Arxiu d'etiquetes: pell

Blanc nuclear, moreno paleta o gamba?

Per molta gent estiu és sinònim de platja i posar-se moreno. Quan fem el canvi d’armari i toca vestir-se amb pantalons curts, el blanc nuclear de les nostres cames, amagat durant tot l’hivern ens enlluerna. Hi ha gent que prefereix utilitzar les cabines de bronzejat UVA uns mesos abans, o d’altres prenen el sol sense protecció per agafar una mica de color. Quines conseqüències pot tenir això? A continuació us parlo de la pell i l’efecte de la radiació sobre ella.

CONEGUEM LA NOSTRA PELL

La pell és l’òrgan més gran del nostre cos, té una extensió d’entre 1,5 i 2m2 de superfície i un pes al voltant de 3,5-5kg. Les seves funcions són:

  • Protecció: protegeix els òrgans interns de traumatismes i evita la pèrdua d’aigua i electròlits des de l’interior.
  • Termoregulació: a través dels vasos sanguinis s’augmenta o es redueix la temperatura de la pell. Quan fa molta calor la suor refresca la superfície cutània.
  • Sensibilitat: la percepció del tacte, la pressió, la temperatura, el dolor i la picor es fa a través de la pell.
  • Secreció: la pell protegeix el cos de la deshidratació.
  • Excreció: a través de la pell eliminem uns 350ml diaris d’aigua, que hem de recuperar hidratant-nos. En determinades malalties es pot arribar a eliminar gran quantitat de proteïnes i sofre.

La pell té dues cèl·lules bàsiques: els queratinòcits (80%) i els melanòcits (10%). La melanina, que dóna la morenor, es troba dins els melanòcits i s’acumula en unes bosses (melanosomes). Quan no toca la llum es queda en estrats profunds, mentre que quan toca el sol va pujant pels queratinòcits (Figura 1).

melanocitos.jpg
Figura 1. Melanina (fletxes) pujant cap als queratinòcits (Font: Salud Siglo XXI)

El bronzejat és la síntesi de nova melanina. No totes les persones produeixen la mateixa quantitat de melanina. Tots tenim el mateix número de melanòcits, però la diferència està en el número de melanosomes.

La nostra pell està formada per 3 capes que són, ordenades de superior a inferior, l’epidermis, la dermis i la hipodermis (Figura 2).

capes pell
Figura 2. Capes de la pell: A) epidermis, B) dermis i C) hipodermis (Font: Medline Plus)

El procés del bronzejat passa a l’epidermis, que és la capa superior de la pell. L’epidermis té 0,2mm de gruix i es subdivideix en 4 o 5 capes, depenent de la part del cos. Per exemple, els palmells de les mans i les plantes dels peus estan formats per 5 capes, on la capa extra dóna més resistència. El gruix de pell en aquestes zones és de 1-2mm, en canvi, en altres zones, com en les parpelles, és inferior (0,004mm). En les capes més internes o profundes les cèl·lules són més joves i actives, i al llarg del seu cicle van ascendint cap a la zona més externa o superficial, convertint-se en cèl·lules mortes, sense nucli i formades bàsicament per queratina (pell morta).

Per sota, hi ha la dermis que dóna l’elasticitat a la pell, on es troben els nervis i els vasos sanguinis i és on creixen els pèls i les ungles. Finalment, l’hipodermis està a sota de tot i és on hi ha les glàndules.

LA RADIACIÓ SOBRE LA NOSTRA PELL

El Sol emet una radiació amb longituds d’ona que van des de 0,1 a 17.000nm. Però a la Terra només arriben les radiacions entre 280 i 3.000nm (les altres es queden a la capa d’ozó).

La radiació que afecta als organismes vius engloba l’espectre de 280-800nm (raigs UVB, UVA, llum visible i una part de infraroig) (Figura 3).

e
Figura 3. Espectre electromagnètic (Font: J. E. Martin Cordero. Agentes Físicos Terapéuticos (2009))

No tota la radiació penetra de la mateixa manera a la nostra pell. En la Taula 1 s’observa el nivell de penetrància:

Taula 1. Penetrància segons la diferent radiació.

