Arxiu d'etiquetes: pelophylax perezi

Hybrids and sperm thieves: amphibian kleptons

In biology a hybrid is the result of the reproduction of two parents of genetically different species, although in most cases hybrids are either unviable or sterile. Yet in some species of amphibians, sometimes hybrids are not only viable, but also become new species with special characteristics. In this entry we’ll show you two cases of amphibian hybrids that form what is known as a klepton and that make the definition of species a little less clear.


A klepton (abbreviated kl.) is a species which requires another species to complete its reproductive cycle. The origin of the word klepton comes from the Greek word “kleptein” which means “to steal”, as the klepton “steals” from the other species to reproduce. In the case of amphibians, kleptons have originated from hybridation phenomena. The amphibian’s potent sexual pheromones and the multispecies choirs in the case of anurans, causes some males and females of different species to try to mate together. Yet hybrids are only viable between closely related species.

Among the different klepton species we can encounter two different methods depending on the type of conception: zygokleptons, in which there’s fusion between the egg and the sperm’s genetic material, and gynokleptons, in which the egg needs the stimulation from the sperm but doesn’t include its genetic material.

The different amphibian kleptons are usually constituted entirely by females (there are usually few or no males) that use the sperm of another species to perpetuate the klepton. As some kleptons depend on various related species, this can promote the creation of “species complexes” in which various similar species present hybridization areas and very complicated relationships among them. Below you’ll find two klepton examples, one in European anurans and the other in American urodeles.


The European water frogs (Pelophylax genus) form what is known as a “hybridogenetic complex” in which the hybrids from different species form kleptons which can’t reproduce among each other but, which must reproduce with a member of one of the parental species, “stealing” or “parasitizing” its sperm in order to survive.

Photo by Bartosz Cuber of two edible frogs (Pelophylax kl. esculentus) in amplexus. This is the best known hybrid both because of its wide distribution, and for being considered a delicacy in France.

In the hybridogenesis of water frogs the genetic material of both parents combines to form the resulting hybrid (zygoklepton). This hybrids (almost always females) will have half their genome from one species and half from the other. Yet, not being able to reproduce with a similar hybrid, during gametogenesis the hybrids eliminate the genetic material from one of the parent species. This way, when reproducing with an individual from the species whose genetic material has been deleted, they will form another hybrid.

Scheme of the genetic composition of the different Pelophylax kleptons. In this hybridogenetic complex four “natural” species intervene: the marsh frog (Pelophylax ridibundus, RR genome), the pool frog (Pelophylax lessonae, LL genome), the Iberian waterfrog (Pelophylax perezi, PP genome)  and the Italian pool frog (Pelophylax bergeri, BB genome).

The edible frog (Pelophylax kl. esculentus, RL genome) comes from the hybridization between the marsh frog and the pool frog. The Italian edible frog (Pelophylax kl. hispanicus, RB genome) stems from a hybrid between the marsh frog and the Italian pool frog. Finally, the Graf’s hybrid frog (Pelophylax kl. grafi, RP genome) originated from the hybridization between the edible frog (in which the DNA of the pool frog is eliminated from their gametes) and the Iberian waterfrog.

Schemes by Darekk2 of the hybridogenetic processes in the different European water frog’s kleptons. The bigger circles represent the individual’s genome and the smaller circles the gametes’ genetic material.

As we can see, the genetic information of the marsh frog is the only one present in all three kleptons. These kleptons delete the genetic material of the species with which they share their habitat from their gametes but keep the genetic material of the marsh frog (R). So for example, the edible frog (P. kl esculentus) deletes form its eggs the DNA of the pool frog (L) with which it encounters and breeds in its natural range, resulting in more edible frogs (RL). The marsh frog seldom reproduces with some of its hybrids and if it does, they produce normal marsh frogs.


The salamanders of the Ambystoma genus, usually known as mole salamanders, are a genus endemic of North America and are the only living representatives of the Ambystomatidae family. Five of these species form what is known as the “Ambystoma complex”, in which these species contribute to the genetic composition of a unisexual lineage of salamanders which reproduce by gynogenesis (gynoklepton). Based on the mitochondrial DNA of the unisexual populations, it is thought that this complex originated from a hybridization event of about 2.4-3.9 million years ago.

ambystomert complexx
This complex consists of the five following species: the blue-spotted salamander (Ambystoma laterale LL genome, photo by Fyn Kynd Photography), the Jefferson salamander (Ambystoma jeffersonianum JJ genome, photo by Vermont Biology), the small-mouthed salamander (Ambystoma texanum TT genome, photo by Greg Schechter), the streamside salamander (Ambystoma barbouri BB genome, photo by Michael Anderson) and the tiger salamander (Ambystoma tigrinum TiTi genome, photo by Carla Isabel Ribeiro).

In the gynogenesis of this all-female lineage, the egg needs activation by a sperm to start division and development but, it first has to duplicate its genetic material by endomitosis to avoid the formation of an unviable haploid (with half the genetic information) zygote. Yet, as in parthenogenetic reptiles, in the long term the lack of genetic recombination can take its toll on the individuals. That’s why this lineage of unisexual salamanders has the capacity of occasionally incorporating the whole genome from the males of four of the species which constitute the complex (currently the reproduction of streamside salamanders with members of the unisexual lineage hasn’t been documented).

Scheme from Bi, Bogart & Fu (2009) in which we can see the different paths that the gynogenetic mole salamanders can take while reproducing.

These individuals don’t mix the newly acquired genome, they add it. Therefore, among the members of this lineage we can find diploid, triploid, tetraploid and even pentaploid individuals (even if as the ploidy increases the individuals are less apt to survive) depending on how many different genomes the previous generations had incorporated.

mes ibrids
Among the klepton, the most common genome combination is that of triploids based on the blue-spotted salamander and the Jefferson salamander, with the genomes LLJ (left, image by David Misfud) and JJL (right, image by Nick Scobel), even though the number of combinations is incredibly large. For this reason why scientists haven’t been able to decide a valid scientific name for this group of hybrid origins.

