Arxiu d'etiquetes: nitrogenous bases

From lab to big screen (II)

As I told you in the previous article on genetics and cinema, there is a wide variety of films that talk about genetics. In the next article we will talk about science fiction, with two well-known films. Beware: spoilers!

GATTACA (1997)

Director: Andrew Niccol

Cast: Ethan Hawke, Uma Thurman, Jude Law

Genre: Science fiction

Story line: Vincent is one of the last “natural” babies born into a sterile, genetically-enhanced world, where life expectancy and disease likelihood are ascertained at birth. Myopic and due to die at 30, he has no chance of a career in a society that now discriminates against your genes, instead of your gender, race or religion. Going underground, he assumes the identity of Jerome, crippled in an accident, and achieves prominence in the Gattaca Corporation, where he is selected for his lifelong desire: a manned mission to Saturn’s 14th moon (titan). Constantly passing gene tests by diligently using samples of Jerome’s hair, skin, blood and urine, his now-perfect world is thrown into increasing desperation, his dream within reach, when the mission director is killed – and he carelessly loses an eyelash at the scene! Certain that they know the murderer’s ID, but unable to track down the former Vincent, the police start to close in, with extra searches, and new gene tests. With the once-in-a-lifetime launch only days away, Vincent must avoid arousing suspicion, while passing the tests, evading the police, and not knowing whom he can trust.

Relation with genetics: GATTACA is the “genetic” film par excellence. Starting with the title, this is formed by the initials of the four nitrogenous bases that make up DNA (guanine, adenine, thymine and cytosine). In addition, the helical shape of the DNA is repeated in several moments of the film, as in the stairs of Vincent’s house.

The main issue is about genetic selection, all children born have been genetically selected, closely linked to bioethics. The idea of ​​this selection is to reach eugenics, that is, to improve the population by selecting the “best” humans. This concept can be related to the Hitler’s Germany, who believed that Germans belonged to a superior group of races called “Aryan”. Hitler said that German Aryan race had been better endowed than the others and that this biological superiority destined Germans to oversee an empire in Eastern Europe.

Although nowadays genetic selection is valid and is used to avoid diseases, it is not applied with the same purposes as those of the film. At present, it is decided to carry out genetic selection after having studied the family and carried out the appropriate genetic counselling. It aims to help patients and their families avoid the pain and suffering caused by a genetic disease and should not be confused with the eugenic objective of reducing the incidence of genetic diseases or the frequency of alleles considered to be deleterious in the population.

This is very related to the genetic discrimination, case also exposed in the film. Gattaca is situated in a possible future in which genetics, trying to improve the quality of life of society, causes a movement of discrimination.

When we talk about discrimination, we tend to think about racial discrimination. This is defined as the different or exclusive treatment of a person for reasons of racial or ethnic origin, which constitutes a violation of the fundamental rights of individuals, as well as an attack on their dignity. Racism has been present throughout the history of mankind, especially in the twentieth century with racial discrimination in the United States and apartheid in South Africa.

For some time now, genetic discrimination has been gaining weight. It happens when people are treated differently by their company or insurance company because they have a genetic mutation that causes or increases the risk of a hereditary disorder. Fear of discrimination is a common concern among people who undergo genetic testing, and is a current problem that concerns the population because your own genome does not have to be a curriculum vitae that opens or closes doors as happens in the film. Vincent goes to work in Gattaca after performing a urine test and a blood test, since in Gattaca they do not choose workers for their ability or ability but for their DNA.

However, the film ends with the sentence “There is no gene for the human spirit”. This means that, although the society in which Gattaca is located is based on genetic modification, it does not affect the morality and final character of people because there is no way to genetically relate to the spirit, only the body has the genetic information.

Video 1. Trailer Gattaca (Source: YouTube)


Director: Steven Spielberg

Cast: Sam Neill, Laura Dern, Jeff Goldblum

Genre: Science fiction

Story line: Huge advancements in scientific technology have enabled a mogul to create an island full of living dinosaurs. John Hammond has invited four individuals, along with his two grandchildren, to join him at Jurassic Park. But will everything go according to plan? A park employee attempts to steal dinosaur embryos, critical security systems are shut down and it now becomes a race for survival with dinosaurs roaming freely over the island.

Relation with genetics: In the first film of this saga, from dinosaur’s fossils scientists extract DNA to be able to clone dinosaurs. The cloned dinosaurs will be part of the Jurassic park on which the film is based.

It is true that DNA can be extracted from bones, widely used in forensic genetics. Same as the issue of cloning, which was known by the Dolly sheep, the first large animal cloned from an adult cell in July 1996. But the film goes further and raises the possibility of reintroducing, in today’s world, extinct species and challenge natural selection.

