores siempre será más óptimo si no nos limitamos a tomar como referencia poblaciones de una o dos especies y usamos comunidades enteras, permitiendo abarcar un rango amplio de tolerancias ambientales: desde organismos con unas necesidades ambientales de rango muy limitado (es decir, estenoicos) y sensibles a la contaminación, hasta organismos muy tolerantes capaces de sobrevivir en medios muy perturbados.

Así, podremos saber que un ecosistema está muy perturbado si, por ejemplo, sólo encontramos una única especie muy tolerante y ninguna de las consideradas sensibles.

Animales bioindicadores de aguas continentales

A día de hoy se usan muchos animales como bioindicadores: desde pequeños microorganismos e invertebrados, hasta vertebrados terrestres y acuáticos (micromamíferos, aves, peces, etc.). En aguas continentales, y especialmente en estudios de calidad de aguas fluviales, se utilizan sobre todo macroinvertebrados acuáticos. Veamos, a continuación, qué es un macroinvertebrado.

¿Qué son los macroinvertebrados?

El término macroinvertebrado no corresponde a ninguna clasificación taxonómica, sino a un concepto artificial que engloba a distintos organismos invertebrados acuáticos.

Por lo general, se dice que un organismo es un macroinvertebrado cuando puede ser capturado por una red cuyos orificios (lo que técnicamente se conoce como “luz de la malla”) sean de 250μm.

9895263846_fd51b55e3f_c
Recogida de macroinvertebrados usando una red de arrastre (Imagen por USFWS/Southeast , Creative Commons).

Los macroinvertebrados son, en su mayoría, bentónicos, es decir, habitantes del sustrato de fondo de los sistemas acuáticos, al menos durante alguna fase de su ciclo vital (aunque también los hay que se desplazan libremente por la columna de agua o por su superficie).

En ríos y lagos encontramos muchos grupos de macroinvertebrados, que podemos clasificar en dos grupos:

macroinv
Fuentes de las fotografías: (1) Luis Silva Margareto ©, (2) DPDx Image Library, (3) Oakley Originals, Creative Commons, (4) Ryan Hodnett, Creative Commons, (5) Will Thomas, Creative Commons, (6) Duncan Hull, Creative Commons.

Entre estos grupos, encontramos tanto organismos muy tolerantes a perturbaciones del medio (p.ej. las sanguijuelas) como especies sensibles (muchas larvas de insectos).

La mayoría de macroinvertebrados de aguas continentales (≃80%) son artrópodos (de los cuales os hablaré en el siguiente apartado), entre los que destacan muchos insectos y, en especial, sus formas larvarias (generalmente bentónicas), la observación y análisis de las cuales es vital para el cálculo de muchos índices de calidad de aguas continentales.

Los insectos en la bioindicación

Como os he comentado en el apartado anterior, alrededor de un 80% de los macroinvertebrados de aguas continentales son, en efecto, artrópodos y, en su mayoría, órdenes de insectos en su forma larvaria o de ninfa. Veamos algunos de los más frecuentes:

Tricópteros

Insectos muy emparentados con los lepidópteros (mariposas y polillas). Sus ninfas acuáticas construyen refugios alrededor de su cuerpo usando materiales del lecho fluvial. Se diferencian del resto de larvas acuáticas de insectos porque presentan un par de filamentos anales provistos de fuertes uñas. Suelen aparecer en zonas de aguas limpias con bastantes corrientes.

Ninfa (dentro de su refugio, izquierda) y adulto de tricóptero (derecha). Fotos de la ninfa por Matt Reinbold (Creative Commons) y del adulto por Donald Hobern (Creative Commons).

Efemerópteros (o efímeras)

Uno de los órdenes de insectos alados más primitivo. Sus ninfas acuáticas, las cuales suelen vivir en ríos, se caracterizan por presentar tres pelos anales muy largos. Los adultos, que vuelan cerca del agua, son muy frágiles, y su ciclo de vida es muy corto en comparación al de las ninfas (de ahí el nombre de “efímeras”).

Ninfa (izquierda) y adulto de efemeróptero (derecha). Fotos de la ninfa por Keisotyo (Creative Commons) y del adulto por Mick Talbot (Creative Commons).

Plecópteros

Insectos alados con larvas acuáticas muy similares a las de los efemerópteros. Presentan, como éstos, pelos anales, pero se diferencian por desarrollar dos uñas apicales en cada pata. Viven sobre todo en  lagos y arroyos.

