Arxiu d'etiquetes: ovípar

Tardígrads: Animals amb superpoders

Els óssos més petits del món tenen capacitats dignes de superherois. En realitat, no són óssos pròpiament dits: els óssos d’aigua en realitat són els tardígrads. Són animals invertebrats pràcticament indestructibles: sobreviuen dècades sense aigua ni aliment, a temperatures extremes i fins i tot han sobreviscut a l’espai exterior. Coneix l’animal que sembla arribat d’un altre planeta i aprèn a observar-lo a casa teva si disposes d’un microscopi.

QUÈ ES UN TARDÍGRAD?

Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes
Ós d’aigua (Macrobiotus sapiens) a sobre de molsa. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM): Foto de Nicole Ottawa & Oliver Meckes

Els tardígrads o óssos d’aigua, són un grup d’invertebrats de 0,05-1,5 mm que viuen preferiblement en llocs humits. Són especialment abundants en la pel·lícula d’humitat que recobreix molses i falgueres, encara que no falten espècies oceàniques i d’aigua dolça, per la qual cosa podem considerar que viuen arreu del món. Fins i tot a escassos metres de tu, entre rajola i rajola. En un gram de molsa s’han arribat a trobar fins a 22.000 exemplars. S’han trobat a l’Antàrtida a sota de capes de 5 metres de gel, en deserts càlids, en fonts termals, en muntanyes de 6.000 metres d’altura i a profunditats oceàniques abissals. Es tracta doncs d’animals extremòfils. Es calcula que existeixen més de 1.000 espècies.

MORFOLOGIA

El seu nom popular fa referència al seu aspecte i el científic a la lentitud dels seus moviments. Tenen el cos dividit en 5 segments: el cefàlic, on tenen la boca en forma de trompa (probòscide) amb dos estilets interns i en ocasions ulls simples (ommatidis) i pèls sensorials, i els 4 restants amb un parell de potes per segment. Cada pota té urpes per ancorar-se al terreny.

Vista ventral de un tardígrado donde seobservan los cinco segmentos del cuerpo. Foto de Eye Of Science/Photo LIbrary
Vista ventral d’un tardígrad on s’observen els cinc segments del cos. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library
Tardigrade. Coloured scanning electron micrograph (SEM) of a freshwater tardigrade or water bear (Echiniscus sp.). Tardigrades, are tiny invertebrates that live in coastal waters and freshwater habitats, as well as semi-aquatic terrestrial habitats like damp moss. They require water to obtain oxygen by gas exchange. In dry conditions, they can enter a cryptobiotic tun (or barrel) state of dessication to survive. Tardigrades feed on plant and animal cells and are found throughout the world, from the tropics to the cold polar waters.
Tardígrad (Echiniscus sp.) en el que es poden observar les urpes. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

Observa en aquest vídeo de Craig Smith els moviments dels tardígrads amb més detall:

ALIMENTACIÓ

Gràcies als estilets de la seva boca, perforen els vegetals dels quals s’alimenten i succionen els productes de la fotosíntesi, però també es poden alimentar absorbint el contingut cel·lular d’altres organismes microscòpics com bacteris, algues, rotífers, nematodes… Alguns són depredadors i poden ingerir microorganismes sencers.

El seu aparell digestiu és bàsicament la boca i una faringe amb potents músculs per fer els moviments de succió que s’obre directament a l’intestí i l’anus. Algunes espècies només defequen quan muden.

Detalle de la boca de un tardígrado. Foto de
Detall de la boca d’un tardígrao. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

ANATOMIA INTERNA

No posseeixen aparell circulatori ni respiratori: l’intercanvi de gasos es fa directament per la superfície del cos. Estan coberts per una cutícula rígida que pot ser de diferents colors i que van mudant a mesura que creixen. Amb cada muda, perden els estilets bucals, que seran segregats de nou. Són organismes eutèlics: per créixer només augmenten la mida de les seves cèl·lules, no el seu número, que roman constant al llarg de la seva vida

REPRODUCCIÓ

Els tardígrads en general tenen sexes separats (són dioics) i es reprodueixen per ous (són ovípars), però també hi ha espècies hermafrodites i partenogénenètiques (les femelles es reprodueixen sense ser fecundades per cap mascle). La fecundació és externa i el seu desenvolupament és directe, és a dir, no presenten fases larvàries.

tardigrade egg, ou tardigrad
Ou de tardígrad. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

ELS RÈCORDS DELS TARDÍGRADS

Els tardígrads són animals increïblement resistents que han superat les següents condicions:

  • Deshidratació: poden sobreviure durant 30 anys en condicions de laboratori sense una sola gota d’aigua. Hi ha fonts que asseguren que resisteixen fins a 120 anys o que s’han trobat en gels de 2000 anys d’antiguitat i han pogut reviure, tot i que probablement siguin exageracions.
  • Temperatures extremes: si bulls 1 tardígrad, sobreviu. Si el sotmets a temperatures de gairebé el zero absolut (-273ºC), sobreviu. El seu rang de supervivència va de -270ºC a 150ºC.
  • Pressió extrema: són capaços de suportar des del buit fins a 6.000 atmosferes, és a dir, 6 vegades la pressió que hi ha al punt més profund de la Terra, la Fossa de les Marianes (11.000 metres de profunditat).
  • Radiació extrema: els tardígrads poden suportar bombardejos de radiació en una dosi 1000 vegades superior a la letal per un humà.
  • Substàncies tòxiques: si se’ls submergeix en èter o alcohol pur, sobreviuen.
  • Espai exterior: els tardígrads són els únics animals que han sobreviscut a l’espai exterior sense cap protecció. El 2007 l’ESA (Agència Espacial Europea), dins del projecte TARDIS (Tardigrades In Space) va exposar tardígrads (Richtersius coronifer i Milnesium tardigradum) durant 12 dies a la superfície de la nau Foton-M3 i van sobreviure al viatge espacial. El 2011 la NASA va fer el mateix col·locant-los a l’exterior del transbordador espacial Endeavour i es van corroborar els resultats. Van sobreviure al buit, als rajos còsmics i a una radiació ultraviolada 1000 vegades superior a la de la superfície terrestre. El projecte Biokis (2011) de l’Agència Espacial Italiana (ASI) va estudiar l’impacte d’aquests viatges a nivell molecular.

COM HO FAN?

Els tardígrads són capaços de resistir aquestes condicions tan extremes perquè entren en estat de criptobiosi quan les condicions són desfavorables. És un estat extrem d’anabiosi (disminució del metabolisme). Segons les condicions que han de suportar, la criptobiosi es classifica en:

  • Anhidrobiosi: en cas de deshidratació del medi, entren en “estat de barril” ja que adopten aquesta forma per reduir la seva superfície i s’emboliquen en una capa de cera per evitar la pèrdua de l’aigua per transpiració. Per evitar la mort de les cèl·lules, sintetitzen trehalosa, un sucre que substitueix a l’aigua del seu cos i manté intacta l’estructura de les membranes cel·lulars. Redueixen el contingut d’aigua del seu cos fins a només un 1% i seguidament detenen el seu metabolisme gairebé per complet (0,01% per sota del normal).

    Tardígrado deshidratado. Foto de Photo Science Library
    Tardígrad deshidratat. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library
  • Criobiosi: en cas de sotmetre’s a baixes temperatures, l’aigua de gairebé qualsevol ésser viu cristal·litza, trenca l’estructura de les cèl·lules i l’ésser viu mor. Però els tardígrads utilitzen proteïnes que congelen bruscament l’aigua de les cèl·lules en forma de petits cristalls, de manera que aconsegueixen evitar el seu trencament.
  • Osmobiosi: es dóna en cas d’augment de la concentració salina del medi.
  • Anoxibiosi: en cas de manca d’oxigen, entren en un estat d’inactivitat en el que deixen el seu cos totalment estirat, de manera que necessiten aigua per mantenir-se turgents.

En el cas de les exposicions a les radiacions, que destruirien l’ADN, s’ha observat que els tardígrads són capaços de reparar el material genètic malmès.

Aquestes tècniques ja han estat imitades en camps com la medicina, conservant òrgans de rates per posteriorment “reviure’ls” i poden obrir altres vies de conservació de teixits vius i trasplantaments. També obren nous camps en l’exploració espacial de vida extraterrestre (astrobiologia) i fins i tot en l’exploració humana de l’espai per resistir llargs viatges interplanetaris, en idees de moment, més properes a la ciència ficció que a la realitat.

SÓN EXTRATERRESTRES?

L’escàs registre fòssil, el seu parentiu evolutiu poc clar i la seva gran resistència, van provocar hipòtesis que especulaven amb la possibilitat que els tardígrads hagin vingut de l’espai exterior. No es tracta d’una idea sense cap ni peus, encara que altament improbable. La panspèrmia és la hipòtesi per la qual la vida, o millor dit, les molècules orgàniques complexes, no es van originar a la Terra, sinó que van arribar gràcies a meteorits durant els inicis del Sistema Solar. De fet, s’han trobat meteorits amb aminoàcids (molècules indispensables per a la vida) en la seva composició, de manera que la panspèrmia és una hipòtesi que no es pot descartar encara.