Tipus Longitud d’ona Nivell de penetració
Ultraviolada UVC 100-280nm No arriba
UVB 280-315nm Epidermis
UVA 315-400nm Dermis
Llum visible LLV 400-700nm Dermis
Infraroja IR >700nm Hipodermis

És important saber que una exposició prolongada, sense prendre mesures, no només pot produir càncer de pell, sinó que pot tenir altres efectes. La radiació UVB és la causa més freqüent de cremada solar, eritema o envermelliment. També és la causa més freqüent de càncer cutani. En canvi, la radiació UVA rarament causa cremades, però és la responsable de la majoria de les fotosensibilitacions (augment anormal de la sensibilitat de la pell a la radiació UV) i pot ser carcinogénica, en presència de determinades substàncies que potencien el seu efecte. A més, produeix envelliment de la pell (Figura 4).

En les cabines de bronzejat el 30% de la radiació és UV. Majoritàriament és radiació UVA, però també hi ha radiació UVB (tot i que un menor percentatge). El percentatge restant és radiació infraroja i llum visible.

609443626.jpg
Figura 4. Efectes de la radiació UVA (envelliment) i UVB (cremades) (Font: Antirughe.info)

La quantitat d’irradiació és major quant més a prop es troba la Terra del Sol (zona de l’Equador, entre els tròpics de Càncer i de Capricorn; o entre les 12 i 16 hores). Aquesta irradiació pot danyar el nostre ADN, produint trencaments en la cadena de l’ADN que pot causar mutacions.

Els raigs UV passen fàcilment a través dels núvols i el vapor d’aigua, però són parcialment absorbits per la pol·lució atmosfèrica. Però s’ha vist que en zones on hi ha forats a la capa d’ozó la incidència de càncer de pell és superior. Això és degut perquè els danys provocats a la capa d’ozó permeten el pas de major quantitat de raigs UVB. Per això és important no malmetre la capa d’ozó perquè ens protegeix d’aquests raigs.

PROTEGIM LA NOSTRA PELL

Donat que la llum pot ser reflectida per vàries substàncies, cal tenir en compte que, als raigs directes del Sol, es poden sumar als que arriben tangencialment un dia brillant i que són reflectits per la sorra, l’aigua, el terra, el gel, la neu…

Les dosis de radiació són acumulatives i poden sumar-se als efectes de la radiació ionitzants (raigs X). La presència de càncers cutanis pot observar-se molts anys després d’una cremada aguda. Això s’ha observat en mariners americans que van estar al Pacífic durant la Segona Guerra Mundial, i que van estar exposats durant mesos o anys a la radiació solar d’alta intensitat. Aquests mariners han desenvolupat al llarg dels anys diferents tipus de càncer de pell.

Per aquesta raó és molt important prendre les mesures de protecció solar adients: utilitzar fotoprotectors, evitar llargues estones al sol, sobretot en les hores de màxima intensitat solar; i hidratar-nos sovint.

REFERÈNCIES

MireiaRamos-catala

Com respirar sense pulmons, a l’estil lissamfibi

Tot i que la majoria de vertebrats terrestres depenem dels pulmons per realitzar l’intercanvi de gasos, els lissamfibis presenten a més respiració cutània, respiren a través de la pell. Tot i que això pot semblar un desavantatge, ja que han de mantindre la pell relativament humida, en aquesta entrada veurem els avantatges que els confereix la respiració cutània i com en alguns grups, aquesta ha substituït completament la respiració pulmonar.

RESPIRAR AIGUA O AIRE

Els vertebrats terrestres utilitzem els pulmons per a realitzar l’intercanvi de gasos. Tot i que els nostres avantpassats aquàtics respiraven mitjançant brànquies, aquestes no serveixen en el medi terrestre, ja que la gravetat faria que es colapséssin i perdessin la seva estructura. Els pulmons, com que es troben a l’interior del cos, poden mantindre la seva estructura en un ambient amb força més gravetat. Tant les brànquies com els pulmons presenten estructures molt ramificades per augmentar la superfície de difusió i així, afavorir l’intercanvi de gasos (a major superfície, més intercanvi).