Unlike the water frogs, it is very difficult to define a scientific name for the klepton inside Ambystoma, as the genomes of the different species can be found in different combinations and proportions in different unisexual individuals.


The following sources have been consulted during the elaboration of this entry:



Híbridos y ladrones de esperma: cleptones anfibios

En biología un híbrido es el resultado de la reproducción de dos progenitores de especies genéticamente diferentes, aunque en la mayoría de casos los híbridos o no son viables o son estériles. Pero a veces, en algunas especies de anfibios los híbridos no sólo son viables, sino que además forman nuevas especies con características especiales. En esta entrada os ponemos dos casos de híbridos de anfibios que forman lo que se conoce como un cleptón y que ponen en duda el concepto tradicional de especie.


Un cleptón o kleptón (abreviado kl.) es una especie que depende de otra especie para completar su ciclo reproductivo. El origen de la palabra cleptón viene del griego “kleptein” que significa “robar”, ya que el cleptón “roba” a otra especie para poder reproducirse. En el caso de los anfibios, los cleptones se han originado por fenómenos de hibridación. Las potentes feromonas sexuales de los anfibios y los coros de múltiples especies en el caso de los anuros, provocan que a veces machos y hembras de diferentes especies intenten aparearse. Aun así los híbridos sólo son viables entre especies muy emparentadas.

Dentro de las diferentes especies cleptón podemos encontrar dos métodos diferentes según el tipo de concepción: los zigocleptones, en los que hay una fusión del material genético del óvulo y del espermatozoide, y los ginocleptones, en los que el óvulo necesita estimulación por parte del espermatozoide pero no incorpora su material genético.

Los diferentes cleptones de anfibios suelen estar constituidos por hembras (hay pocos machos o ninguno) que utilizan el esperma de otra especie para perpetuar el cleptón. Como los cleptones de anfibios a veces dependen de varias especies emparentadas, esto puede hacer que se creen “complejos de especies” donde varias especies muy parecidas presenten zonas de hibridación y relaciones muy complicadas entre ellas. A continuación os ponemos dos ejemplos de cleptones, uno en anuros europeos y otro en urodelos americanos.


Las ranas verdes europeas (género Pelophylax) forman lo que se conoce como “complejo hibridogenético” en el cual los híbridos de distintas especies forman cleptones que no se pueden reproducir entre sí, sino que han de reproducirse con un miembro de la especie progenitora, “robando” o “parasitando” su esperma para sobrevivir.

Foto de Bartosz Cuber de dos ranas comestibles (Pelophylax kl. esculentus) en amplexo. Este híbrido es el más conocido tanto por su amplia distribución, como por ser considerado una delicia en Francia.

En la hibridogénesis de las ranas verdes, el material genético de ambos progenitores se combina para formar el híbrido resultante (zigocleptón). Estos híbridos (normalmente siempre hembras) tendrán la mitad del genoma de una especie y la mitad de la otra. Aun así, al no poder reproducirse con otros híbridos similares, durante la gametogénesis se elimina el material genético de una de las especies progenitoras. Así, al aparearse con un individuo de la especie cuyo material genético ha eliminado, volverán a formar un híbrido.

Esquema sobre la dotación genética de los diferentes cleptones de Pelophylax. En este complejo hibridogenético intervienen cuatro especies “naturales”: la rana europea común (Pelophylax ridibundus, genoma RR), la rana de Lessona (Pelophylax lessonae genoma LL), la rana verde ibérica (Pelophylax perezi, genoma PP) y la rana italiana (Pelophylax bergeri, genoma BB).

La rana comestible común (Pelophylax kl. esculentus, genoma RL) proviene de la hibridación entre la rana común europea y la rana de Lessona. La rana comestible italiana (Pelophylax kl. hispanicus, genoma RB) proviene de un híbrido entre la rana común europea y la rana italiana. Finalmente la rana de Graf (Pelophylax kl. grafi, genoma RP) proviene de la hibridación de la rana comestible común (en la cual se elimina el ADN de la rana de Lessona de los gametos) y la rana verde ibérica.

Esquemas de Darekk2 sobre los procesos hibridogenéticos de los diferentes cleptones de ranas europeas. Los círculos grandes indican el genoma de los individuos y los círculos pequeños el material genético de los gametos.

Como vemos, la dotación genética de la rana común europea es la que se encuentra en los tres cleptones. Estos cleptones eliminan el material genético de la especie con la que comparten el hábitat de sus gametos y mantienen el de la rana común europea (R). Así por ejemplo, la rana comestible (P. kl esculentus) elimina de sus óvulos el ADN de la rana de Lessona (L), con la cual se encuentra en su distribución natural y se reproduce, dando lugar a más ranas comestibles (RL). La rana común europea raramente se reproduce con alguno de los híbridos y si lo hace, salen ranas comunes europeas normales.


Las salamandras del género Ambystoma, generalmente conocidas como salamandras topo, son un género endémico de América del Norte y son los únicos representantes actuales de la familia Ambystomatidae. Cinco de estas especies forman el llamado “complejo Ambystoma, en el cual estas especies contribuyen a la composición genética de un linaje unisexual de salamandras que se reproducen por ginogénesis (ginocleptón). Basándose en el ADN mitocondrial de las poblaciones unisexuales, se cree que este complejo proviene de un fenómeno de hibridación de hace unos 2,4-3,9 millones de años.

ambystomert complexx
Este complejo está formado por las siguientes cinco especies: la salamandra de puntos azules (Ambystoma laterale de genoma LL, foto de Fyn Kynd Photography), la salamandra de Jefferson (Ambystoma jeffersonianum de genoma JJ, foto de Vermont Biology), la salamandra de boca chica (Ambystoma texanum de genoma TT, foto de Greg Schechter), la salamandra de riachuelo (Ambystoma barbouri de genoma BB, foto de Michael Anderson) y la salamandra tigre (Ambystoma tigrinum de genoma TiTi, foto de Carla Isabel Ribeiro).