Ninfa (izquierda) y adulto de plecóptero (derecha). Fotos de la ninfa por Böhringer (Creative Commons) y del adulto por gailhampshire (Creative Commons).

Otros grupos con larvas o ninfas acuáticas

Entre los insectos más comunes en ríos y lagos también encontramos representantes del orden Odonata (libélulas y caballitos del diablo), Coleoptera (escarabajo), Diptera (moscas y mosquitos), etc.

Entre todos los insectos que os he introducido, los hay muy tolerantes a la contaminación (p.ej, larvas de muchas especies de dípteros –moscas y mosquitos-; este es el caso de algunas especies de quironómidos tolerantes a la contaminación orgánica e inorgánica por metales pesados) hasta especies muy sensibles (p.ej, algunas especies de tricópteros), pasando por estadios intermedios.

Según su grado de tolerancia a las perturbaciones, los científicos agrupan a estos organismos (más el resto de macroinvertebrados) en categorías a las que se les asigna un valor que, posteriormente, permite calcular índices de calidad de su medio.

Índices bióticos para aguas fluviales

Los diferentes grados de tolerancia que manifiestan los macroinvertebrados de una comunidad ante las perturbaciones de su medio nos permiten clasificarlos y asignarles un valor cualitativo dentro de una escala (cuanto mayor sea el número, más sensible es el organismo a la contaminación). Mediante estos valores, podemos calcular distintos índices bióticos, que no son más que valores cualitativos que se asignan a una comunidad para clasificarla según su calidad: cuanto mayor sea el índice, mayor calidad tendrá el agua.

Uno de los índices más usados en la evaluación del estado ecológico de los ríos de la Península Ibérica es el IBMWP (Iberian Bio-Monitoring Working Party), una adaptación del índice británico BMWP por Alba Tercedor (1998). A grandes rasgos, cuanto mayor sea su valor, mayor será la calidad de las aguas. En esta web podéis ver los detalles de este índice, así como los valores que se asignan a cada macroinvertebrado.

También se usa el índice IASPT, un índice complementario que corresponde al valor de IBMWP dividido por el número de taxones identificados. Éste nos aporta información sobre el tipo de comunidad dominante en el tramo estudiado. Podéis ver más detalles en este link.

.      .      .

Como habréis podido ir viendo a lo largo de este artículo, los macroinvertebrados, y especialmente los insectos, juegan un papel vital en el estudio de la calidad de las aguas continentales. Además, su presencia o ausencia es de suma importancia para el resto de organismos de su ecosistema, por lo que debemos ser conscientes de que, a pesar de ser aparentemente tan abundantes, la reducción de su número y/o diversidad puede conllevar efectos negativos en cadena de difícil reparación.

REFERENCIAS

Foto de portada por U.S. Fish and Wildlife Service Southeast Region.

Difusió-castellà

Què ens diuen els insectes sobre la salut dels nostres rius?

Actualment, la preocupació vers l’estat de salut de les aigües continentals (rius, llacs, etc.) va en augment, sobretot degut al creixent ús (i abús) d’aquestes pel consum humà. Des de fa ja uns quants anys que s’està expandint l’ús d’índex que, en base a dades d’abundància, presència o absència de certs organismes al medi d’estudi, ens permeten determinar la qualitat de les aigües. Entre aquests organismes, hi trobem molts artròpodes.

En aquest article, us explicaré breument què són els bioindicadors, el paper que juguen els artròpodes en la bioindicació i alguns dels índexs de bioindicació més emprats per mesurar la qualitat dels ecosistemes fluvials de la Península Ibèrica.

Què és un bioindicador?

El terme bioindicador sol al·ludir a aquells processos biològics, espècies i/o comunitats d’organismes que ens serveixen per avaluar qualitativament la qualitat o estat d’un ecosistema i la forma com aquest evoluciona al llarg del temps, fet que és especialment útil en el cas de canvis introduïts per pertorbacions antropogèniques (p.ex. contaminació).

Per tant, un bioindicador pot ser:

  • Tant una espècie en concret, la presència/absència de la qual en el lloc d’estudi ens informa de l’estat de salut de l’ecosistema.
  • Una població o una comunitat formada per diferents organismes que variï, funcional o estructuralment, en consonància amb les condicions del seu medi.

Exemple: el liquen Lecanora conizaeoides és molt resistent a la contaminació. La seva presència, més la desaparició d’altres líquens, és indicativa d’una contaminació atmosfèrica elevada.