Giant_Mudskipper_(Periophthalmodon_schlosseri)_(15184970133)Espècimen de saltador del fang gegant (Periophthalmodon schlosseri), un peix del sud-est asiàtic que pot sortir de l’aigua gràcies en part, a la respiració cutània. Foto de Bernard Dupont.

Tanmateix, entre els vertebrats existeix una tercera forma d’intercanvi de gasos. Tot i que no està tant extesa com les brànquies o els pulmons, la respiració cutània la trobem en varis grups d’animals, com els peixos pulmonats i alguns rèptils marins (tortugues i serps marines). Tanmateix, els lissamfibis són el grup que ha dut l’especialització en la respiració cutània a l’extrem.

COM RESPIREN ELS LISSAMFIBIS?

Els lissamfibis actuals són el grup de tetràpodes que presenten major diversitat d’estratègies respiratòries. A part de la respiració cutània present en totes les espècies, la majoria de lissamfibis neixen en un estat larvari aquàtic amb brànquies i després de la metamorfosi, desenvolupen pulmons per a respirar a terra ferma.

Les larves dels urodels i els àpodes presenten brànquies externes filamentoses i molt ramificades que els permeten respirar sota l’aigua. Aquestes han d’estar en moviment constant per a que hi hagi intercanvi de gasos. Algunes espècies de salamandres neotèniques mantenen les brànquies durant l’edat adulta. En canvi, els capgrossos dels anurs presenten brànquies internes cobertes per sacs branquials.

Salamander_larva_closeupRetrat d’una larva de salamandra en la que s’aprecien les brànquies ramificades i filamentoses. Foto de Brian Gratwicke.

La majoria de lissamfibis terrestres presenten un parell de pulmons simples amb poques ramificacions i grans alveols. Aquests tenen una baixa taxa de difusió de gasos comparats amb els pulmons dels amniotes. A més, mentres que els amniotes ventilem els pulmons mitjançant l’expansió de la caixa torácica i el diafragma, els lissamfibis han de forçar l’aire als pulmons mitjançant un sistema de bomba bucal.

Four_stroke_buccal_pumpingEsquema del sistema de respiració pulmonar dels lissamfibis. En el sistema de bomba bucal, la cavitat bucal s’omple d’aire i després s’eleva el terra de la boca per forçar l’aire cap als pulmons. Imatge de Mokele.

A més de la respiració branquial o pulmonar, els lissamfibis oxigenen la sang per respiració cutània. La pell dels lissamfibis és molt prima i està molt capil·laritzada (tenen una gran quantiat de vasos sanguinis). Això fa que aquesta tingui una gran capacitat de difusió de molècules gasoses, permetent-los la respiració cutània mitjançant un sistema contracorrent.

600px-ExchangerflowEsquema modificat d’un sistema d’intercanvi contracorrent. En aquest, la sang desoxigenada (amb CO2) circula en direcció contrària a l’aire (carregat d’O2) i entre els dos fluids es dóna un intercanvi de gasos en un intent d’igualar la concentració dels dos gasos. Imatge modificada de Joe.

La pell dels lissamfibis difereix de la dels amniotes en que no presenta escates, plomes o pèl. Això fa que la pell dels lissamfibis sigui molt permeable tant pels gasos com per l’aigua (cosa que els converteix en grans bioindicadors dels ambients on viuen, ja que la seva pell absorbeix molts tipus de substàncies solubles). Per això els lissamfibis han de mantenir la pell relativament humida per a que l’intercanvi es pugui dur a terme.

KammolchmaennchenMascle de tritó crestat (Triturus cristatus) en la fase nupcial. Les amples crestes de la cua incrementen la superfície de pell augmentant la difusió de gasos. Foto de Rainer Theuer.

Els lissamfibis viuen constantment en un delicat equilibri en el que la pell s’ha de mantindre suficientment humida per a permetre l’intercanvi de gasos, però no tant permeable com per a que perdin aigua, es deshidratin i morin. Això ho aconsegueixen vivint en ambients humits, o bé creant capes de pell humida externes per a crear un ambient aquós al seu voltant.

Bombay_caecilianFoto d’una cecília de Bombai (Ichthyophis bombayensis) un lissamfibi que viu en fangars i altres hàbitats humits. Foto de Uajith.

Molts lissamfibis presenten una gran quantitat de pell, cosa que augmenta la superfície respiratòria. Alguns exemples són, les papil·les vasculars de la granota peluda (Trichobatrachus robustus), els plecs de pell de les granotes del gènere Telmatobius o les amples aletes caudals de molts tritons.

TrichobatrachusGreenDibuix de la granota peluda (Trichobatrachus robustus) on es veuen les papil·les que li dónen el nom. Imatge extreta de Proceedings of the Zoological Society of London (1901).

Tot i que la majoria de granotes obtenen gran part de l’oxigen pels pulmons durant l’estiu, durant les èpoques més fredes (quan el seu metabolisme es ralenteix) moltes espècies hivernen al fons de llacs glaçats, realitzant l’intercanvi de gasos exclusivament per via cutània.

6887057816_d68fccf4f4_oMolts lissamfibis de zones subàrtiques hivernen sota l’aigua, utilitzant la pell per extreure oxigen de l’aigua i expulsar diòxid de carboni de la sang. Foto de Ano Lobb.

Els urodels adults presenten molta més diversitat d’estratègies respiratòries i a més, hi trobem un dels únics grups de vertebrats terrestres que no presenten cap rastre de pulmons.

VIURE SENSE PULMONS

Dintre del subordre dels salamandroideus hi trobem la familia Plethodontidae. Aquests animals són coneguts popularment com a salamandres apulmonades ja que, com el seu nom indica, no tenen pulmons i depenen exclusivament de la pell per a realitzar l’intercanvi de gasos.

Kaldari_Batrachoseps_attenuatus_02Salamandra esvelta de Califòrnia (Batrachoseps attenuatus) fotografiada per Kaldari. Aquesta és un perfecte exemple dels cossos allargats i prims dels pletodòntids, que els facilita la difusió de gasos.

Aquests urodels es troben distribuïts principalment per les Amèriques, amb algunes espècies a l’illa de Sardenya i a la Península de Corea. El més sorprenent és que els pletodòntids, com la majoria de salamandroideus, són animals principalment terrestres i no presenten fase larvària aquàtica. Tot i que algunes espècies presenten brànquies durant l’estat embrionàri, aquests les perden abans de néixer i els pulmons mai s’arriben a desenvolupar.

Northern_red_salamander_(Pseudotriton_ruber)Foto de salamandra vermella (Pseudotriton ruber) un pletodòntid endèmic de la costa atlántica dels Estats Units. Foto de Leif Van Laar.

Es creu que aquesta familia va evolucionar en rius d’alta muntanya amb fortes corrents. La presència de pulmons els hauria fet flotar massa, cosa que els hagués dificultat el moviment en aquests hàbitats. Les aigües fredes dels rius alpins són riques en oxigen, fent que la respiració cutània fós suficient per aquests petits animals.

Vídeo de Verticalground100 on se’ns mostren algunes espècies de pletodòntids.

Una pell fina i vascularitzada (facilita la difusió) i l’evolució de cossos llargs i prims (facilita el transport d’O2 per tot el cos) va fer que els pulmons resultéssin inútils pels pletodòntids. Actualment les salamandres apulmonades són la família d’urodels més nombrosa, i representen més de la meitat de la biomassa animal en molts ecosistemes nord-americans. A més, són més actius que la majoria de lissamfibis, amb sistemes nerviosos i sensorials molt desenvolupats, sent depredadors voraços d’artròpodes i altres invertebrats.

3679651745_d678454a1b_oSalamandra zig-zag de Ozark (Plethodon angusticlavius) una curiosa salamandra apulmonada típica de l’estat de Missouri. Imatge de Marshal Hedin.

Com veieu la respiració cutània dels lissamfibis els permet fer coses que pocs tetràpodes poden fer. Passar tot un hivern submergits i viure a terra ferma sense pulmons són gestes increïbles reservades a un petit grup d’animals. Potser els lissamfibis encara depenen dels medi aquàtic per a sobreviure, però com hem vist, poca cosa tenen de lents i primitius, ja que presenten algunes de les adaptacions fisiològiques més impressionants del regne animal.

REFERÈNCIES

S’han utilitzat les següents fonts per a l’elaboració d’aquesta entrada:

Difusió-català

Mercuri en dofins llistats (Stenella coeruleoalba) del Mediterrani (I): origen i nivells

Després de setmanes sense poder escriure una entrada elaborada sobre un tema de cetacis, us deixo aquí una entrada força extensa sobre el mercuri en els dofins llistats que viuen al Mediterrani. En concret, tracta sobre l’origen i els nivells de mercuri en aquesta espècie. En una segona entrada es parlarà sobre l’efecte tòxic i la detoxificació d’aquest metall en els dofins llistats.  Espero que sigui del vostre interès.

 

INTRODUCCIÓ

El dofí llistat o ratllat (Stenella coeruleoalba) és un delfínid pelàgic petit comú en aigües temperades i tropicals d’arreu del món. La longitud mitjana dels individus del Pacífic oest és de 2,4 m en mascles i de 2,2 m en femelles (Archer i Perrin, 1999), tot i que els espècimens del Mediterrani mesuren un 10% menys que aquests (Andre et al. 1991). La seva dieta es composa principalment de peixos i calamars pelàgics i bentopelàgics (Archer 2009).

149919_10204194897822686_5338956519483056090_n

El seu rang de distribució és ampli (Archer 2009): es troba al Pacífic Nord i Tropical; a l’Atlàntic, del nord d’Amèrica del Sud fins a Amèrica del Nord i a l’Atlàntic Nord est en aigües del Regne Unit; a l’Índic; i al Mar Mediterrani, on és l’espècie més abundant. La figura següent mostra el seu rang de distribució al Mediterrani.

dist

El seu estat de conservació a nivell global és de preocupació menor, però al Mediterrani és vulnerable degut a la interacció accidental o no amb la pesca (de palangre principalment, Aguilar 2000), la contaminació i al canvi climàtic (Otero i Conigliaro 2012).

 

ORIGEN DEL MERCURI DEL MEDITERRANI

La font principal de les elevades concentracions de mercuri observades als organismes del Mediterrani són dipòsits naturals de mercuri d’origen volcànic en moltes regions de la seva conca, en forma de cinabri (HgS) (André et al. 1991, Augier et al. 1993, Cardellicchio et al. 2000, Cardellichio et al. 2002b). A més, l’ús del mercuri en activitats industrials podria contribuir a augmentar els nivells de mercuri al mar (Cardellicchio et al. 2002b), tot i que el seu efecte en dofins llistats no sembla que pugui ser important pel fet de ser una espècie pelàgica i rarament els trobem prop de la costa (a 10 km de la font, el mercuri torna a nivells de fons, Andre et al. 1991).

 

NIVELLS DE MERCURI EN DOFINS LLISTATS DEL MEDITERRANI

Distribució en els diferents teixits

La Taula 1 següent mostra la concentració mitjana, la desviació i/o el rang de mercuri total (μg/g pes sec) al fetge, ronyó i múscul de dofins llistats de vàries localitats del Mediterrani. S’han seleccionat aquests tres òrgans per fer la comparativa perquè són els que més s’estudien en la bibliografia. De tota manera, s’ha de tenir en compte que la comparació de resultats de diferents estudis s’ha de fer en compte ja que hi ha múltiples fonts de variació com la condició, l’edat i el sexe els individus, però també amb els mètodes de presa de mostres i de mesura. Malgrat en aquesta taula només hi consten 3 òrgans, l’anàlisi següent s’ha centrat en tots els òrgans que han estudiat els diferents autors mencionats.

  Fetge Ronyó Múscul
  Mitjana SD (rang) Mitjana SD (rang) Mitjana SD (rang)
França(Andre et al. 1991) 1472 131(4,4-392) 104 153(6,3-806) 63 131(4,5-365)
França(Augier et al. 1993) 481 587(68-2271) 62 88(14-341 37 40(7,4-155)
Costa d’Apulia (Itàlia)(Cardellicchio et al. 2002b) 851 128(703-975) 46 9,7(34-59) 49 11(37-65)
Còrcega(Frodello et al. 2000) 460 58 49 4 21 2
Tirrè Nord(Leonzio et al. 1992) 324 (13-4400) 65 (5,8-204) 37 (6,5-168)
Itàlia Oest(Monaci et al. 1998) 593 1120 44 72 53 65
Espanya(Monaci et al. 1998) 1043 835 63 100 28 73
Israel(Roditi-Elasar et al. 2003) 603 900(6,3-2475) 45 50(8,6-122) 40 32(2,0-95)

Taula 1. Concentració de mercuri total (en μg/g pes sec) al fetge, ronyó i múscul de dofins llistats (Stenella coeruleoalba) de vàries localitats del Mediterrani

Tal com es desprèn de la Taula 1, els nivells de mercuri en dofins llistats del Mediterrani són molt elevats, trobant-se la màxima concentració de mercuri al fetge (Andre et al. 1991, Augier et al. 1993, Cardellicchio et al. 2002b, Frodello et al. 2000, Leonzio et al. 1992, Monaci et al. 1998, Pompe-Gotal et al. 2009, Roditi-Elasar et al. 2003). En altres mamífers marins, el fetge també és l’òrgan més contaminat (André et al. 1991, Augier et al. 1993). El segon i tercer òrgans amb una concentració més elevada són el ronyó i el múscul respectivament. En els casos en que s’ha estudiat la concentració de mercuri total al pulmó (Augier et al. 1992, Cardellicchio et al. 2002b, Frodello et al. 2000), aquest s’ha situat com a segon òrgan amb la concentració més alta. D’aquesta manera, es pot deduir el següent ordre en quant a la concentració de mercuri total en dofí llistat pels quatre òrgans: fetge >> pulmó > ronyó > múscul. S’han trobat nivells insignificatius de mercuri a la pell, al meló, al blubber i al cervell (Andre et al. 1991, Augier et al. 1993, Leonzio et al. 1992, Cardellicchio et al. 2002b, Frodello et al. 2000).

Aquest patró en les concentracions de mercuri es pot explicar per les vies d’entrada i eliminació del metall en dofins. L’elevada concentració al fetge dels dofins llistats del Mediterrani es deu a que, un cop ingerit el mercuri a través de l’aliment (que és la via d’entrada principal a l’organisme, Augier et al. 1993) o per la ingesta d’aigua (Augier et al. 1993, Frodello et al. 2000), es transporta fins al fetge i allà es detoxifica i s’hi acumula (Frodello et al. 2000, Krishna et al. 2003). L’elevada concentració als pulmons es pot explicar per la seva inhalació de l’atmosfera (Cardellicchio et al. 2002b). El ronyó, que emmagatzema una fracció important del metall, està involucrat en la seva eliminació, el que explica trobar valors intermedis. Finalment, la concentració al múscul s’explica pel fet de ser un teixit on s’hi emmagatzema, però al representar un volum tant gran, la seva presència queda diluïda, el que explica que sigui, entre els òrgans amb una concentració alta, el que té els nivells més baixos (André et al. 1991, Frodello et al. 2000).

 

Efecte de la localització geogràfica

Els dofins llistats del mediterrani presenten nivells de mercuri més elevats que els de l’Atlàntic i Pacífic (André et al. 1991, Leonzio et al. 1992, Augier et al. 1993, Monaci et al. 1998, Frodello et al. 2000, Cardellicchio et al. 2002b, Krishna et al. 2003, Roditi-Elasar et al. 2003, Pompe-Gotal et al. 2009). Tot i que les concentracions de mercuri trobades en dofí llistat al llarg del Mediterrani prenen valors similars, els nivells de mercuri més elevats es produeixen a la costa francesa, al mar de Liguria i al mar Tirrè, seguit per la costa adriàtica de Croàcia (Andre et al. 1991, Augier et al. 1993, Cardellicchio et al. 2000, Cardellicchio et al. 2002b, Pompe-Gotal et al. 2009). L’explicació més plausible és la proximitat als dipòsits de cinabri d’Itàlia central (Monaci et al. 1998, Cardellicchio et al. 2000, Cardellicchio et al. 2002b).