En la ginogénesis de este linaje compuesto únicamente por hembras, el óvulo necesita la activación por parte de un espermatozoide para empezar a dividirse y desarrollarse, aunque antes debe duplicar su material genético mediante un proceso de endomitosis para evitar la formación de zigotos haploides (con la mitad de información genética) inviables. Aun así, como con los reptiles partenogenéticos, a la larga la falta de recombinación genética puede pasar factura a los individuos. Es por esto que este linaje unisexual de salamandras tiene la capacidad de incorporar ocasionalmente el genoma entero de los machos de cuatro de las especies que forman el complejo (actualmente no se ha visto que la salamandra de riachuelo se aparee con ningún individuo unisexual).

Esquema de Bi, Bogart & Fu (2009) en el que vemos las diferentes vías que puede tomar la reproducción ginogenética de las salamandras topo.

Estos individuos no mezclan el genoma adquirido, sino que lo suman al suyo. Esto provoca que dentro de este linaje podamos encontrar individuos diploides, triploides, tetraploides e incluso hasta pentaploides (aunque cuanto más aumenta la ploidía menos viables son los individuos), dependiendo de la cantidad de genomas diferentes que hayan ido incorporando las generaciones anteriores.

mes ibrids
Dentro del cleptón, la combinación más común son los triploides basados en la salamandra de puntos azules y la de Jefferson, con los genomas LLJ (izquierda, imagen de David Misfud) y JJL (derecha, imagen de Nick Scobel), aunque el número de combinaciones es increíblemente grande, motivo por el cual los científicos no han podido asignar un nombre científico válido a este grupo de origen híbrido.

A diferencia de las ranas verdes, resulta muy difícil definir un nombre científico dentro de este cleptón de Ambystoma, ya que los genomas de las diferentes especies se pueden encontrar en diferentes combinaciones y proporciones en los diferentes individuos unisexuales.


Durante la elaboración de esta entrada se han utilizado las siguientes fuentes:


Híbrids i lladres d’esperma: cleptons amfibis

En biologia un híbrid és el resultat de la reproducció de dos progenitors d’espècies genèticament diferents, tot i que en la majoria de casos els híbrids o no són viables o són estèrils. Però a vegades, en algunes espècies d’amfibis els híbrids no només són viables, sinó que a més formen noves espècies amb característiques especials. En aquesta entrada us posem dos casos d’híbrids d’amfibis que formen el que es coneix com un cleptó i que posen en dubte el concepte tradicional d’espècie.


Un cleptó o kleptó (abreviat kl.) és una espècie que depèn d’una altra espècie per a completar el seu cicle reproductiu. L’orígen de la paraula cleptó vé del grec “kleptein” que vol dir “robar”, ja que el cleptó “roba” a l’altra espècie per a poder reproduïr-se. En el cas dels amfibis, els cleptons s’han originat per fenòmens d’hibridació. Les potents feromones sexuals del amfibis i els cors de múltiples espècies en el cas dels anurs, provoquen que a vegades mascles i femelles de diferents espècies intentin aparellar-se. Tanmateix els híbrids només són viables entre espècies properament emparentades.

Dintre de les diferents espècies cleptó hi podem trobar dos mètodes diferents segons el tipus de concepció: els zigocleptons, en els que hi ha una fusió del material genètic de l’òvul i de l’espermatozou, i els ginocleptons, en els que l’òvul necessita estimulació per part de l’espermatozou però no incorpora el seu material genètic.

Els diferents cleptons d’amfibis solen estar constituïts principalment per femelles (hi han molts pocs mascles o cap) que utilitzen l’esperma d’una altra espècie per perpetuar el cleptó. Com que els cleptons d’amfibis a vegades depenen de vàries espècies emparentades, això pot fer que es creïn “complexes d’espècies” on vàries espècies molt semblants presentin zones d’hibridació i relacions molt complicades entre elles. A continuació us posem dos exemples de cleptons, un en anurs europeus i un en urodels americans.


Les granotes verdes europees (gènere Pelophylax) formen el que es coneix com a “complexe hibridogenètic” en el qual els híbrids de diferents espècies formen cleptons que no es poden reproduïr entre sí, sinó que han de reproduïr-se amb un membre de l’espècie progenitora, “robant” o “parasitant” el seu esperma per a sobreviure.

Foto de Bartosz Cuber de dues granotes comestibles (Pelophylax kl. esculentus) en amplexe. Aquest híbrid és el més conegut tant per la seva àmplia distribució, com per ser considerat una delicadesa a França.

En l’hibridogènesi de les granotes verdes el material genètic dels dos progenitors es combina per a formar l’híbrid resultant (zigocleptó). Aquests híbrids (normalment sempre femelles) tindran la meitat del genoma d’una espècie i la meitat de l’altre. Tanmateix, al no poder reproduïr-se amb altres híbrids semblant, durant la gametogènesi s’elimina el material genètic d’una de les espècies progenitores. Així, al aparellar-se amb un individu de l’espècie de la qual ha eliminat el material genètic, tornaran a formar un híbrid.

Esquema sobre la dotació genètica dels diferents cleptons de Pelophylax. En aquest complex hibridogenètic hi intervenen quatre espècies “naturals”: la granota comuna europea (Pelophylax ridibundus, genoma RR), la granota de Lessona (Pelophylax lessonae, genoma LL), la granota verda ibèrica (Pelophylax perezi, genoma PP) i la granota italiana (Pelophylax bergeri, genoma BB).

