Arxiu d'etiquetes: organismes

Com s’aplica l’enginyeria genètica en plantes?

Durant anys, mitjançant el creuament, s’han aconseguit plantes amb una característica desitjada després de moltes generacions. La biotecnologia accelera aquest procés i permet als científics agafar només els gens desitjats d’una planta, aconseguint així els resultats buscats en només una generació. L’enginyeria genètica ens permet fer tot això. En aquest article explicaré en què consisteix i la seva metodologia.

QUÈ ÉS L’ENGINYERIA GENÈTICA?

L’enginyeria genètica és una branca de la biotecnologia que consisteix a modificar les característiques hereditàries d’un organisme mitjançant l’alteració del seu material genètic. Habitualment s’utilitza per aconseguir que determinats microorganismes, com ara bacteris o virus, augmentin la síntesi de compostos, formin compostos nous o s’adaptin a medis diferents. És una eina més segura i més eficient pel millorament d’espècies que els mètodes tradicionals (creuaments), ja que elimina gran part de l’aleatorietat i l’atzar. D’altra banda, la biotecnologia moderna també esdevé una nova tecnologia, en disposar de la facultat de modificar els atributs dels organismes vius mitjançant la introducció de material genètic preparat in vitro.

Es podria definir com el conjunt de metodologies que permeten transferir gens d’un organisme a un altre i expressar-los (produir proteïnes per a les quals aquests gens codifiquen) en organismes diferents al d’origen. L’ADN que combina fragments d’organismes diferents s’anomena ADN recombinant. En conseqüència, les tècniques que utilitza l’enginyeria genètica es denominen tècniques d’ADN recombinant.

A dia d’avui hi ha molts més organismes vegetals modificats genèticament que no pas animals. Per aquesta raó explicaré l’enginyeria genètica basant-me en plantes.

ENGINYERIA GENÈTICA vs. MÈTODES TRADICIONALS

Aquesta metodologia té tres avantatges fonamentals respecte de les tècniques convencionals de millora genètica basades en la hibridació:

  • Els gens que s’han d’incorporar poden venir de qualsevol espècie, emparentada o no (per exemple un gen d’una bactèria es pot incorporar al genoma de la soja).
  • A la planta millorada genèticament s’hi pot introduir un únic gen nou preservant la resta dels gens de la planta original a la seva descendència.
  • Aquest procés de modificació endarrereix molt menys els terminis que no pas la millora per encreuament.

D’aquesta forma es poden modificar propietats de les plantes de manera més àmplia, més precisa i més ràpida.

Amb el creuament tradicional es genera un híbrid que combina a l’atzar gens d’ambdós organismes parentals, entre ells el gen d’interès que codifica pel tret desitjat. Amb les tècniques de la biotecnologia es passen un o alguns gens, que codifiquen una característica específica coneguda. La nova planta està integrada amb tots els gens originals de la planta i un gen introduït de manera precisa i dirigida (Figura 1).

fig1CAT.jpg
Figura 1. (A) Mètode tradicional on, mitjançant el creuament, s’obté una nova varietat. Aquesta porta el gen d’interès (vermell), però també altres gens a l’atzar. (B) Amb l’enginyeria genètica obtenim una nova varietat de la planta comercial amb el gen d’interès (vermell) de qualsevol altra espècie (Font: Mireia Ramos, All You Need is Biology)

METODOLOGIA DE L’ENGINYERIA GENÈTICA

L’obtenció d’un organisme transgènic a través de tècniques d’enginyeria genètica implica la participació d’un organisme que dóna el gen d’interès i un organisme receptor del gen que expressarà la nova característica desitjada. Les etapes i tècniques del procés són les següents:

0/ DECIDIR L’OBJECTIU: REALITZAR UN KNOCK-IN O UN KNOCK-OUT

Tècnica KNOCK-OUT:

El bloqueig de gens o knock-out és la tècnica que consisteix en suprimir l’expressió d’un gen, substituint-lo per una versió mutada de si mateix, sent aquesta còpia no funcional. Aquesta tècnica permet fer que un gen deixi d’expressar-se.

Tècnica KNOCK-IN:

La tècnica del knock-in és el procés oposat al del knock-out. Es reemplaça un gen per una versió modificada de si mateix, el qual produeix una variació en la funció resultant d’aquest.

En l’àmbit de la medicina, el knock-in de gens s’ha aplicat com estratègia per substituir o mutar els gens que causen malalties com la Corea de Huntington, per tal d’ajudar a crear una teràpia exitosa.

1/ CORROBORAR QUE EXISTEIX UN GEN QUE CODIFICA PER LA CARACTERÍSTICA D’INTERÈS

Primer s’ha de comprovar que la característica que interessa prové d’un gen, ja que així serà més fàcil transferir-la a un organisme que no la té.

2/ CLONAR EL GEN D’INTERÈS

És un procés complex, però a trets generals, els passos que es segueixen són els següents:

  • Extreure ADN
  • Buscar un gen entre tots els gens d’aquest ADN
  • Seqüenciar-lo
  • Construir un vector recombinant

L’ADN d’interès s’insereix en un plàsmid, una molècula d’ADN circular amb replicació autònoma. Els més utilitzats són els plàsmids d’origen bacterià (Vídeo 1).