 

Efecte de l’edat i el sexe

El mercuri tendeix a acumular-se amb l’edat en organismes marins (André et al. 1991, Monaci et al. 1998, Roditi-Elasar et al. 2003), de manera que la seva taxa de creixement influencia el patró d’acumulació en les espècies, el que significa que també augmenta amb la longitud. El patró d’increment amb la longitud es pot explicar molt bé al múscul (Buffoni et al. 1982, Bernhard 1985): en els joves, com que creixen molt ràpid (d’1 m a 1,5 m en 6 mesos) la concentració augmenta poc per un efecte dilució; quan el creixement decreix, la concentració augmenta i quan s’atura als 2 m (12 anys) s’acumula en un volum constant i augmenta molt més ràpidament.

Per altra banda, no s’observa una influència significativa del sexe en la concentració de mercuri total als diferents òrgans (Monaci et al. 1998, Cardellicchio et al. 2002b).

 

REFERÈNCIES

  • Aguilar A (2000). Population biology, conservation threats and status of Mediterranean striped dolphins (Stenella coeruleoalba). J. Cetacean Res. Manage. 2:17-26
  • Andre J, Boudou A, Ribeyre F i Bernhard M (1991). Comparative study of mercury accumulation in dolphins (Stenella coeruleoalba) from French Atlantic and Mediterranean coasts. The Science of the Total Environment 104:191-209
  • Archer FI i Perrin WF (1999). Stenella coeruleoalba. Mammal. Species 603:1-9
  • Archer FI. Striped Dolphin (Stenella coeruleoalba). Encyclopedia of Marine Mammals. Perrin W, Würsig B i Thewissen JGM. 2ª edició. 1127-1129
  • Augier H, Park WK i Ronneau C (1993). Mercury Contamination of the Striped Dolphin Stenella coeruleoalba Meyen from the French Mediterranean Coast. Marine Pollution Bulletin 26:306-311
  • Bernhard M (1985). Mercury accumulation in a pelagic foodchain. In: Martell AE i Irgolic KJ (Eds), Environmental Inorganic Chemistry. VCH Publishers, Deerfield Beach, Florida, 349-358
  • Buffoni G, Bernhard M i Renzoni A (1982) Mercury in Mediterranean tuna. Why is their level higher than Atlantic tuna? A model. Thalassia Jugosl. 18:231-243
  • Cardellicchio N, Decataldo A, Di Leo A i Misino A (2002b). Accumulation and tissue distribution of mercury and selenium in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea (southern Italy). Environmental Pollution 116:265-271
  • Cardellicchio N, Giandomenico S, Ragone P i Di Leo A (2000).Tissue distribution of metals in striped dolphin (Stenella coeruleoalba) from the Apulian coast, Southern Italy. Marine Environmental Research 49:55-66
  • Frodello JP, Roméo M i Viale D (2000). Distribution of mercury in the organs and tissues of five toothed whale species of the Mediterranean. Environmental Pollution 108:447-452
  • Krishna D, Virginie D, Stéphane P i Jean-Marie B (2003). Heavy metals in marine mammals. In: Vos JV, Bossart GD, Fournier M i O’Shea T (Eds.) Toxicology of Marine Mammals. Taylor and Francis Publishers, Washington DC, 135-167
  • Leonzio C, Focardi S i Fossi C (1992). Heavy metals and selenium in stranded dolphins of the Northern Tyrrhenian (NW Mediterranean). The Science of the Total Environment 119:77-84
  • Monaci F, Borrl A, Leonzio C, Marsili L i Calzada N (1998). Trace elements in striped dolphin (Stenella coeruleoalba) from the western Mediterranean. Envirnmental Pollution 99:61-68
  • Otero MM i Conigliaro M (2012). Marine mammals and sea turtles of the Mediterranean and Black Seas. IUCN, 14
  • Pompe-Gotal J, Srebocan E, Gomercic H i Prevendar Crnic A (2009). Mercury concentrations in the tissues of bottlenose dolphins (Tursiops truncatus) and striped dolphins (Stenella coeruleoalba) stranded on the Croatian Adriatic coas. Veterinarni Medicina, 54(12):598-604
  • Roditi-Elasar M, Kerem D, Hornung H, Kress N, Shoham-Frider E, Goffman O i Spanier E (2003). Heavy metal levels in bottlenose and striped dolphins off the Mediterranean coast of Israel. Marine Pollution Bulletin 46: 504-512

 

Licencia Creative Commons
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.