Lecanora conizaeoides (Foto per James Lindsey).

Què considerem un “bon bioindicador”?

No tots els organismes són aptes per ser emprats com a bioindicadors. Tot i que no existeix un model estàndard de bioindicador, ja que tot depèn de l’ecosistema que s’estudiï, sí que podem agrupar alguns dels principals requisits que han de complir els organismes per a ser considerats uns “bons bioindicadors”:

  • Han de respondre a les pertorbacions del seu medi en major o menor mesura. Aquesta resposta ha de ser equiparable a tots els organismes de la mateixa espècie i correlacionar-se bé amb la perturbació.
  • La seva resposta ha de ser representativa de la de tota la comunitat o població.
  • Han de localitzar-se de forma natural al medi que s’estudia i ser ubics (és a dir, estar presents a tots els ecosistemes que presentin unes característiques similars o iguals a les del lloc d’estudi).
  • Ser abundants (les espècies rares no són gaire òptimes).
  • Ser relativament estables davant de canvis moderats del clima (és a dir, que una tempesta o una variació natural de la temperatura no els afecti més enllà del normal).
  • Ser fàcils de detectar i, a ser possible, de poca mobilitat (sedentaris).
  • Estar ben estudiats, tant des d’un punt de vista ecològic com taxonòmic (conèixer, per tant, quin és el seu grau de tolerància a les pertorbacions).
  • Ser fàcils de manipular i testejar al laboratori.

L’ús de bioindicadors sempre serà més òptim si no ens limitem a fer servir com a referència poblacions d’una o dues espècies i fem servir comunitats senceres, abraçant així un rang molt ampli de toleràncies ambientals: des d’organismes amb unes necessitats ambientals de rang estret (és a dir, estenoics) i/o sensibles a la contaminació, fins a organismes molt tolerants capaços de sobreviure en medis molt pertorbats.

Així, podrem saber que un ecosistema està molt pertorbat si, per exemple, només hi trobem una única espècie molt tolerant i cap de les considerades sensibles.

Animals bioindicadors d’aigües continentals

A dia d’avui es fan servir molts animals com a bioindicadors: des de microorganismes i invertebrats, fins a vertebrats terrestres i aquàtics (micromamífers, aus, peixos, etc.). En aigües continentals, i especialment en estudis de qualitat d’aigües fluvials, es fan servir sobretot macroinvertebrats aquàtics. Veiem a continuació què és un macroinvertebrat.

Què són els macroinvertebrats?

El terme macroinvertebrat no correspon a cap classificació taxonòmica, sinó a un concepte artificial que abraça diferents organismes invertebrats aquàtics.

Generalment, es diu que un oorganisme és un macroinvertebrat quan pot ésser capturat per una xarxa els orificis de la qual (el que tècnicament es coneix com a “llum de la malla”) siguin de 250μm.

9895263846_fd51b55e3f_c
Recollida de macroinvertebrats fent servir una xarxa d’arrossegament (Imatge per USFWS/Southeast , Creative Commons).

Els macroinvertebrats són, majoritàriament, bentònics, és a dir, habitants dels substrat del fons dels sistemes aquàtics, com a mínim durant alguna fase del seu cicle vital (encara que també n’hi ha que es desplacen lliurement per la columna d’aigua o per la seva superfície).

Als rius i llacs trobem molts grups de macroinvertebrats, els quals poden ésser classificats en dos grups:

macroinv (català)
Fonts de les fotografies: (1) Luis Silva Margareto ©, (2) DPDx Image Library, (3) Oakley Originals, Creative Commons, (4) Ryan Hodnett, Creative Commons, (5) Will Thomas, Creative Commons, (6) Duncan Hull, Creative Commons.

Entre aquests grups, n’hi ha que són molt tolerants a les pertorbacions del medi (per ex. les sangoneres) i d’altres que en són molt sensibles (moltes larves d’insectes).

La majoria de macroinvertebrats d’aigües continentals (≃80%) són artròpodes (dels quals us parlaré en el següent apartat), entre els que destaquen molts insectes i, especialment, les seves formes larvàries (generalment bentòniques), l’observació i anàlisi de les quals és vital pel càlcul de molts índexs de qualitat de les aigües continentals.