La granota comestible comuna (Pelophylax kl. esculentus, genoma RL) prové de la hibridació entre la granota comuna europea i la granota de Lessona. La granota comestible italiana (Pelophylax kl. hispanicus, genoma RB) prové d’un híbrid entre la granota comuna europea i la granota italiana. Finalment la granota de Graf (Pelophylax kl. grafi, genoma RP) prové de la hibridació de la granota comestible comuna (en la qual s’elimina l’ADN de la granota de Lessona de les gàmetes) i la granota verda ibèrica.

Esquemes de Darekk2 sobre els processos hibridogenètics dels diferents cleptons de granotes europees. Els cercles grans indiquen el genoma dels individus i els cercles petits el material genètic de les gàmetes.

Com veiem la dotació genètica de la granota comuna europea és la que es troba present en tots tres cleptons. Aquests cleptons eliminen el material genètic de l’espècie amb la que comparteixen l’hàbitat de les seves gàmetes i mantenen el de la granota comuna europea (R). Així per exemple, la granota comestible (P. kl. esculentus) elimina dels seus òvuls l’ADN de la granota de Lessona (L), amb la qual es troba en la seva distribució natural i s’hi reprodueix, donant a més granotes comestibles (RL). La granota comuna europea rarament es reprodueix amb algún dels híbrids i si ho fa, surten granotes comunes europees normals.


Les salamandres del gènere Ambystoma, generalment conegudes com a salamandres talp, són un gènere endèmic d’Amèrica del Nord i són els únics representants actuals de la família Ambystomatidae. Cinc d’aquestes espècies formen l’anomenat “complexe Ambystoma, en el qual aquestes espècies contribueixen a la composició genètica d’un llinatge unisexual de salamandres que es reprodueixen per ginogènesi (ginocleptó). Basant-se en l’ADN mitocondrial de les poblacions unisexuals, es creu que aquest complexe prové d’un fenòmen d’hibridació de fa uns 2,4-3,9 milions d’anys.

ambystomert complexx
Aquest complexe està format per les següents cinc espècies: la salamandra de punts blaus (Ambystoma laterale de genoma LL, foto de Fyn Kynd Photography), la salamandra de Jefferson (Ambystoma jeffersonianum de genoma JJ, foto de Vermont Biology), la salamandra de Texas (Ambystoma texanum de genoma TT, foto de Greg Schechter), la salamandra de rierol (Ambystoma barbouri de genoma BB, foto de Michael Anderson) i la salamandra tigre (Ambystoma tigrinum de genoma TiTi, foto de Carla Isabel Ribeiro).

En la ginogènesi d’aquest llinatge compost únicament per femelles, l’òvul necessita l’activació per part d’un espermatozou per començar a dividir-se i desenvolupar-se, tot i que abans ha de duplicar el seu material genètic mitjançant un procés d’endomitosi per evitar la formació de zigots haploïdes (amb la meitat d’informació genètica) inviables. Tanmateix, com en els rèptils partenogenètics, a la llarga la falta de recombinació genètica pot passar factura als individus. Per això, aquest llinatge unisexual de salamandres té la capacitat d’incorporar ocasionalment el genoma sencer dels mascles de quatre de les espècies que formen el complexe (actualment no s’ha vist que la salamandra de rierol s’aparelli amb cap individu unisexual).

Esquema de Bi, Bogart & Fu (2009) en el que veiem els diferents camins que pot pendre la reproducció ginogenètica de les salamandres talp.

Aquests individus no barregen el genoma adquirit, sinó que el sumen al seu. Això fa que dins d’aquest llinatge hi puguem trobar individus diploïdes, triploïdes, tetraploïdes i fins i tot pentaploïdes (tot i que com més augmenta la ploïdia menys viables són els individus), depenent de la quantitat de genomes diferents que hagin anat incorporant les generacions anteriors.

mes ibrids
Dins del cleptó, la combinació més comuna són triploïdes basats en la salamandra de punts blaus i la de Jefferson, amb els genomes LLJ (esquerra, imatge de David Misfud) i JJL (dreta, imatge de Nick Scobel), tot i que el nombre de combinacions és increïblement gran, fet pel qual els científics no han pogut assignar un nom científic vàlid a aquest grup d’orígen híbrid.

A diferència de les granotes verdes, resulta molt difícil definir un nom científic dins del cleptó de Ambystoma, ja que els genomes de les diferents espècies es poden trobar en diferents combinacions i proporcions en els diferents individus unisexuals.


Durant l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:


Open-air concerts: the call of frogs and toads

Well into mid-spring, when the nights get warmer, it’s in the more temperate latitudes where we can start hearing the songs of the frogs. If we get close to any humid area in summer we’ll hear the frog’s and toad’s choirs which sing to attract a mate and proclaim their territories. In this entry we’ll explain the functioning and secrets hidden behind the different calls and songs of the anuran world.


Anurans are the amphibian order with the greatest vocal abilities. Practically all species make different kinds of calls which they use to communicate and transmit information to their own kind. That’s why frogs and toads have developed a much more specialized vocal systems than the rest of lissamphibians to generate their famous calls.

New Granada cross-banded tree frog (Smilisca phaeota) in the midst of a call. Photo by Santiago Ron.

Anuran calls originate when the air passes from the lungs through the larynx where the vocal cords are found. Anurans are the only lissamphibians with true vocal cords, while urodeles and caecilians don’t have them. Lissamphibians must pump air to their lungs to breath (although they also breathe through their skin) and in most frogs the call is generated during exhalation.