Vídeo 1. “Clonación plásmido traducido”. Explicació de la utilització de plàsmids en el procés de clonació  com a vector (Font: YouTube)

El desenvolupament d’aquestes tècniques va ser possible gràcies a la descoberta dels enzims de restricció. Aquests enzims reconeixen seqüències específiques, de poques bases, i tallen l’ADN per aquest punt. Els extrems generats es poden segellar amb l’enzim lligasa i així obtenir una molècula d’ADN nova, anomenada recombinant (Figura 2).

adnrecombi
Figura 2. (1) ADN del plàsmid. (2) ADN d’un altre organisme. (3a, 3b) Es talla l’ADN amb un enzim de restricció. (4) L’enzim de restricció reconeix la seqüència AATT i talla entre els nucleòtids A i T de les cadenes d’ADN. (5) Es posen en contacte els dos ADNs perquè es formin molècules recombinants. (6) Un enzim lligasa uneix els extrems de l’ADN per tal de tenir una nova molècula (Font: GeoPaloma)

3/ CARACTERITZAR EL GEN D’INTERÈS

Coneixent la seqüència del gen es pot comparar aquesta seqüència amb la de gens ja coneguts a través de la bioinformàtica, per tal de determinar a quin gen s’assembla i assignar-li una possible funció. Després d’haver predit la funció del gen clonat es confirma la funció in vivo, normalment transferint-lo a un organisme model.

4/ MODIFICAR EL GEN D’INTERÈS

Si es desitja es pot agregar (promotor, introns…) o mutar seqüències dins de la regió codificant perquè es pugui expressar en el sistema d’interès.

5/ TRANSFORMACIÓ D’UN ORGANISME AMB EL GEN D’INTERÈS

Un cop acabada la construcció genètica amb el gen i el promotor desitjat, s’insereix l’ADN recombinant a les cèl·lules de l’individu que es vol modificar.

6/ CARACTERITZACIÓ DE L’OGM

Un cop obtingut l’OGM (Organisme Genèticament Modificat) s’analitza des del punt de vista molecular i biològic. En l’anàlisi molecular cal demostrar, entre altres, si té una (o més) còpies del transgen o com i a quins teixits s’expressa el gen. En l’anàlisi biològic es mira si compleix l’objectiu pel qual s’ha dissenyat.

REFERÈNCIES

 

MireiaRamos-catala

Com responen els organismes a la pesca?

Després de molts dies d’inactivitat, publiquem aquesta entrada sobre com responen els organismes a la pesca. Aquesta entrada és la segona entrega de la sèrie “Impacte de la pesca”. Espero que sigui del vostre interès.

 

Les poblacions de les espècies objectiu de pesca i les de captures accidentals presenten una sèrie de respostes a l’acció pesquera.

La resposta més obvia de la pesca és la reducció del nombre d’organismes de la població (Colloca et al. 2011), fins que no tingui lloc la introducció de nous individus a la pesqueria (reclutament).

La pesca redueix la talla mitjana dels individus (Martínez-Muñoz et al. 2010) ja que els pescadors sempre busquen els exemplars més grans. Per tant, la pesca redueix l’esperança de vida dels organismes i és menys probable que assoleixin mides més grans. D’aquesta manera, la talla dels organismes és proporcional a la pressió de la pesca.

S’observa també que els organismes maduren sexualment abans (Walford 1932) ja que quan la mortalitat és alta, la selecció natural tendeix a disminuir l’edat de la primera maduració sexual.

La pesca redueix la fecunditat dels organismes (Kjesbu et al. 1998) ja que si la població està molt explotada, el conjunt de la població produeix menys ous. Però a més, com que la talla dels organismes i el nombre d’ous que produeixen té una relació exponencial, com que la pesca redueix la seva mida, aquests produiran menys ous.

La pesca pot fer canviar la taxa de creixement de la població ja que aquesta depèn de les propietats físiques de l’hàbitat, la disponibilitat d’aliment i de l’estrès. La pesca produeix l’augment de la taxa de creixement degut a la disminució de la població per pesca ja que hi ha més aliment i menys estrès; el que permet compensar la reducció de la població.

La pesca també augmenta la supervivència de les larves ja que també competeixen entre elles: si hi ha menys adults, hi haurà menys larves

La pesca farà que les espècies que competien junt a l’espècie objectiu es vegin afavorides per la reducció de la competència doncs hi haurà més recursos per a elles. A la vegada, es veuran afavorides les espècies de les que s’alimentava degut a la disminució de la depredació. Tot plegat fa canviar les relacions de la xarxa tròfica.

 

Aquesta entrada està basada en els apunts presos a Impacte ecològic de la Pesca, assignatura del Màster en Oceanografia i Gestió del Medi Marí de la Universitat de Barcelona. Per a complementar aquesta informació es poden consultar les referències incloses en el text.

 

Licencia Creative Commons
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.