Els insectes en la bioindicació

Com us he comentat abans, al voltant d’un 80% dels macroinvertebrats d’aigües continentals són artròpodes, i, majoritàriament, ordres d’insectes en la seva forma larvària o de nimfa. Veiem alguns dels més freqüents:

Tricòpters

Insectes estretament emparentats als lepidòpters (papallones i arnes). Les seves nimfes aquàtiques construeixen refugis al voltant del seu cos mitjançant materials que arrossega el riu. Es diferencien de la resta de larves aquàtiques d’insecte perquè posseeixen un parell de filaments anals amb unes ungles molt fortes. Solen aparèixer en zones d’aigües netes amb força corrents.

Nimfa (dins del seu refugi, esquerra)  i adult de tricòpter (dreta). Fotos de la nimfa per Matt Reinbold (Creative Commons) i de l’adult per Donald Hobern (Creative Commons).

Efemeròpters (o efímeres)

Un dels ordres d’insectes alats més primitiu. Les seves nimfes aquàtiques, les quals tendeixen a viure als rius, es caracteritzen per presentar tres pèls anals molt llargs. Els adults, que volen a prop de l’aigua, són molt fràgils, i el seu cicle de vida és molt curt en comparació al de les nimfes (motiu pel qual es coneixen vulgarment com a “efímeres”).

Nimfa (esquerra) i adult d’efemeròpter (dreta). Fotos de la nimfa por Keisotyo (Creative Commons) i de l’adult per Mick Talbot (Creative Commons).

Plecòpters

Insectes alats amb nimfes aquàtiques molt similars a la dels efemeròpters. També presenten pèls anals, però es diferencien d’aquests per desenvolupar dues ungles apicals a cada pota. Viuen sobretot en llacs i rierols

Nimfa (esquerra) i adult de plecòpter (dreta). Fotos de la nimfa per Böhringer (Creative Commons) i de l’adult per gailhampshire (Creative Commons).

Altres grups amb larves o nimfes aquàtiques

Entre els insectes més comuns de rius i llacs també cal destacar diversos representants de l’ordre Odonata (libèl·lules i espiadimonis), Coleoptera (escarabats), Diptera (mosques i mosquits), etc.

Entre tots els insectes que us he anat introduint, n’hi ha que són molt tolerants a la contaminació (per ex., larves de moltes espècies de dípters; aquest és el cas d’algunes espècies de quironòmids –mosquits– tolerants a la contaminació orgànica i inorgànica per metalls pesants) i d’altres que en són molt sensibles (per ex. algunes espècies de tricòpter), passant per estadis intermedis.

Segons el seu grau de tolerància a les pertorbacions, els científics agrupen aquests organismes (més la resta de macroinvertebrats) en categories a les quals se’ls assigna un valor que, posteriorment, ens permet calcular índexs de qualitat del seu medi.

Índexs biòtics per a aigües fluvials

Els diferents graus de tolerància que manifesten els macroinvertebrats d’una comunitat vers les pertorbacions del seu medi ens permeten classificar-los i assignar-los un valor qualitatiu dins d’una escala (com més gran sigui el valor, més sensible és l’organisme a la contaminació). Mitjançant aquests valors, podem calcular diversos índexs biòtics, que no són més que valors qualitatius que s’assignen a una comunitat amb la fi de classificar-la segons la seva qualitat: com més gran sigui l’índex, més elevada serà la qualitat de l’aigua i del medi.

Un dels índexs més emprats en l’avaluació de l’estat ecològic dels rius de la península Ibèrica és el IBMWP (Iberian Bio-Monitoring Working Party), una adaptació de l’índex britànic BMWP per Alba Tercedor (1988). A grans trets, com més gran sigui el seu valor, major serà la qualitat de l’aigua. En aquest web podeu consultar més detalls sobre aquest índex, així com els valors que s’assignen a cada macroinvertebrat.

També es fa servir l’índex IASPT, un índex complementari que correpon al valor de IBMWP dividit pel número de taxons de macroinvertebrats identificats. Aquest ens dóna informació sobre el tipus de comunitat dominant al tram de riu estudiat. Podeu veure més detalls clicant a aquest link.

.      .      .

Com haureu pogut veure al llarg d’aquest article, els macroinvertebrats, i especialment els insectes, juguen un rol vital en l’estudi de la qualitat de les aigües continentals. A més a més, la seva presència o absència és de gran importància per a la resta d’organismes del seu ecosistema, motiu pel qual hem d’ésser conscients que, tot i ser molt abundants, la reducció del seu número i/o diversitat pot comportar efectes negatius en cadena de difícil reparació.

REFERÈNCIES

Foto de portada per U.S. Fish and Wildlife Service Southeast Region.

Difusió-català