Video 2. Trailer Jurassic Park (Source: YouTube)



Cracking the genetic code

In the same way that Alan Turing decoded Enigma, the encryption machine used by the German army in World War II, several scientists managed to decipher the genetic code. The solution to this framework has allowed us to understand how cells work and make genetic manipulation possible.


A code is a system of replacing the words in a message with other words or symbols, so that nobody can understand it unless they know the system. For example the genetic code.

Although it seems to be a lie, all living beings (except for some bacteria) biologically work in the same way. And it is that Jacques Monod already said, everything that is verified as true for E. coli must also be true for elephants.

From the cells of the blue whale, the largest animal on the planet, to the cells of a hummingbird, passing through humans, are the same. This is thanks to the genetic code, which allows the information of each gene to be transmitted to the proteins, the executors of this information.

This flow of information was named by Francis Crick, in 1958, as the central dogma of molecular biology (Figure 1). In it he claimed that information flows from DNA to RNA, and then from RNA to proteins. This is how genetic information is transmitted and expressed unidirectionally. However, later modifications were added. Crick claimed that only DNA can be duplicated and transcribed to RNA. However, it has been seen that the replication of its RNA also occurs in viruses and that it can perform a reverse transcription to generate DNA again.

Figure 1. Central dogma of molecular biology. Red arrows: Francis Crick’s way. Grey arrows: later modifications (Source: Quora)


Inside the cells three different languages ​​are spoken, but they can be related through the genetic code.

The one we already know is the language of deoxyribonucleic acid (DNA), wound in a double chain and composed of 4 letters that correspond to the nitrogenous bases: adenine (A), thymine (T), cytosine (C) and guanine (G).

Another language very similar to the latter is that of RNA. It differs from DNA mainly in three aspects: (i) it is composed of a single chain instead of being double-stranded, (ii) its sugars are ribose instead of deoxyribose (hence the name of ribonucleic acid) and (iii) it contains the base uracil (U) instead of T. Neither the change of sugar nor the substitution of U by T alters the pairing with base A, so that RNA synthesis can be performed directly on a DNA template.

The last language that remains for us to know is that of proteins, formed by 20 amino acids. The amino acids constitute each and every one of the proteins of any living organism. The order of the amino acids that form the chain of the protein determines its function (Figure 2).

Figure 2. Table of 20 amino acids (Source: Compound Interest)


As we have been saying, the genetic code is the rules that follow the nucleotide sequence of a gene, through the RNA intermediary, to be translated into an amino acid sequence of a protein. There are several types of RNA, but the one that interests us is the messenger RNA (mRNA), essential in the transcription process.
The cells decode the RNA by reading its nucleotides in groups of three (Figure 3). Since mRNA is a polymer of four different nucleotides, there are 64 possible combinations of three nucleotides (43). This brings us to one of its characteristics: it is degenerate. This means that there are several triplets for the same amino acid (synonymous codons). For example, proline is coded by the triplets CCU, CCC, CCA and CCG.

Figure 3. The genetic code with the table of 20 amino acids (Source: BioNinja)

The genetic code is not ambiguous since each triplet has its own meaning. All triplets make sense, either encode a particular amino acid or indicate read completion. Most amino acids are encoded by at least two codons. Methionine and tryptophan are the only amino acids that are codified only by a codon. But each codon codes only for an amino acid or stop sign. In addition, it is unidirectional, all triplets are read in the 5′-3′ direction.
The AUG codon serves as the start codon at which translation begins. There is only one start codon that codes for the amino acid methionine, while there are three stop codons (UAA, UAG and UGA). These codons cause the polypeptide to be released from the ribosome, where the translation occurs.
The position of the start codon determines the point where translation of the mRNA and its reading frame will begin. This last point is important because the same nucleotide sequence can encode completely different polypeptides depending on the frame in which it is read (Figure 4). However, only one of the three reading patterns of a mRNA encodes the correct protein. The displacement in the reading frame causes the message no longer to make sense.

Marco de Lectura
Figure 4. Possible frameshifts (Source:


As we said at the beginning, one of the main characteristics of the genetic code is that it is universal, since almost all living beings use it (with the exception of some bacteria). This is important because a genetic code shared by such diverse organisms provides important evidence of a common origin of life on Earth. The species of the Earth of today probably evolved from an ancestral organism in which the genetic code was already present. Because it is essential for cellular function, it should tend to remain unchanged in the species through the generations. This type of evolutionary process can explain the remarkable similarity of the genetic code in present organisms.

Although the human being itself continues to be an enigma for science, the revolution of the deciphering of the genetic code has allowed us to delve into the functioning of our body, specifically that of our cells, and cross borders to genetic manipulation.



  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Gotta Love Cells
  • BioNinja
  • Main picture: