Arxiu d'etiquetes: partenogènesi

La vida (a)sexual dels insectes

La majoria de grups d’insectes presenta organismes unisexuals que es reprodueixen sexualment mitjançant la còpula, generant descendència a través de la posta d’ous. Tanmateix, la seva enorme diversitat també amaga un gran ventall de mecanismes reproductius.

Descobreix-los a través d’aquest article!

Tipus de reproducció

Reproducció sexual: anfigònia i partenogènesi

La reproducció sexual implica la participació de cèl·lules sexuals especialitzades o gàmetes, les quals s’originen dins els òrgans sexuals de l’individu per meiosi. És el tipus de reproducció més comuna entre els artròpodes i els insectes.

1. Anfigònia

En l’anfigònia, es generen dos tipus de gàmetes que, en fusionar-se, donen lloc a l’embrió. Dins d’aquesta modalitat, la majoria d’insectes són unisexuals o dioics, de manera que cada organisme desenvolupa un sol tipus de gàmeta; de fet, són molt pocs els casos en què un únic organisme genera els dos gàmetes (hermafroditisme); és el cas de Icerya purchasi (Hemiptera), Perla marginata (Plecoptera) i de diverses espècies de la família Termitoxenidae (Diptera).

Icerya purchasi (esquerra; imatge propietat de Vijay Cavale, CC 3.0) i Perla marginata (dreta; imatge propietat de gailhampshire en Flickr, CC 2.0).

Cerca de parella i festeig

En els organismes unisexuals o dioics, la fusió dels gàmetes només és possible un cop troben una parella. Les estratègies que els insectes fan servir per trobar un company adient són molt diverses: emissió de feromones i / o llum, desenvolupament d’un determinat patró de coloració o emissió de sons i vibracions (moltes de les quals ja vam tractar en aquest article sobre la comunicació dels insectes).

Un cop trobada la parella, pot tenir lloc un procés de festeig, el qual anirà seguit de la còpula si aquest té èxit. El festeig pot tenir lloc mitjançant l’execució de balls nupcials, l’entrega d’ofrenes (per exemple, menjar; és el cas d’algunes mosques escorpí (Mecoptera)) o la formació d’eixams (vols nupcials, com en Hymenoptera), entre d’altres. En alguns casos, la femella no decideix aparellar-se amb el mascle si aquest no es troba en possessió d’un territori ampli o una font d’aliment.

En aquest vídeo podem veure el vol nupcial de les abelles mel·líferes:

Fecundació

La fecundació o singàmia és el procés mitjançant el qual els gàmetes es fusionen per donar lloc a l’embrió, fet que té lloc tant en organismes dioics com hermafrodites.

  • Interna

Seguint amb els organismes dioics, el mecanisme més estès entre els insectes “moderns” per garantir la trobada dels gàmetes és la còpula (fecundació interna). En aquest cas, el mascle sol transmetre directament els seus gàmetes (espermatozoides) al cos de la femella, on es troben els gàmetes femenins (òvuls).

Saltamartins de l’espècie Romalea microptera, nadiua dels Estats Units. Imatge propietat de http://www.birdphotos.com, CC 3.0.
  • Externa

En alguns insectes i grups relacionats més “primitius”, la fecundació té lloc sense que entren en contacte els òrgans sexuals (fecundació externa). En aquests casos, el mascle allibera un espermatòfor, un paquet d’esperma generat per les glàndules accessòries del seu aparell reproductor, recobert d’una pel·lícula lipoproteica que prevé la seva dessecació. Es considera un pas intermedi entre la reproducció en el medi aquàtic pròpia de grups “primitius”, els quals alliberaven l’esperma a l’aigua sense risc a dessecar-se, i la reproducció en el medi terrestre.

La seva producció és pròpia de grups relacionats als hexàpodes, com Myriapoda (centpeus i milpeus); d’hexàpodes basals, com Collembola, Diplura i Protura; d’insectes basals, com Archaeognatha i Zygentoma (peixets de coure i peixets de plata); i de certs grups d’insectes més “moderns”, com molts Orthoptera, Psocoptera, Coleoptera, Neuroptera, Mecoptera i alguns Hymenoptera. En alguns casos, el mascle allibera l’espermatòfor al medi, el qual és recollit posteriorment per la femella (cas de Collembola); en altres, el mascle l’ofereix a la femella o bé la dirigeix ​​al lloc on aquest es troba (Zygentoma i Archaeognatha).

Collembola de l’espècie Sminthurus viridis; darrera, l’espermatòfor pedunculat propi d’aquest ordre d’insectes. Imatge modificada a partir de la fotografia original de Gilles San Martin a Flickr, CC 2.0.
Femella d’Orthoptera recollint l’espermatòfor d’un mascle. Imatge modificada a partir de la fotografia original de Sandrine Rouja a Flickr, CC 2.0.

La fecundació interna es considera, doncs, una novetat evolutiva i adaptativa al medi terrestre. No obstant això, a dia d’avui encara hi ha insectes amb fecundació interna que conserven la informació genètica per produir espermatòfor; en aquests casos, el mascle introdueix ell mateix l’espermatòfor dins la femella, el qual li serveix a aquesta com a font addicional de nutrients pels seus ous.

De vegades, el mascle ofereix l’espermatòfor com a regal nupcial, incloent dins d’aquest nutrients per a la femella.

2. Partenogènesi

A la partenogènesi, la generació de descendència té lloc a través d’òvuls sense fecundar. Habitualment, se la tendeix a classificar com un tipus de reproducció asexual; tanmateix, és molt més apropiat considerar-la un tipus de reproducció sexual en estar implicats els gàmetes femenins generats per meiosi.

La partenogènesi pot ser:

  • Accidental: es desenvolupa un individu a partir d’un òvul sense fecundar de manera excepcional en espècies anfigòniques; ex. Bombyx mori (papallona del cuc de seda).
  • Facultativa: alguns òvuls són fecundats i altres, no.
  • Obligada: els òvuls només poden desenvolupar-se sense fecundació. És el cas d’espècies que alternen generacions partenogenètiques i anfigòniques.
Mariposa del gusano de seda (Bombyx mori). De forma extraordinaria, algunos de sus huevos sin fecundar generan descendencia. Imagen propiedad de Nikita en Flickr, CC 2.0.

A més a més, segons la dotació cromosòmica de l’òvul, la partenogènesi pot ser:

  • Haploide (n) o arrenotoca: els òvuls sense fecundar (n) sempre generen mascles i els fecundats (2n), femelles. Es dóna en abelles i en altres Hymenoptera, en alguns Coleoptera i en Zygentoma, i sempre és facultativa. El control del sexe de la descendència és un procés clau en l’evolució de les estructures colonials en insectes socials.
En les abellesmel·líferes, els ous fecundats generen femelles (obreres o, en caso de rebre una alimentació especial, una nova reina) i els no fecundats, mascles. Fotografies de Alex Wild i figura de Ashley Mortensen (web de la Universitat de Florida).

 

  • Diploide (2n) o telitoca: els òvuls sense fecundar (2n) sempre donen lloc a femelles amb la mateixa càrrega genètica que la progenitora (clons). Es dóna en pugons (Aphididae, Hemiptera), paneroles, cotxinilles (Coccoidea, Hemiptera) i en alguns escarabats curculiònids, i sol ser obligada. Aquest tipus de partenogènesi té la potencialitat de generar una gran quantitat de descendència en poc temps en detriment de la variabilitat genètica. En els pugons, les generacions partenogenètiques alternades amb les anfigòniques permeten explosions demogràfiques en moments puntuals.
Pugons de l’espècie Aphis nerii. Imatge propietat de Andrew C, CC 2.0.

De vegades, la partenogènesi pot tenir lloc en estadis immadurs, com les larves o les pupes. És el cas de la pedogènesi, en la qual les formes immadures poden generar descendència mitjançant aquest procés; es dóna en alguns cecidòmids (Diptera) i en una espècie d’escarabat, Macromalthus debilis, entre d’altres. Cal no confondre-la amb la neotènia, cas en què una forma larvària desenvolupa tots els trets i estructures reproductius propis d’un adult (cas d’algunes cotxinilles).

Reproducció asexual

En la reproducció asexual, la generació de descendència té lloc sense la participació dels gàmetes.

És una modalitat molt poc habitual en insectes, representada únicament per una forma molt peculiar coneguda com a poliembrionia. Mitjançant aquest procés, a partir d’un sol òvul fecundat es generen centenars d’individus per escissió de l’embrió. Tot i que inicialment té lloc una fecundació, la resta d’individus es genera asexualment. Es dóna únicament en unes poques espècies de cecidòmids i himenòpters calcídids (parasitoides), propiciant una gran explosió poblacional.

Generació de descendència

La producció de descendència en els insectes pot tenir lloc de diverses maneres:

Oviparisme

Té lloc mitjançant la posta d’ous, éssent el mecanisme més estès.

Posta de mantis o ooteca (esquerra; imatge propietat de Scot Nelson a Flickr, CC 2.0) i posta de la papallona blanca de la col, Pieris brassicae (dreta; imatge propietat de Walter Baxter, CC 2.0).

Ovoviviparisme

Els ous fertilitzats són incubats dins dels conductes reproductius de la femella. Té lloc en algunes paneroles, pugons, cotxinilles i mosques (Muscidae, Calliphoridae i Tachinidae), i en uns pocs escarabats i trips (Thysanoptera). Els ous eclosionen immediatament abans o després de la posta.

Viviparisme

Les femelles donen a llum directament a les larves. Existeixen diferents modalitats entre els insectes:

  • Viviparisme pseudoplacentari: la femella desenvolupa ous amb poc vitel en els seus conductes reproductors i aquesta els nodreix mitjançant un teixit similar a una placenta. Es dóna en molts pugons i Dermaptera, en alguns Psocoptera i en Polyctenidae (Hemiptera).

En aquest vídeo de Neil Bromhall, veiem un grup de pugons o àfids “donant a llum”:

  • Viviparisme hemocèlic: els embrions es desenvolupen lliurement dins l’hemolimfa de la femella (líquid intern equivalent a la sang), de la qual obtenen nutrients per òsmosi. Ocorre només en Strepsiptera i en cecidòmids. En alguns cecidòmids, les larves consumeixen a la seva progenitora, que també és una larva (cas extrem de pedogènesi larvària).
  • Viviparisme adenotròfic: la larva està tan poc desenvolupada que ha de continuar alimentant-se a partir de secrecions procedents d’unes glàndules accessòries (“glàndules mamàries”) situades en el canal reproductiu de la femella. Un cop assoleix una mida adequada i després de ser dipositada, la larva pupa immediatament. Ocorre en dípters de les famílies Glossinidae (mosca tse-tse), Hippoboscidae (mosques dels cavalls o coloms), Nycteribidae i Streblidae (mosques dels ratpenats).

En aquest vídeo de Geoffrey M. Attardo (AAAS/Science), veiem una mosca tse-tse donant a llum a una larva:

.              .              .

Qui havia dit que la vida (a)sexual dels insectes era senzilla? I tú, et saps alguna curiositat? Envia’ns els teus comentaris!

Referències

La imatge de portada és propietat de Irene Lobato Vila (autora d’aquest article).