Foto de Eye Of Science/Photolife Library
Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

Però no és el cas dels tardígrads: el seu ADN és igual al de la resta d’éssers vius terrestres i els últims estudis filogenètics els emparenten amb els onicòfors (animals semblants a cucs), asquelmints i artròpodes. El que és fascinant és que és l’animal amb més ADN aliè: fins al 16% del seu genoma pertany a fongs, bacteris o arquees, obtinguts per un procés anomenat transferència genètica horitzontal. La presència de gens aliens a altres espècies animals no sol ser més de l’1%. Serà això el que li ha permès desenvolupar aquesta gran resistència?

VOLS BUSCAR TARDÍGRADS TU MATEIX I OBSERVAR-LOS EN ACCIÓ?

En ser tan comuns i habitar potencialment gairebé qualsevol lloc, si disposes d’un microscopi, per senzill que sigui, pots buscar i veure tardígrads vius amb els teus propis ulls:

    • Agafa un tros de molsa d’una roca o mur, millor si està una mica sec.
    • Deixa’l assecar al sol i neteja’l de terra i altres restes grans.
    • Posa’l a l’inrevés en un recipient transparent (com una placa de Petri), mulla’l amb aigua i deixa-ho reposar unes hores.
    • Retira la molsa i busca els tardígrads a l’aigua del recipient (posa-ho en un fons negre per veure més fàcilment). Si hi ha sort, amb una lupa els podràs veure movent-se
    • Agafa’ls amb una pipeta o comptagotes, col·loca’ls en el portaobjectes i a gaudir! Podries veure coses semblants a aquesta:

Mireia Querol Rovira

REFERENCIAS

Perill, mamífers verinosos!

Normalment associem a les serps, aràcnids, meduses, etc. com els animals verinosos per excel·lència, però sabies que també hi ha mamífers verinosos? En aquest article descobrirem quins són i la natura i ús dels seus verins.

L’ORNITORINC

L’ornitorinc (Ornithorhynchus anatinus) és el més famós entre els mamífers verinosos, i no només per aquesta característica. Amb un bec semblant a un ànec i reproducció ovípara (que posa ous), quan va ser descobert alguns científics pensaven que era un frau.

platypus ornitorrinco ornitorinc
Ornitorinc (Ornithorhynchus anatinus). Foto de Jonathan Munro

Pertanyen a l’ordre dels monotremes, que significa lieralment un sol orificien al·lusió a la cloaca, el final de l’aparell digestiu i reproductor. Alguns biòlegs evolutius es refereixen a ells com la “baula perdudaentre rèptils i mamífers, ja que presenten característiques d’ambdós grups. Els monotremes són els únics mamífers que posen ous, però el seu cos està cobert de pèl i les cries s’alimenten de la llet materna. Es distribueixen per Austràlia, Tasmània i Nova Guinea.

Els ornitorincs tenen un esperó a les potes del darrere, que només en el cas dels mascles, allibera verí produït per les glàndules crurals (situades a la cama). El mascle ho utilitza principalment per defensar el seu territori i establir la seva dominància durant l’època d’aparellament, encara que si és molestat també el fa servir com a defensa. Aquest verí és capaç de matar animals petits, fins i tot a gossos, i provocar un dolor intens i inflamació en els humans. Aquest dolor pot durar dies o mesos segons el cas.

Platypus spur, espolón ornitorrinco
Esperó a la pota del darrere d’un ornitorinc. Foto de E. Lonnon

Les toxines són quatre proteïnes, tres de les quals són exclusives de l’ornitorinc. Són semblants a les defensines (DLP, defensinlike proteins). Es tracta de proteïnes de tipus globular, petites i compactades, que participen en l’activació dels receptors del dolor. El coneixement de com actuen aquestes toxines, d’especial interès perquè provoquen un dolor durador i intens, pot obrir noves vies en la síntesi de fàrmacs analgèsics.

short-beaked echidna, equidna de nariz corta, equidna de nas curt
Equidna de nas curt (Tachyglossus aculeatus). Foto de Tony Britt-Lewis

Els equidnes (família Tachyglossidae) completen l’ordre dels monotremes juntament amb l’ornitorinc; en conseqüència també són ovípars. La família està formada per quatre espècies, amb la característica comuna de tenir el cos cobert de pèl dens i espines. Són principalment insectívors especialitzats en formigues i tèrmits (mirmecòfags).