Fire Bellied Toad
The oriental fire-bellied toad (Bombina orientalis) differs from the rest of anurans in that it emits its call both during exhalation and inhalation. Photo by Flickpicpete.

Most frogs and toads also present vocal sacs that amplify the sound of their calls, some of which can be heard up to one kilometre away. Anurans may have one vocal sac in their throat, or two vocal sacs in the corners of their mouth. To emit their famous calls they must have their mouths and nasal openings closed, to direct the air to the vocal sacs. Even if some species do not have vocal sacs, most species emit calls in some form or another.

The marsh frog (Pelophylax ridibundus) is an example of a frog with two vocal sacs in the corner of its mouth. Photo by Xavier Robin.


Toads and frogs use their calls for one main reason: to mate. In anurans singing is a method to distinguish animals of their own species, to help males and females find each other and to detect receptive individuals. Normally the males are the ones who sing to attract females and that’s why there’s a sexual dimorphism in the vocal sacs, with males having more developed sacs than females and more elaborated calls.

Even if it’s hard to appreciate, here we can see how in oak toads (Anaxyrus quercicus) the males (left) present a bigger skin fold corresponding to a more developed vocal sac than the females (right). Image by Eric Shashoua.

It is thought that during the evolution of anurans a process of sexual selection has taken place with females selecting the males with the more adequate calls. As a general rule females prefer males with louder and deeper calls. Probably, this is due to the fact that the bigger males (which generally have the deeper voices) are usually the stronger and older ones, indicating that they have been able to survive for a longer time and that they have better genes to transmit to their offspring.

In this video by Pocketbattleship we can hear the song of the American bullfrog (Lithobates catesbeianus), which is deep and powerful.

Yet there are some species with very high-pitched calls in which the selection by females is focused on other factors. Most anuran females also prefer very frequent (with many repetitions of the sound) and longer calls (long-lasting sounds). This is because singing is a really intense activity that requires a lot of energy, indicating the males that have been able to store enough energy to carry out such an exhausting activity.

The call of the golden poison frog (Phyllobates terribilis) is really high-pitched and is characterized by its high frequency, as we can see in this video by Mavortium.

The mating season usually comes after some rainy weather in the more arid habitats and during the summer nights in the colder latitudes. Males usually form what we call “choirs” near bodies of water, as it’s in those where mating will take place. Anuran species can be separated into two groups based on their reproduction strategy: explosive breeders and continuous breeders.

Explosive breeders are usually found in dry habitats, where water availability is scarce most of the year. After some heavy rains, males congregate in the recently-formed water zones and form the choirs, singing for one or two nights. In these species females arrive simultaneously. This brings great numbers of males and females to congregate in one night and in the same area and, once the females arrive, the males quit singing and start competing energetically to make sure they mate.

Couch’s spadefoot toad (Scaphiopus couchii) is a desert living amphibian from the south of the United States, which is characterized by its explosive mating. Image by CaliforniaHerps.

The most complex behaviours occur in species which breed continuously (the majority of the anurans). In these species the breeding season can last for six months and, while males come first to the mating spots and start to form the choirs, females arrive sporadically, mate and then abandon the mating ponds. This implies that when a female arrives there are many males in the mating spot, creating a strong selection of males by the females.

Common toads (Bufo bufo) are one of the best examples of continuous breeders. Photo by Janek.

Instead of chasing the females like the explosive breeders, these use different calls both to stand out from the rest of the males and therefore be chosen by the females, and to warn male rivals not to approach their territory. Even if usually the males that are able to maintain their territories for the longest time are normally the ones that will have more offspring, there are also are the so-called “satellite males” which instead of singing, stay close to the males with the more powerful calls and intercept the females attracted by them.


Obviously, the calls also allow the females to differentiate the individuals of their own species from others. This can also help us, as anurans are usually secretive and nocturne animals and their calls allow us to identify which species we have around us, even if darkness covers it all.

Down below we share with you the calls and songs of some anurans from the Iberian Peninsula, in case you go on an evening out, to help you identify the most common toads and frogs you can find in humid zones.

The common midwife toad (Alytes obstetricans) normally sings at night and on land usually far from water, using underground shelters as echo chambers because, as the rest of midwife toads (Alytes genus), it has no vocal sacs. The call is a clear and flute-like note which is repeated regularly, as we can hear in this video by The Nature Box.

The call of the Iberian spadefoot toad (Pelobates cultripes) is similar to a hen’s cluck. The deep song of the spadefoot toad is usually hard to hear, because this anuran usually sings underwater, although in this video by Versicolora we can hear it pretty well.

The spiny toads (Bufo spinosus) usually sing alone, sporadically and without forming choirs, with their body half-submerged and their head out of the water. The call consists in a series of harsh and pretty high-pitched sounds as we can hear in this recording by Martiño Cabana Otero.

The natterjack toads (Bufo calamita) sing at night, in very shallow waters, with their body pretty upright and inflating their huge vocal sac. Their call is pulsatile, powerful and boomy, and is repeated without rest as we can see in this video by Florian Begou.

The Mediterranean tree frog (Hyla meridionalis) usually sings at dusk and at night, both in water, on land or, as we can see in this video by Pedroluna, perched in the vegetation. The call consists in a single intense, nasal and monotonous note, which is repeated in long and irregular intervals.

Perez’s frogs (Pelophylax perezi) present a wide range of sounds which go from the typical “croak” to a sonorous call similar to a cackle. The choirs of these frogs are usually numerous and really loud, as we can hear in this video by Martiño Cabana Otero.