L’abella assassina: el cas que conmocionà Amèrica

A la dècada dels 60, la premsa americana va treure a la llum un cas que posà en alerta mig món: la hibridació entre dues abelles de la mel havia donat com a resultat a un nou organisme “imparable, agressiu i letal”. L’abella assassina havia arribat.

Durant molt de temps, aquest petit insecte va protagonitzar múltiples portades de diaris i revistes, arribant, fins i tot, a inspirar algunes pel·lícules de terror (com “The Swarm”, del 1978). Però en quin moment la ficció va superar la realitat? Què hi ha de verídic en aquesta història? T’ho expliquem en aquest article.

L’origen de l’abella assassina

Les abelles de la mel més famoses pertanyen a l’espècie Apis mellifera, àmpliament distribuïda arreu del món. Totes les seves subespècies són originàries d’Europa, Àfrica i part d’Àsia, tot i que moltes d’elles (sobretot les europees) han estat importades a moltes parts del món degut a la seva importància com a pol·linitzadores i productores de mel.

Pots llegir més sobre aquest tema al post “La vida en família de les abelles i l’apicultura“.

apiario-abejas
La cria d’abelles de la mel (apicultura) és una pràctica molt estesa arreu del món. A Amèrica, les abelles de la mel europees foren importades per aquesta finalitat. Autor: Emma Jane Hogbin Westby, CC a Flickr.

L’origen de les abelles assassines es troba en la subespècie A. mellifera scutellata o abella africana, originària de l’Àfrica subsahariana i del sud-est d’Àfrica. A diferència de les abelles europees, són molt agressives. A Amèrica, aquestes abelles van creuar-se amb abelles de la mel europees importades, generant uns híbrids coneguts com a abelles africanitzades o brasileres. Aquestes abelles híbrides, juntament amb les abelles africanes originals de la subespècie scutellata i els seus descendents al continent americà, són les que van rebre el sobrenom d’abelles assassines.

distriubució-abella_africana
Distribució nativa de l’abella de la mel africana. Font: UF/IFAS, Universidad de Florida. Il·lustració original de Jane Medley, Universitat de Florida.

Com i per què es va expandir?

Als anys 50, la importació d’abelles europees a Amèrica era una pràctica habitual. Ara bé, mentre que l’apicultura funcionava bé als EUA, a Sud-Amèrica el rendiment era baix degut a la inadaptació de les abelles al clima tropical. Així va ser com l’any 1956, el científic brasiler Warwick Kerr proposà la importació d’abelles de la mel africanes a Sud-Amèrica degut a què els seus requeriments climàtics encaixaven perfectament amb el clima brasiler; quedava, però, solucionar el problema de l’agressivitat. La idea del Dr. Kerr era obtenir una varietat dòcil que fos productiva en climes tropicals mitjançant la selecció artificial i l’entrecreuament entre abelles africanes i europees.

Tot podria haver estat un èxit si no fos perquè algunes abelles experimentals van escapar durant el projecte, formant ràpidament noves colònies a la natura i hibridant-se amb abelles europees per donar lloc a les ja mencionades abelles africanitzades, més agressives i menys productives del que Kerr esperava obtenir. Així, els apicultors es trobaven amb què les seves abelles eren a poc a poc substituïdes per híbrids difícils de manipular i potencialment més perillosos.

Actualment, aquestes abelles es troben molt distribuïdes per tot el continent americà. Als EUA, el seu límit es troba als estats surenys, doncs el seu origen tropical va frenar la seva progressió cap al nord.

Expansió-abella_assassina
La progressió de l’abella assassina pel continent americà va ser molt ràpida, arribant fins els estats situats més al sud dels EUA. Font de la imatge original: Harvard University Press (86).

Les abelles assassines de prop

Morfologia

Un dels principals problemes amb què es trobaven els apicultors era distingir les abelles europees de les africanes i les africanitzades, doncs pràcticament no es diferencien a simple vista. El seu estudi, però, ha permès evidenciar dues diferències: tant abelles africanes com africanitzades són lleugerament més petites (aprox. 10%) i sensiblement més fosques que les europees. Tanmateix, continuen sent necessaris anàlisis morfomètrics per diferenciar-les correctament, sobretot quan els gens africans estan més diluïts.

apis_mellifera_scutellata-apis_mellifera_mellifera
A l’esquerra, Apis mellifera scutellata o abella africana; a la dreta, Apis mellifera mellifera o abella de la mel europea. Autor: Scott Bauer, USDA Agricultural Research Service, United States. Domini públic.

Comportament

Les abelles africanes presenten diferències en determinats trets del seu comportament que les fan potencialment més perilloses que les seves parents europees:

  1. Més agressives. L’exposició a diferents pressions ambientals al seus hàbitats d’origen podria ser la causa d’aquesta diferència: a Europa, tradicionalment s’han seleccionat i criat varietats més manses i fàcils de gestionar, mentre que a Àfrica és habitual la recol·lecció directa dels ruscs salvatges. Aquesta pràctica, més la presència d’enemics naturals, podria haver seleccionat individus amb una major capacitat per defensar el niu.
  1. Atac massiu. Mentre que les europees ataquen en números no superiors a 10-20 individus, les africanes ho fan en grups de centenars, podent causar entre 100-1000 picades. Existeixen evidències de la producció de feromones alliberades durant l’atac que incitarien a altres individus a unir-s’hi. Alhora, el territori que defensen al voltant del niu és molt superior i el nivell d’estímul que necessiten per iniciar un atac és molt més baix.

1283

bees_mackley_hospital
Els casos d’atacs massius d’abelles africanes i africanitzades són poc freqüents, però impactants. A dalt, els granjer Lamar LaCaze va ser atacat per una colònia de 70.000 abelles que s’havia instal·lat dins d’un antic escalfador d’aigua (Font: Inside Edition). A baix, el cas de l’escalador Robert Mackley, el qual va ser atacat durant més de 3 hores quan va quedar atrapat mentre efectuava una ascenció; va rebre al voltant de 1500 picades (Font: Phoenix New Times; autor: Robert Mackley) .
  1. Facilitat per formar eixams. Les colònies d’abelles europees formen eixams (quan unes quantes abelles marxen amb l’abella reina per formar una nova colònia) d’1 a 3 cops l’any, mentre que les abelles africanes poden arribar a formar-ne fins a 10 cops l’any, més encara si se senten amenaçades.
eixam_abella-assassina
Eixam d’abelles de la mel africanes. Autor: Michael K. O’Malley, University of Florida.
  1. Selecció del lloc de nidificació. Les abelles africanes són molt poc selectives a l’hora d’escollir un lloc de nidificació, de manera que se’n poden trobar en una gran varietat d’espais, sobretot petits: canonades, cubells de les escombraries, esquerdes de cases, forats al terra, etc.
Niu-abella_assassina
Una colònia d’abelles africanes establerta a l’interior d’un cubell. Autor: Michael K. O’Malley, University of Florida.
africanized_honey_bee_hive
Niu d’abelles africanitzades instal·lat a les estructures d’un habitatge. Autor: Ktr101, CC.
  1. Usurpació de nius d’abelles europees. Aquest és, possiblement, un dels aspectes més curiosos del seu comportament. El procés té lloc molt subtilment: les obreres d’un eixam d’abelles africanes que aterra al niu d’una colònia d’abelles europees comencen a intercanviar menjar i feromones amb les obreres europees; d’aquesta manera, les abelles europees deixen de veure-les com a intruses i les adopten dins del rusc. De cop, en algun moment del procés la reina de la colònia europea mor i és substituïda per la reina africana. Així, les abelles europees són substituïdes per abelles africanes i els seus híbrids.

Biologia

Tot i que la biologia reproductiva i el desenvolupament de les abelles de la mel és molt semblant, hi ha alguns trets de les africanes que els confereixen certs avantatges adaptatius respecte de les europees, fet que explicaria en bona part l’èxit de la seva dispersió a Amèrica:

  1. Major producció de mascles haploides per partenogènesi (abellots). Aquests formen grans núvols durant el vol reproductor que superen amb escreix els dels mascles europeus. Així, la probabilitat que les reines europees entrin en contacte i copulin amb mascles africans és molt superior, fet que afavoreix els gens de la subespècie africana.
  1. Desenvolupament molt més ràpid. Les colònies creixen i es dispersen ràpidament.
  1. Major resistència a patògens i paràsits. Per exemple a la varroa, a l’escarbat dels ruscs Aethina tumida o a les bactèries del gènere Paenabacilis, els quals han acabat amb moltes poblacions d’abelles europees a Amèrica.
varroa_destructor_on_a_bee_nymph_5048094767-min
Varroa destructor sobre una nimfa d’abella de la mel europea. Autor: Gilles San Martin, CC.

La forma com s’expressen tots aquests trets en les abelles híbrides varia segons la proporció de gens europeus i africans que presentin, fet que depèn de la distància al focus original de dispersió. Així, per exemple, als EUA són genèticament més semblants a les europees i generalment resulten menys agressives.

Són realment un risc per a la salut pública?

Amb el número de picades que reben les seves víctimes (provocant reaccions anafilàctiques en persones no al·lèrgiques), la ferocitat de l’atac, la gran versatilitat a l’hora de seleccionar un lloc on nidificar (podent ser més pròximes a zones urbanitzades) i l’especial sensibilitat que presenten vers qualsevol soroll o vibració (podent desencadenar la formació d’eixams), n’hi ha prou per dir que constitueixen un risc per la salut pública.

Tanmateix, els casos més sonats d’atacs massius solen ser fets aïllats, i el que més preocupa a nivell de salut pública són els grups de risc (nens, persones grans i malaltes o incapacitades) i els animals domèstics, els quals tindrien més dificultats per fugir i sobreviure a un atac, encara que aquest no fos tant massiu.

Tot i el risc potencial que poden suposar, actualment la situació està molt controlada gràcies a què el seu estudi i seguiment han permès posar en marxa diferents mesures per tenir un bon control de les seves poblacions i, fins tot, treure’n profit. Per exemple, a Centre i Sud-Amèrica fa anys que les crien per produir mel i pol·linitzar conreus, havent-se convertit en uns grans productors a escala mundial. Per fer-ho, apliquen mesures de gestió dels nius una mica diferents a les habituals, com deixar que es desenvolupi una única colònia per rusc.

warning_killer-bee-area
Cartell en el que s’alerta de la presència d’abelles africanitzades; d’aquesta manera, es minimitza el risc d’entrar en contacte amb les seves colònies. Aquesta mesura, juntament amb la detecció prematura d’individus i a l’eliminació d’espais potencialment colonitzables per evitar l’assentament de colònies, formen part de les mesures de prevenció per evitar la progressió i interacció amb aquests organismes. Font de la imatge: ALTHEA PETERSON/Tulsa World.

.          .          .

Tot i que l'”abella assassina” pot esdevenir perillosa donat el cas, no se l’hauria de considerar un mal major donat a l’enorme informació i control que existeix actualment sobre les seves poblacions. Tanmateix, un cop més es demostra que la interacció de l’ésser humà en els ecosistemes i la introducció d’espècies forànies pot jugar males passades…

REFERÈNCIES

  • Calderón, R. A., Van Veen, J. W., Sommeijer, M. J., & Sanchez, L. A. (2010). Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera). Experimental and Applied Acarology, 50(4): 281-297.
  • Ellis J., Ellis A. (2012). Apis mellifera scutellata Lepeletier (Insecta: Hymenoptera: Apidae). Entomology and Nematology Department, University of Florida, USA [en linia].
  • Evans, H. E. (1985). “Killer” Bees, The Pleasures of Entomology: Portraits of Insects and the People Who Study Them. Smithsonian Institution, Washington D.C. Pp 83-91.
  • Ferreira Jr, R. S., Almeida, R. A. M. D. B., Barraviera, S. R. C. S., & Barraviera, B. (2012). Historical perspective and human consequences of Africanized bee stings in the Americas. Journal of Toxicology and Environmental Health, Part B, 15(2): 97-108.
  • França, F. O. S., Benvenuti, L. A., Fan, H. W., Dos Santos, D. R., Hain, S. H., Picchi-Martins, F. R., Cardoso J. L., Kamiguti A. S., Theakston, R. D. & Warrell, D. A. (1994). Severe and fatal mass attacks by ‘killer’bees (Africanized honey bees—Apis mellifera scutellata) in Brazil: clinicopathological studies with measurement of serum venom concentrations. QJM, 87(5): 269-282.
  • Neumann, P., & Härtel, S. (2004). Removal of small hive beetle (Aethina tumida) eggs and larvae by African honeybee colonies (Apis mellifera scutellata). Apidologie, 35(1): 31-36.
  • O’Malley, M.K., Ellis, J. D., Zettel Nalen, C. M. & Herrera P. (2013). Differences Between European and African Honey Bees. EDIS.
  • Winston, ML. (1992). Killer Bees: The Africanized honey bee in the Americas. Harvard University Press, Cambridge, Massachutes, USA. 176 pp.

Foto de portada propietat de Gustavo Mazzarollo (c)/Alamy Stock Photo.

Difusió-català

Immaculada Concepció… en rèptils i insectes

El pont de desembre i les festes de Nadal tenen en comú que ambdues celebren el que anomenem la Immaculada Concepció. El fenòmen biològic pel qual una femella té descendencia sense que hi hagi aparellament amb un mascle s’anomena partenogènesi i, tot i que no hi ha cap prova que en demostri l’existència en éssers humans, els naixements virginals són un fenòmen força estès en el regne animal. En aquesta entrada veurem com ocorre aquest fenòmen tant increíble i algunes espècies en les que es dóna.

QUÈ ÉS LA PARTENOGÈNESI?

La partenogènesi és un tipus de reproducció asexual en la que la descendència prové d’un òvul sense fecundar. Al no haver-hi fecundació (unió del material genètic de l’òvul amb el de l’espermatozou) la descendencia no presentarà ADN del pare (si és que hi ha pare). Els fills resultants seràn còpies genètiques (clons) de la mare.

532px-Haploid,_diploid_,triploid_and_tetraploidEn la fecundació, al ajuntar-se l’òvul i l’espermatozou (ambdós haploides, amb n nombre de cromosomes cadascun) s’obtindrà un individu amb material genètic únic, fruit de la combinació de l’ADN del pare i de la mare (diploide, amb dues còpies de cada cromosoma, 2n cromosomes a cada cèl·lula). Els animals triploides (3n) o tetraploides (4n) es donen en espècies híbrides asexuals, tot i que en molts casos no solen ser viables. Imatge de Ehamberg.

En el cas dels animals partenogènics s’ha de suplir la falta de material genètic patern, ja que en moltes espècies els individus haploides no solen ser viables. En aquestes espècies es sol reestablir la diploidia (2n cromosomes) mitjançant un procés anomenat automixis. En algunes espècies però, els individus partenogènics amb genoma haploide són viables i no tenen cap problema per sobreviure.

Resulta impossible posar un exemple general de reproducció asexual,  ja que aquesta es troba molt estesa entre grups d’animals molt diferents i els casos són molts i molt diferents entre sí. A continuació us presentem uns quants exemples de diferents estratègies utilitzades pels animals per a reproduïr-se asexualment.

HAPLODIPLOIDIA EN ABELLES I VESPES

La haplodiploidia és un fenòmen que s’observa en dos ordres d’insectes, els himenòpters (abelles, formigues i vespes) i els tisanòpters (trips o xinxes del mal temps). En aquest sistema de determinació sexual, si l’òvul és fecundat naixeran femelles diploides, mentre que si no és fecundat naixeran mascles haploides.

Apis_Mellifera_Carnica_Queen_Bee_in_the_hiveColònia d’abelles carnolianes (Apis mellifera carnica), una subespècie d’abella de la mel de l’est d’Europa. Foto de Levi Asay.

En l’abella de la mel, quan l’abella reina es reprodueix amb un abellot (abella mascle), tots els individus diploides (2n) es convertiran en femelles, amb ADN combinat de la reina i l’abellot. En canvi, els abellots neixen per partenogènesi, en que un òvul de la reina es començarà a desenvolupar en un abellot haploide (n). Això implica que els individus d’una colònia descendents d’una mateixa reina estiguin molt més emparentats entre ells que els germans normals (els abellots porten el 100% del ADN matern). Això es creu que va ajudar al desenvolupament de conductes eusocials en els diferents grups d’himenòpters.

PARTENOGÈNESI CÍCLICA

Aquest tipus de partenogènesi es troba en diferents grups d’invertebrats que poden alternar entre la reproducció asexual i la reproducció sexual al llarg del seu cicle vital, depenent de les condicions ambientals.

1471-2164-14-412-1-lEsquema del cicle vital d’un rotífer, en el que s’alterna la reproducció asexual amb partenogènesi en períodes de bones condicions ambientals, amb la reproducció sexual amb un mascle haploide quan les condicions no són òptimes. Imatge extreta de Hanson et al. 2013.

Alguns grups d’invertebrats com els àfids, presenten reproducció asexual partenogènica desde la primavera fins a principis de tardor, quan les condicions són favorables. En moltes poblacions durant aquesta etapa només hi trobem femelles que pareixen més femelles.

Vídeo a càmera ràpida en que es veu com quan hi ha bones condicions ambientals els àfids aprofiten per augmentar ràpida i eficaçment el nombre d’individus asexualment. Vídeo de Neil Bromhall.

Al acostar-se la tardor, les femelles partenogèniques comencen a parir mascles i femelles sexuals. Els dos sexes es produeixen per partenogènesi i porten el 100% de l’ADN de la mare. Els individus sexats i alats es dispersen per evitar reproduïr-se amb els seus germans. Aquests copularan i les femelles pondran ous resistents que passaran l’hivern. A la primavera aquests ous donaran lloc a una nova generació de femelles partenogèniques que tornaran a començar el cicle.

PARTENOGÈNESI AUTÈNTICA EN ESCAMOSOS

L’únic grup de vertebrats en que s’observa partenogènesi autèntica és en els escamosos, amb unes 50 espècies de llangardaixos i una espècie de serp sent partenogènics obligats. Aquestes espècies són unisexuals, essent tots els individus femelles que es reprodueixen asexualment sense la intervenció de cap mascle. A més hi han bastantes espècies que, tot i reproduïr-se sexualment, poden reproduïr-se asexualment en absència de mascles (partenogènesi facultativa).

DesertGrasslandWhiptailLizard_AspidoscelisUniparensLlangardaix cua de fuet de l’espècie Cnemidophorus uniparens que, com el seu nom indica, és una espècie partenogènica en que tots els exemplars són femelles. Foto de Ltshears.

Hi ha casos aïllats taurons, serps i dragons de Komodo femelles en captivitat que s’han reproduït sense que hi hagués fecundació o còpula amb un mascle. Això però, es coneix com a partenogènesi accidental, ja que la alta mortalitat de la descendència (sobrevivint entre 1/100.000 i 1/milió) fa que probablement es degui a un error de l’organisme, més que no pas a un fenòmen adaptatiu.

ParthkomodoCria de dragó de Komodo (Varanus komodoensis) nascuda per partenogènesi accidental al Zoo de Chester. Foto de Neil.

Les femelles de les espècies realment partenogèniques produeixen òvuls haploides (amb n cromosomes) que es tornen diploides (2n cromosomes) mitjançant dos cicles de divisió consecutius durant la meiosi (automixis). En les espècies que presenten partenogènesi facultativa, la diploidia s’aconsegueix mitjançant la fusió de l’òvul amb un cos polar haploide que es forma durant la meiosi.

Oogenesis-polar-body-diagramEsquema de la formació dels cossos polars durant la oogènesi, els quals poden ajudar als rèptils partenogènics a recuperar la diploïdia. Esquema de Studentreader.

Partenogènesi autèntica és especialment coneguda en la serp cega de brahmin (Ramphotyphlops brahminus) i en moltes espècies de sargantanes. En aquestes espècies les femelles generen clons d’elles mateixes. Les espècies de sargantanes partenogèniques (igual que en molts amfibis) probablement es van originar per un fenòmen d’hibridació entre dues espècies sexuals. Molts llangardaixos cua de fuet (gèneres Cnemidophorus/Aspidoscelis) presenten espècies unisexuals en que no existeixen mascles, fruit d’un procés d’hibridació.

Ramphotyphlops_braminus_in_Timor-LesteExemplar de serp cega de brahmin (Ramphotyphlops braminus), l’únic ofidi unisexual conegut, en el que tots els individus trobats fins ara són femelles. Foto extreta de Kaiser et al. 2011.

L’espècie Cnemidophorus uniparens és una sargantana partenogènica unisexual fruit de l’hibridació entre C. inornatus i C. burti. L’híbrid resultant es va reproduïr de nou amb C. inornatus, formant l’espècie triploide (3n) partenogènica C. uniparens. La presència de genomes triploides, tetraploides, etc. és freqüent en rèptils unisexuals, ja que el seu origen híbrid fa que a vegades els genomes no es puguin barrejar .A més, el tindre més varietat cromosòmica compensa la manca de recombinació genètica.

En aquesta espècie, tot i ser unisexual, també s’observen conductes reproductores semblants a les de les espècies sexuals. En C. uniparens s’han observat conductes sexuals en les que una femella fa de mascle i “monta” a una altra femella, ajuntant les seves cloaques. S’ha vist, que les femelles que són muntades augmenten la quantitat d’ous que produeixen després d’aquesta còpula simulada. Es creu que d’un any a l’altre les femelles fan torns sobre quines munten i quines són muntades, alternant d’un any a l’altre la quantitat d’ous que produeixen.

Cnemidophorus-ThreeSpeciesTres espècies de llangardaixos cua de fuet. El del mig, Cnemidophorus neomexicanus és una espècie unisexual partenogènica, resultat de l’hibridació de dues espècies bisexuals, C. inornatus (esquerra) i C. tigris (dreta). Foto de Alistair J. Cullum.

Tot i ser espècies partenogèniques autentiques, molts d’aquests escamosos mantenen la capacitat de incorporar ADN nou a la descendència. Això es dèu a que si no hi ha recombinació genètica per la fusió de l’òvul i l’espermatozou de tant en tant, es corre el risc de acumular mutacions perjudicials per a l’espècie. Tanmateix, la partenogènesi permet a aquestes espècies colonitzar ràpidament un nou hábitat, ja que no és necessari que dos individus es trobin per a reproduïr-se, i a més el 100% de la población és capaç de produïr descendència.

Com veieu, hi ha un gran nombre d’animals que no necessiten ni mascles ni sexe per reproduïr-se. La existencia d’un procés similar en els éssers humans és força improbable (per no dir impossible) que pugui passar. A més, si fa uns 2000 anys una dona hagués parit un fill sense fecundació, probablement aquest hagués sigut una nena, ja que de cap manera hagués pogut adquirir el cromosoma Y. Tot i així, això no és motiu per no disfrutar d’aquestes festes. Molt bon Nadal i feliç any nou a tothom!

REFERÈNCIES

Per a la realització d’aquesta entrada s’han utilitzat les següents fonts:

Difusió-català

Tardígrads: Animals amb superpoders

Els óssos més petits del món tenen capacitats dignes de superherois. En realitat, no són óssos pròpiament dits: els óssos d’aigua en realitat són els tardígrads. Són animals invertebrats pràcticament indestructibles: sobreviuen dècades sense aigua ni aliment, a temperatures extremes i fins i tot han sobreviscut a l’espai exterior. Coneix l’animal que sembla arribat d’un altre planeta i aprèn a observar-lo a casa teva si disposes d’un microscopi.

QUÈ ES UN TARDÍGRAD?

Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes
Ós d’aigua (Macrobiotus sapiens) a sobre de molsa. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM): Foto de Nicole Ottawa & Oliver Meckes

Els tardígrads o óssos d’aigua, són un grup d’invertebrats de 0,05-1,5 mm que viuen preferiblement en llocs humits. Són especialment abundants en la pel·lícula d’humitat que recobreix molses i falgueres, encara que no falten espècies oceàniques i d’aigua dolça, per la qual cosa podem considerar que viuen arreu del món. Fins i tot a escassos metres de tu, entre rajola i rajola. En un gram de molsa s’han arribat a trobar fins a 22.000 exemplars. S’han trobat a l’Antàrtida a sota de capes de 5 metres de gel, en deserts càlids, en fonts termals, en muntanyes de 6.000 metres d’altura i a profunditats oceàniques abissals. Es tracta doncs d’animals extremòfils. Es calcula que existeixen més de 1.000 espècies.

MORFOLOGIA

El seu nom popular fa referència al seu aspecte i el científic a la lentitud dels seus moviments. Tenen el cos dividit en 5 segments: el cefàlic, on tenen la boca en forma de trompa (probòscide) amb dos estilets interns i en ocasions ulls simples (ommatidis) i pèls sensorials, i els 4 restants amb un parell de potes per segment. Cada pota té urpes per ancorar-se al terreny.

Vista ventral de un tardígrado donde seobservan los cinco segmentos del cuerpo. Foto de Eye Of Science/Photo LIbrary
Vista ventral d’un tardígrad on s’observen els cinc segments del cos. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library
Tardigrade. Coloured scanning electron micrograph (SEM) of a freshwater tardigrade or water bear (Echiniscus sp.). Tardigrades, are tiny invertebrates that live in coastal waters and freshwater habitats, as well as semi-aquatic terrestrial habitats like damp moss. They require water to obtain oxygen by gas exchange. In dry conditions, they can enter a cryptobiotic tun (or barrel) state of dessication to survive. Tardigrades feed on plant and animal cells and are found throughout the world, from the tropics to the cold polar waters.
Tardígrad (Echiniscus sp.) en el que es poden observar les urpes. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

Observa en aquest vídeo de Craig Smith els moviments dels tardígrads amb més detall:

ALIMENTACIÓ

Gràcies als estilets de la seva boca, perforen els vegetals dels quals s’alimenten i succionen els productes de la fotosíntesi, però també es poden alimentar absorbint el contingut cel·lular d’altres organismes microscòpics com bacteris, algues, rotífers, nematodes… Alguns són depredadors i poden ingerir microorganismes sencers.

El seu aparell digestiu és bàsicament la boca i una faringe amb potents músculs per fer els moviments de succió que s’obre directament a l’intestí i l’anus. Algunes espècies només defequen quan muden.

Detalle de la boca de un tardígrado. Foto de
Detall de la boca d’un tardígrao. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

ANATOMIA INTERNA

No posseeixen aparell circulatori ni respiratori: l’intercanvi de gasos es fa directament per la superfície del cos. Estan coberts per una cutícula rígida que pot ser de diferents colors i que van mudant a mesura que creixen. Amb cada muda, perden els estilets bucals, que seran segregats de nou. Són organismes eutèlics: per créixer només augmenten la mida de les seves cèl·lules, no el seu número, que roman constant al llarg de la seva vida

REPRODUCCIÓ

Els tardígrads en general tenen sexes separats (són dioics) i es reprodueixen per ous (són ovípars), però també hi ha espècies hermafrodites i partenogénenètiques (les femelles es reprodueixen sense ser fecundades per cap mascle). La fecundació és externa i el seu desenvolupament és directe, és a dir, no presenten fases larvàries.

tardigrade egg, ou tardigrad
Ou de tardígrad. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

ELS RÈCORDS DELS TARDÍGRADS

Els tardígrads són animals increïblement resistents que han superat les següents condicions:

  • Deshidratació: poden sobreviure durant 30 anys en condicions de laboratori sense una sola gota d’aigua. Hi ha fonts que asseguren que resisteixen fins a 120 anys o que s’han trobat en gels de 2000 anys d’antiguitat i han pogut reviure, tot i que probablement siguin exageracions.
  • Temperatures extremes: si bulls 1 tardígrad, sobreviu. Si el sotmets a temperatures de gairebé el zero absolut (-273ºC), sobreviu. El seu rang de supervivència va de -270ºC a 150ºC.
  • Pressió extrema: són capaços de suportar des del buit fins a 6.000 atmosferes, és a dir, 6 vegades la pressió que hi ha al punt més profund de la Terra, la Fossa de les Marianes (11.000 metres de profunditat).
  • Radiació extrema: els tardígrads poden suportar bombardejos de radiació en una dosi 1000 vegades superior a la letal per un humà.
  • Substàncies tòxiques: si se’ls submergeix en èter o alcohol pur, sobreviuen.
  • Espai exterior: els tardígrads són els únics animals que han sobreviscut a l’espai exterior sense cap protecció. El 2007 l’ESA (Agència Espacial Europea), dins del projecte TARDIS (Tardigrades In Space) va exposar tardígrads (Richtersius coronifer i Milnesium tardigradum) durant 12 dies a la superfície de la nau Foton-M3 i van sobreviure al viatge espacial. El 2011 la NASA va fer el mateix col·locant-los a l’exterior del transbordador espacial Endeavour i es van corroborar els resultats. Van sobreviure al buit, als rajos còsmics i a una radiació ultraviolada 1000 vegades superior a la de la superfície terrestre. El projecte Biokis (2011) de l’Agència Espacial Italiana (ASI) va estudiar l’impacte d’aquests viatges a nivell molecular.

COM HO FAN?

Els tardígrads són capaços de resistir aquestes condicions tan extremes perquè entren en estat de criptobiosi quan les condicions són desfavorables. És un estat extrem d’anabiosi (disminució del metabolisme). Segons les condicions que han de suportar, la criptobiosi es classifica en:

  • Anhidrobiosi: en cas de deshidratació del medi, entren en “estat de barril” ja que adopten aquesta forma per reduir la seva superfície i s’emboliquen en una capa de cera per evitar la pèrdua de l’aigua per transpiració. Per evitar la mort de les cèl·lules, sintetitzen trehalosa, un sucre que substitueix a l’aigua del seu cos i manté intacta l’estructura de les membranes cel·lulars. Redueixen el contingut d’aigua del seu cos fins a només un 1% i seguidament detenen el seu metabolisme gairebé per complet (0,01% per sota del normal).

    Tardígrado deshidratado. Foto de Photo Science Library
    Tardígrad deshidratat. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library
  • Criobiosi: en cas de sotmetre’s a baixes temperatures, l’aigua de gairebé qualsevol ésser viu cristal·litza, trenca l’estructura de les cèl·lules i l’ésser viu mor. Però els tardígrads utilitzen proteïnes que congelen bruscament l’aigua de les cèl·lules en forma de petits cristalls, de manera que aconsegueixen evitar el seu trencament.
  • Osmobiosi: es dóna en cas d’augment de la concentració salina del medi.
  • Anoxibiosi: en cas de manca d’oxigen, entren en un estat d’inactivitat en el que deixen el seu cos totalment estirat, de manera que necessiten aigua per mantenir-se turgents.

En el cas de les exposicions a les radiacions, que destruirien l’ADN, s’ha observat que els tardígrads són capaços de reparar el material genètic malmès.

Aquestes tècniques ja han estat imitades en camps com la medicina, conservant òrgans de rates per posteriorment “reviure’ls” i poden obrir altres vies de conservació de teixits vius i trasplantaments. També obren nous camps en l’exploració espacial de vida extraterrestre (astrobiologia) i fins i tot en l’exploració humana de l’espai per resistir llargs viatges interplanetaris, en idees de moment, més properes a la ciència ficció que a la realitat.

SÓN EXTRATERRESTRES?

L’escàs registre fòssil, el seu parentiu evolutiu poc clar i la seva gran resistència, van provocar hipòtesis que especulaven amb la possibilitat que els tardígrads hagin vingut de l’espai exterior. No es tracta d’una idea sense cap ni peus, encara que altament improbable. La panspèrmia és la hipòtesi per la qual la vida, o millor dit, les molècules orgàniques complexes, no es van originar a la Terra, sinó que van arribar gràcies a meteorits durant els inicis del Sistema Solar. De fet, s’han trobat meteorits amb aminoàcids (molècules indispensables per a la vida) en la seva composició, de manera que la panspèrmia és una hipòtesi que no es pot descartar encara.

Foto de Eye Of Science/Photolife Library
Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

Però no és el cas dels tardígrads: el seu ADN és igual al de la resta d’éssers vius terrestres i els últims estudis filogenètics els emparenten amb els onicòfors (animals semblants a cucs), asquelmints i artròpodes. El que és fascinant és que és l’animal amb més ADN aliè: fins al 16% del seu genoma pertany a fongs, bacteris o arquees, obtinguts per un procés anomenat transferència genètica horitzontal. La presència de gens aliens a altres espècies animals no sol ser més de l’1%. Serà això el que li ha permès desenvolupar aquesta gran resistència?

VOLS BUSCAR TARDÍGRADS TU MATEIX I OBSERVAR-LOS EN ACCIÓ?

En ser tan comuns i habitar potencialment gairebé qualsevol lloc, si disposes d’un microscopi, per senzill que sigui, pots buscar i veure tardígrads vius amb els teus propis ulls:

    • Agafa un tros de molsa d’una roca o mur, millor si està una mica sec.
    • Deixa’l assecar al sol i neteja’l de terra i altres restes grans.
    • Posa’l a l’inrevés en un recipient transparent (com una placa de Petri), mulla’l amb aigua i deixa-ho reposar unes hores.
    • Retira la molsa i busca els tardígrads a l’aigua del recipient (posa-ho en un fons negre per veure més fàcilment). Si hi ha sort, amb una lupa els podràs veure movent-se
    • Agafa’ls amb una pipeta o comptagotes, col·loca’ls en el portaobjectes i a gaudir! Podries veure coses semblants a aquesta:

Mireia Querol Rovira

REFERENCIAS