Igual que els ornitorincs, també posseeixen esperons darrere dels genolls, però les seves secrecions no són verinoses. Les utilitzen com a substàncies per marcar el seu territori, segons els  últims estudis.

LORIS PERESOSOS

Com vam veure en un article anterior, els loris són primats del subordre dels prosimis. Són nocturns, arborícoles i s’alimenten principalment d’insectes, vegetals i fruites. Els loris peresosos (gènere Nycticebus), originaris del sud-est asiàtic, són els únics primats verinosos. Posseeixen glàndules verinoses als colzes (glàndula braquial), i es distribueixen el verí pel cos amb els braços i la llengua, el qual també pot unir-se a la saliva i transmetre‘s per mossegades.

lori pigmeo, nycticebus pigmaeus,
Loris pigmeu (Nycticebus pigmaeus). Foto de Ch’ien C. Lee

En aquest cas el verí és utilitzat com a defensa davant els seus depredadors, el que els provoca dolor, inflamació, necrosi (mort cel·lular) a la zona de la mossegada, hematúria (sang en orina) o en alguns casos xocs anafilàctics (reacció al·lèrgica) que poden conduir a la mort, fins i tot en humans (alguns estan amenaçats per la seva comercialització il·legal com a mascotes i en la medicina tradicional xinesa). El verí també serveix de protecció per a les cries, ja que en ser llepades pels seus progenitors la secreció verinosa es distribueix per tot el pelatge. El fet de ser verinosos, insòlit dins dels primats, pot ajudar a contrarestar els desavantatges dels seus lents moviments. L’exsudat de les glàndules, igual que en els equidnes, també pot donar informació olfactiva de rang i territori entre individus de loris (Hagey et al., 2007).

Loris de Kayan (Nycticebus kayan). foto de Ch'ien C. Lee
Loris de Kayan (Nycticebus kayan). Foto de Ch’ien C. Lee

Les toxines són de tipus polipeptídic (que es generen en barrejar la secreció glandular amb la saliva) i un esteroide no identificat. La secreció és semblant a l’al·lergen Fel d 1, que es troba en el gat domèstic i provoca al·lèrgies en humans (Hagey et al., 2006; Krane et al., 2003).

Es creu fins i tot que els loris mandrosos han convergit evolutivament amb les cobres, pel seu comportament defensiu quan es troben amenaçats, xiulant i aixecant els braços al voltant del seu cap (Nekaris et. al, 2003).

Loris, cobras, evolucion, convergencia
Mimetisme entre loris i cobres. 1. Lori de Java, 2 y 3. Cobra india 4. Lori de Bengala. Foto de Nekaris et. al.

En el següent vídeo una lori peresós és molestat i xiula com una serp mentre tracta de mossegar:

 EL SOLENODONT O ALMIQUÍ

Es tracta de petits mamífers nocturns semblants a les musaranyes i bàsicament insectívors que habiten a les Antilles. El solenodont de La Española (Solenodon paradoxus) habita a l’illa del mateix nom (República Dominicana i Haití) mentre que l’almiquí de Cuba (Solenodon cubanus) es distribueix per Cuba. Se’ls considera fòssils vivents ja que presenten característiques primitives similars a les que posseïen els mamífers del final de l’Era Secundària (regnat dels dinosaures).

solenodonte de La Española (Solenodon paradoxus
Solenodont de La Española (Solenodon paradoxus). Foto de Eladio M. Fernández.

A diferència de la resta de mamífers verinosos, la saliva tòxica es produeix en unes glàndules sota de la mandíbula (glàndules submaxil·lars), que és transportada per conductes cap a la part davantera de la boca. Les segons dents incisives tenen un solc on s’acumula la saliva tòxica per afavorir la seva entrada a les ferides. Són doncs els únics mamífers que injecten verí a través de les seves dents, de manera similar a les serps.

diente, solenodon, teeth, surco
Mandíbula inferior de Solenodon paradoxus on es veu el solc de l’incisiu. Foto de Phil Myers

La principal funció d’aquest verí és immobilitzar les preses que cacen, ja que a més d’insectes poden atrapar petits vertebrats com rèptils, amfibis o aus.

Almiquí, Cuba, Solenodon, cubanus, Cuban giant shrew
Almiquí de Cuba (Solenodon cubanus). Foto de Julio Genaro.

Evolutivament, aquest verí pot haver-se desenvolupat per mantenir preses vives però immòbils durant èpoques d’escassetat, per ajudar en la digestió, minimitzar la despesa d’energia en la lluita durant la caça i enfrontar-se a preses fins i tot el doble de grans que ells. Aquest verí no és mortal per als humans.

MUSARANYES

La musaranya cuacurta septendrional (Blarina brevicauda), la musaranya aquàtica pirinenca (Neomys fodiens) i la musaranya aquàtica mediterrània (Neomys anomalus) també posseeixen glàndules submaxil·lars com el solenodont. Es distribueixen per Amèrica del Nord (musaranya cuacurta) i Europa i Àsia (musaranyes aquàtiques), inclosa la Península Ibèrica.

Musaraña colicorta americana (Blarina brevicauda). Foto de Gilles Gonthier.
Musaranya cuacurta septentrional (Blarina brevicauda). Foto de Gilles Gonthier.

La musaranya cuacurta pot consumir fins a tres vegades el seu pes d’aliment al dia. La seva saliva és la més verinosa que existeix i la fa servir per paralitzar a les seves preses, per menjar-les o conservar-les vives en períodes d’escassetat. Les musaranyes aquàtiques també emmagatzemen les seves preses immobilitzades sota de les roques.

Musgaño (Neomys anomalus). Foto de rollin Verlinde.
Musaranya aquàtica mediterrània (Neomys anomalus). Foto de Rollin Verlinde.

Aquests animals ataquen des del darrere i mosseguen el coll de les seves preses perquè el verí actuï més ràpidament, ja que afecta el sistema nerviós central (neurotoxines). L’aparell respiratori i vascular també resulta afectat i produeix convulsions, descoordinació de moviments, paràlisi i fins i tot la mort de petits vertebrats.

Musgaño patiblanco-Neomys_fodiens, Wasserspitzmaus
Musaranya aquàtica pirinenca (Neomys fodiens). Foto de R. Altenkamp.

Les seves dents no tenen solcs com els dels solenodonts, però sí una superfície còncava per emmagatzemar la saliva tòxica.

neomys, anomalus, mandibula, dientes, veneno
Mandíbula inferior de Neomys anomalus. Foto de António Pena.

Se sospita que altres mamífers produeixen també saliva tòxica de manera similar, com el talp europeu (Talpa europaea) i altres espècies de musaranya, però no es disposa d’estudis concloents.

RATA CRESTADA AFRICANA

També coneguda com rata de crinera (Lophiomys imhausi), la rata crestada africana utilitza verí present al seu pèl per protegir-se dels seus depredadors.

Rata crestada Lophiomys_imhausi, rata de crin, maned rat
Rata crestada africana (Lophiomys imhausi). Foto de Kevin Deacon

A diferència de la resta de mamífers que produeixen els seus propis verins, la rata crestada africana obté la toxina (anomenada ouabaína) de l’escorça i arrels d’un arbre (acocantera o llorer tòxic, Acokanthera schimperi). Els mastega i s’unta la barreja de saliva i tòxic al cos. Els seus pèls tenen una estructura microscòpica cilíndrica perforada, el que afavoreix l’absorció del verí. En cas de perill, s’estarrufa i mostra el seu pelatge marró a ratlles blanques, advertint del seu perill potencial. Aquesta estratègia de persuasió basada en colors cridaners d’advertència es coneix com aposematisme, present en molts animals, com les abelles.

En aquest vídeo de la BBC online s’observa una rata crestada i imatges al microscopi d’un pèl absorbint tinta, mostrant la seva estructura porosa:

Es desconeix de quina manera és immune a la toxina, ja que és la mateixa substància que fan servir algunes tribus africanes per caçar animals tan grans com l’elefant. La ouabaína és un glucòsid que controla el batec del cor, provocant infarts si s’absorbeix en grans quantitats. L’estudi dels mecanismes que protegeixen la rata crestada d’una substància que regula el ritme cardíac, pot ajudar al desenvolupament de tractaments per a problemes cardíacs.

Els eriçons europeus (Erinaceus europaeus) tenen un comportament similar (empastifar-se el cos amb verí aliè), però no s’ha pogut comprovar si l’objectiu és defensiu ja que no espanta als depredadors.

En conclusió, les estratègies, usos i natures del verí en mamífers són variades i el seu estudi pot tenir importants conseqüències mèdiques en el desenvolupament de fàrmacs, així com augmentar el coneixement de les relacions evolutives entre diferents grups d’animals actuals (rèptils-mamífers) i seus avantpassats.

REFERÈNCIES

mireia querol rovira