The following sources have been consulted during the elaboration of this entry:


Conciertos al aire libre: el canto de ranas y sapos

Bien entrada la primavera, cuando ya empieza a hacer buena temperatura por la noche, en las latitudes más templadas es cuando empezamos a escuchar los cantos de las ranas. Si nos acercamos a cualquier zona húmeda en verano oiremos los coros de ranas y sapos que cantan para atraer a una pareja y proclamar sus territorios. En esta entrada explicaremos el funcionamiento y los secretos que esconden los diferentes cantos y reclamos del mundo de los anuros.


Los anuros son el orden de anfibios con más capacidades vocales. Prácticamente todas las especies realizan diferentes tipos de reclamos que utilizan para comunicarse y transmitir información a sus congéneres. Es por estos que ranas y sapos han desarrollado un sistema vocal bastante más especializado que el del resto de lisanfibios para generar sus famosos cantos.

La rana arborícola de la especie Smilisca phaeota en pleno canto. Foto de Santiago Ron.

El canto de los anuros se origina al pasar el aire desde los pulmones a la laringe donde se encuentran las cuerdas vocales. Mientras que los urodelos y las cecilias no presentan, los anuros son los únicos lisanfibios con cuerdas vocales auténticas. Los lisanfibios han de bombear el aire a los pulmones para respirar (aunque también respiran por la piel) y en la mayoría de ranas el canto se genera cuando el animal exhala.

Fire Bellied Toad
El sapillo de vientre de fuego oriental (Bombina orientalis) difiere del resto de anuros en que emite su canto tanto al exhalar como al inhalar. Foto de Flickpicpete.

La mayoría de ranas y sapos presentan además sacos vocales que amplifican el sonido de sus cantos, algunos de los cuales llegan a oírse hasta a un kilómetro de distancia. Los anuros pueden tener un solo saco vocal en la garganta, o dos sacos vocales en las comisuras de la boca. Para emitir sus famosos cantos han de mantener la boca y los orificios nasales cerrados, para así dirigir el aire a los sacos vocales. Aunque no todas las especies presentan sacos vocales, la mayoría emiten cantos de una forma u otra.

La rana europea común (Pelophylax ridibundus) es un ejemplo de rana con dos sacos vocales en las comisuras de la boca. Foto de Xavier Robin.


Los sapos y las ranas utilizan su canto por un motivo principal: la reproducción. En los anuros, el canto es un método para distinguir los individuos de la misma especie, para encontrarse machos y hembras y para detectar los individuos receptivos. Normalmente son los machos los que cantan para atraer a las hembras y es por eso que existe un dimorfismo sexual en los sacos, con los machos presentando sacos más desarrollados y cantos más elaborados.

Aunque resulta difícil de apreciar, aquí vemos como en los sapos de la especie Anaxyrus quercicus los machos (izquierda) presentan un colgajo de piel en la garganta, correspondiente al saco vocal más desarrollado que las hembras (derecha). Imagen de Eric Shashoua.

Se cree que en la evolución de los anuros se ha dado un proceso de selección sexual por parte de las hembras para seleccionar a los machos con los cantos más adecuados. Como norma general, las hembras prefieren a los machos con cantos más graves y potentes. Esto probablemente se debe a que los machos más grandes (que generalmente tienen las voces más graves) son los más fuertes y los más viejos, indicando que han sido capaces de sobrevivir más tiempo y que por lo tanto tienen mejores genes para transmitir a la descendencia.

En este vídeo de Pocketbattleship podemos oír el canto de la rana toro americana (Lithobates catesbeianus), que es profundamente grave y potente.

Aun así hay especies con cantos muy agudos en las cuales la selección de las hembras está basada en otros factores. La mayoría de hembras de anuros prefieren los cantos con mucha frecuencia (muchas repeticiones del sonido) y los cantos largos (sonidos que duran mucho). Esto se debe a que el canto es una actividad intensa que requiere mucha energía, indicando los machos que han conseguido almacenar energía suficiente como para llevar a cabo esta actividad agotadora.

El canto de la rana dardo dorada (Phyllobates terribilis) es muy agudo y se caracteriza por su alta frecuencia, como vemos en este vídeo de Mavortium.

La época de reproducción suele darse después de las lluvias en los ambientes más áridos y en las noches de verano en zonas más frías. Los machos suelen formar los llamados “coros” cerca de cuerpos de agua, ya que es en éstos donde se llevará a cabo el apareamiento. Las especies de anuros se pueden separar en dos grupos según el método de reproducción: los criadores explosivos y los criadores continuos.

Los criadores explosivos suelen vivir en hábitats secos, donde la disponibilidad de agua suele ser escasa gran parte del año. Después de las lluvias, los machos se congregan en las zonas de agua recién formadas y forman los coros, cantando durante una o dos noches. En estas especies las hembras llegan sincronizadamente. La consecuencia es que en una noche hay gran cantidad de machos y hembras en la misma zona haciendo que, una vez han llegado las hembras, los machos abandonen el canto y compitan enérgicamente para asegurarse el apareamiento.

El sapo de espuelas de Couch (Scaphiopus couchii) es un anfibio que vive en los desiertos del sur de Estados Unidos y que se caracteriza por la cría explosiva. Imagen de CaliforniaHerps.

Las conductas más complejas se dan en las especies de cría continua (que son la mayoría de anuros). En estas, la temporada de apareamiento puede durar hasta seis meses y, mientras que los machos llegan primero a las zonas de cría y empiezan a formar los coros, las hembras van llegando esporádicamente, se aparean y seguidamente abandonan las balsas de cría. Esto implica que cuando llega una hembra haya muchos machos en el lugar de cría, haciendo que haya una fuerte selección de los machos por parte de éstas.

Los sapos comunes (Bufo bufo) son uno de los ejemplos más clásicos de criadores continuos. Foto de Janek.

En vez de perseguir a las hembras como los criadores explosivos, éstos utilizan diferentes cantos tanto para destacar entre los otros machos y ser escogidos por las hembras, como para advertir a los rivales de que no se acerquen a su territorio. Aunque normalmente los machos que pueden mantener los territorios durante más tiempo suelen ser los que más se reproducirán, existen los llamados “machos satélites” los cuales en vez de cantar, se quedan cerca de los machos con los cantos más potentes para interceptar a las hembras que llegan atraídas por éstos y aparearse con ellas.


Obviamente, los cantos también sirven a las hembras para diferenciar a los individuos de su misma especie de los demás. Esto también nos puede servir a nosotros, ya que los anuros suelen ser animales nocturnos y discretos y el canto nos permitirá saber qué especies tenemos a nuestro alrededor, aunque nos envuelva la oscuridad total.

A continuación os ponemos los cantos de algunos anuros de la Península Ibérica, para que si hacéis una salida nocturna podáis identificar a los sapos y las ranas más comunes que os podéis encontrar en las zonas húmedas.

El sapo partero común (Alytes obstetricans) suele cantar de noche y en tierra alejado del agua, utilizando refugios subterráneos como cámaras de resonancia ya que, como el resto de sapos parteros (género Alytes), no presenta sacos vocales. El canto es una nota clara y aflautada repetida regularmente, como oímos en este vídeo de The Nature Box.

El canto del sapo de espuelas (Pelobates cultripes) se parece al cloqueo de una gallina. El profundo canto del sapo de espuelas suele ser difícil de oír, ya que este anuro suele cantar bajo el agua, aunque en este vídeo de Versicolora se oye bastante bien.

Los sapos espinosos (Bufo spinosus) suelen cantar en solitario, de forma esporádica y sin formar coros, con el cuerpo sumergido y la cabeza fuera del agua. El canto consiste en una serie de sonidos ásperos y bastante agudos como se oye en esta grabación de Martiño Cabana Otero.

Los sapos corredores (Bufo calamita) cantan de noche, en zonas de agua poco profunda, con el cuerpo bastante erguido e hinchando mucho su saco vocal. El canto es pulsátil, potente y retumbante, y se repite sin descanso como vemos en este vídeo de Florian Begou.

La ranita meridional (Hyla meridionalis) suele cantar al anochecer o de noche, tanto en el agua, en tierra o, como vemos en este vídeo de Pedroluna, encaramada a la vegetación. El canto consiste en una única nota intensa, nasal, monótona y que se repite en intervalos largos e irregulares.

La rana común (Pelophylax perezi) presenta sonidos muy variados que van desde el típico “croac” hasta un canto sonoro muy parecido a una carcajada. Los coros de estas ranas pueden ser enormes y muy ruidosos, como oímos en este vídeo de Martiño Cabana Otero.


Se han utilizado las siguientes fuentes durante la elaboración de esta entrada:


Concerts a l’aire lliure: el cant de granotes i gripaus

Ben entrada la primavera, quan ja comença a fer bona temperatura a la nit, a les latituds més temperades és quan comencem a sentir els cants de les granotes. Si ens apropem a qualsevol zona humida a l’estiu sentirem els cors de granotes i gripaus que canten per atraure una parella i proclamar els seus territoris. En aquesta entrada explicarem el funcionament i els secrets que amaguen els diferents cants i reclams del món dels anurs.


Els anurs són l’ordre d’amfibis amb més capacitats vocals. Pràcticament totes les espècies fan diferents tipus de reclams que utilitzen per a comunicar-se i transmetre informació als seus congèneres. És per això que granotes i gripaus han desenvolupat un sistema vocal força més especialitzat que el de la resta de lissamfibis per a generar els seus famosos cants.

Granota arborícola de l’espècie Smilisca phaeota en ple cant. Foto de Santiago Ron.

El cant dels anurs s’origina al passar l’aire des dels pulmons a la laringe on es troben les cordes vocals. Mentre que els urodels i les cecílies no en presenten, els anurs són els únics lissamfibis que tenen cordes vocals autèntiques. Els lissamfibis han de bombejar l’aire als pulmons per a respirar (tot i que també respiren per la pell) i en la majoria de granotes el cant es genera quan l’animal exhala.

Fire Bellied Toad
El gripau de ventre de foc oriental  (Bombina orientalis) difereix de la resta d’anurs en que emet el seu cant tant al exhalar com al inhalar. Foto de Flickpicpete.

La majoria de granotes i gripaus a més, presenten sacs vocals que amplifiquen el so dels seus cants, alguns dels quals arriben a sentir-se fins a un kilòmetre de distància. Els anurs poden tindre un sol sac vocal a la gola, o dos sacs vocals a les comissures de la boca. Per emetre els seus famosos cants han de mantenir la boca i els orificis nasals tancats, per així dirigir l’aire als sacs vocals. Tot i que no totes les espècies presenten sacs vocals, la majoria emeten cants d’una forma o una altra.

La granota comuna (Pelophylax ridibundus) és un exemple de granota amb dos sacs vocals a les comissures de la boca. Foto de Xavier Robin.


Els gripaus i les granotes fan servir el cant per una raó principal: la reproducció. En els anurs el cant és un mètode per a distingir els individus de la mateixa espècie, per a trobar-se els mascles i les femelles i per a detectar els individus receptius. Normalment són els mascles els que canten per atraure a les femelles i es per això que existeix un dimorfisme sexual en els sacs, amb els mascles tenint sacs més desenvolupats i cants més elaborats.

Tot i que resulta difícil d’apreciar, aquí veiem com en els gripaus de l’espècie Anaxyrus quercicus els mascles (esquerra) presenten el penjall de pell a la gola corresponent al sac vocal més desenvolupat que les femelles (dreta). Imatge de Eric Shashoua.

Es creu que en l’evolució dels anurs s’ha donat un procés de selecció sexual per part de les femelles per a seleccionar els mascles amb els cants més adequats. Com a norma general les femelles prefereixen els mascles amb cants més greus i potents. Això probablement es dèu a que els mascles més grans (que generalment tenen les veus més greus) són els més forts i els més vells, indicant que han sigut capaços de sobreviure més temps i que per tant tenen millors gens per transmetre a la descendència.

En aquest vídeo de Pocketbattleship podem sentir el cant de la granota toro americana (Lithobates catesbeianus), que és profundament greu i potent.

Tanmateix hi ha espècies amb cants molt aguts en les quals la selecció de les femelles s’ha enfocat cap a altres factors. La majoria de femelles d’anurs prefereixen els cants amb molta freqüència (moltes repeticions del so) i els cants llargs (sons que duren molt). Això es dèu a que el cant és una activitat intensa que requereix molta energia, indicant els mascles que han aconseguit emmagatzemar energia suficient com per a dur a terme aquesta activitat esgotadora.

El cant de la granota punta de fletxa daurada (Phyllobates terribilis) és molt agut i es caracteritza per la seva alta freqüència, com veiem en aquest vídeo de Mavortium.

L’època de reproducció sòl donar-se després de les pluges en els ambients més àrids i en les nits d’estiu en zones més fredes. Els mascles solen formar els anomenats “cors” aprop de cossos d’aigua, ja que és en aquests on es durà a terme l’aparellament. Les espècies d’anurs es poden separar en dos grups segons el mètode de reproducció: el criadors explosius i els criadors continuus.

Els criadors explosius solen viure en hàbitats secs, on la disponibilitat d’aigua sol ser escassa gran part de l’any. Després de les pluges, els mascles es congreguen a les zones d’aigua recentment formades i formen els cors, cantant durant una o dues nits. En aquestes espècies les femelles arriben sincronitzadament. La conseqüència és que en una nit hi ha gran quantitat de mascles i femelles a la mateixa zona fent que, un cop han arribat les femelles, els mascles abandonin els cants i competeixin enèrgicament per assegurar-se l’aparellament.

El gripau d’esperons de Couch (Scaphiopus couchii) és un amfibi que viu als deserts del sud dels Estats Units i que es caracteritza per la seva cria explosiva. Imatge de CaliforniaHerps.

Les conductes més complexes es dónen en les espècies de cria contínua (que són la majoria d’anurs). En aquestes la temporada d’aparellament pot durar fins a sis mesos i, mentre que els mascles arriben primer a les zones de cria i comencen a formar els cors, les femelles van arribant esporàdicament, s’aparellen i seguidament abandonen les basses de cria. Això implica que quan arriba una femella hi hagi molts mascles al lloc de cria, fent que hi hagi una forta selecció dels mascles per part d’aquestes.

Els gripaus comuns (Bufo bufo) són un dels exemples més clàssics de criadors continuus. Foto de Janek.

Enlloc de perseguir a les femelles com els criadors explosius, aquests utilitzen diferents cants tant per destacar entre els altres mascles i ser triat per les femelles, com per a advertir als rivals de que no s’apropin al seu territori. Tot i que normalment els mascles que poden mantenir els territoris durant més temps solen ser els que es reproduïran més, existeixen els anomenats “mascles satèl·lits” els quals enlloc de cantar, es queden aprop dels mascles amb els cants més potents per a interceptar a les femelles que arribin atretes per aquests i aparellar-s’hi.


Òbviament, els cants també serveixen a les femelles per a diferenciar als individus de la seva mateixa espècie de la resta. Això també ens pot servir a nosaltres, ja que els anurs solen ser animals nocturns i discrets i el cant ens permetrà saber quines espècies tenim al nostre voltant, encara que ens envolti la foscor total.

A continuació us posem els cants d’alguns anurs de la Península Ibèrica, perquè si feu una sortida nocturna puguen identificar als gripaus i les granotes més comuns que us podeu trobar a les zones humides.

El tòtil comú (Alytes obstetricans) sol cantar de nit i a terra allunyat de l’aigua, utilitzant refugis subterranis com a càmeres de ressonància ja que, com la resta de tòtils (gènere Alytes), no presenta sacs vocals. El cant és una nota clara i aflautada repetida regularment, com sentim en aquest vídeo de The Nature Box.

El cant del gripau d’esperons (Pelobates cultripes) s’assembla a l’escataineig d’una gallina. El cant profund del gripau d’esperons sol ser difícil de sentir, ja que aquest anur sol cantar sota l’aigua, encara que en aquest vídeo de Versicolora es sent força bé.

Els gripaus espinosos (Bufo spinosus) solen cantar en solitari, de forma esporàdica i sense formar cors, amb el cos submergit i el cap fora de l’aigua. El cant consisteix en una sèrie de sons aspres i força aguts com es sent en aquesta grabació de Martiño Cabana Otero.

Els gripaus corredors (Bufo calamita) canten de nit, en zones d’aigua poc profundes, amb el cos força alçat i inflant molt el seu sac vocal. El cant és pulsàtil, potent i retombant, i es repeteix sense descans com veiem en aquest vídeo de Florian Begou.

La reineta meridional (Hyla meridionalis) sol cantar al vespre o de nit, tant a l’aigua, a terra o, com veiem en aquest vídeo de Pedroluna, enfilada a la vegetació. El cant consisteix en una única nota intensa, nasal, monòtona i que es repeteix en intèrvals llargs i irregulars.

La granota verda (Pelophylax perezi) presenta sons molt variats que van des del típic “croac” fins a un cant sonor semblant a una riallada. Els cors d’aquestes granotes poden ser enormes i molt sorollosos, com sentim en aquest vídeo de Martiño Cabana Otero.


Per a l’elaboració d’aquesta entrada s’han consultat les següents fonts: