Arxiu d'etiquetes: phylogeny

Cutting up dinosaur’s evolutionary tree

For more than 130 years dinosaurs have been classified into two distinct orders, the saurischians and the ornithischians. But as it is common in biological sciences, every theory is true until the opposite is proved. A new study has called into question classical dinosaur classification, destroying and redistributing some of the different dinosaur groups. Even if this new hypothesis isn’t 100% sure yet, in this entry we’ll explain what this dinosaur reordering consists in.

TRADITIONAL DINOSAUR CLASSIFICATION

Since the XIX century, dinosaurs have been divided into two large orders based on their hip anatomy. The order Saurischia (lizard-hipped) includes theropods (carnivorous dinosaurs and current birds) and sauropodomorphs (large, long-necked herbivores); the order Ornithischia (bird-hipped) includes ornithopods (herbivorous and duck-billed dinosaurs), marginocephalians (dinosaurs with horns and hardened skulls) and thyreophorans (armored dinosaurs).

732px-Evolution_of_dinosaurs_by_Zureks.svg-min
Traditional dinosaur evolutionary tree by Zureks, with the two different hip morphologies at the bottom.

Yet, this classification doesn’t have the last word. Palaeontology is an extremely volatile science, as with each new discovery, you can dismantle everything you knew at that moment, even if it’s a centenary-old hypothesis. This is what has recently happened with dinosaurs.

THE RISE OF A NEW HYPOTHESIS

A new study published in March 2017, has caused the reconsideration of traditional dinosaur classification. Many previous studies assumed the Saurichia/Ornithischia classification as true and so, the used characters and taxons were all focussed on this classification. However, this new study has pioneered in many aspects:

  • It includes a larger number of species and taxons (many more than in previous investigations).
  • Previous studies gave more importance to basal theropod and sauropodomorph dinosaurs (traditional saurischians), as they were the first dinosaurs to diversify, including few basal ornithischians.
  • It has also included many dinosauromorph archosaurs (non-dinosaur taxons).
  • Older studies had assumed many ornithischian characters to be symplesiomorphies (ancestral characters of all dinosaurs) and they only focused on a few synapomorphies (characters found in a monophyletic group).

This study has detached from many of the previous assumptions on dinosaur phylogeny and has analysed a large number of species and many characters not included in previous investigations. This has made the resulting evolutionary tree pretty different from the ones obtained before.

RESHAPING THE TREE

Then, how does the dinosaur’s evolutionary tree stand according to this hypothesis? Well, the matter is somewhat complex, even if the different groups are still divided in two orders:

  • Order Saurischia which, according to this study, only includes sauropodomorphs and herrerasaurids (a group of carnivorous, non-theropod saurischians).
  • The new order Ornithoscelida (bird-limbed) that includes the traditional ornithischians and theropods, which are no longer saurischians.

Keeping this in mind, let’s now see the characteristics that define these two orders.

Saurischians

The order Saurischia is almost the same, except that theropods are no longer part of this group. This order presents the original saurischian hip structure, which the dinosaurs’ ancestors also had. According to this new hypothesis,  herrerasaurids and sauropodomorphs are all included as saurischians.

Herrerasaurids (Herrerasauridae family) were a small group of basal saurischians that evolved towards meat-eating. That’s why for a long time it was thought that they were the sister-taxon of theropods, but it was later seen that they were found among the first saurischians. Even if they were pretty specialized, they were probably displaced by competition with other predators, appearing during the middle Triassic and becoming extinct at the end of it.

229366767_309c6f9d6e_b-min
Photo by Brian Smith of a Herrerasaurus skeleton and model, from the Field Museum of Natural History of Chicago.

Herrerasaurids occupied a similar ecological niche as theropods. The new hypothesis implies that hypercarnivory (feeding exclusively on meat) evolved independently twice in dinosaurs, which makes some palaeontologist question it. Yet the herrerasaurid and theropod anatomy differed in some aspects, such as the anatomy of their hands (more generalistic in herrerasaurids) and the jaw structure.

The first sauropodomorphs were biped animals just like herrerasaurids, even if they were omnivorous. Yet, sauropodomorphs would end up becoming huge herbivorous quadrupeds with characteristic long necks.

thecodontosaurus-antiquus-skeleton1-min
Thecodontosaurus skeleton (by Qilong), a basal sauropodomorph and a reconstruction of Plateosaurus (from Walters, Senter & Robins) a more advanced one. Even if it cannot be appreciated in this image, sauropodomorphs would increase very their size very much during their evolution (Thecodontosaurus 2 metres, Plateosaurus up to 10 metres).

Ornithoscelidans

The new dinosaur order is Ornithoscelida, which groups theropods with ornithischians. This taxon is supported by more than twenty skeletal synapomorphies (derived characters shared by a clade), present both in basal theropods and ornithischians. Some of these characteristics include the presence of a gap between premaxillar and maxillar teeth (diastema) and the fusion of the ends of the tibia and the fibula into a tibiotarsus (even if these characteristics are only found on the most basal species).

ornithoscelida-min
Scheme from Baron et al. (2017) of the skulls of two basal ornithoscelidans, Eoraptor (a theropod, top) and Heterodontosaurus (an ornithischian, bottom).

Both theropods and the first ornithischians were bipedal animals. Also, the presence of heterodont teeth in the ancestral members of both groups leads us to think that the first ornithoscelidans were omnivorous, which would later specialise in feeding on meat and on plants (theropods and ornithopods respectively).

Daemonosaurus-face-min
Reconstruction of the face of Daemonosaurus, one of the first theropods, by DeadMonkey8984.

A curiosity about the new classification is that accepting Ornithoscelida as a valid taxon, all feathered dinosaurs are put together into one group. Everyone knows that many theropods presented feathers (as they were the ancestors of birds) but, what most people don’t know is that feathers have also been found in some basal ornithischians and in more advanced ones too.

Kulindadromeus_by_Tom_Parker-min
Reconstruction by Tom Parker of Kulindadromeus, a ornithischian which feathers have been proved to be present on most of its body.

KEEP INVESTIGATING

Then, is this hypothesis irrevocable? Well, no of course. Even if it’s pretty tempting to assume that the dinosaur’s natural history has been changed, we cannot say that from now on dinosaurs will be classified this way.

new evolution-min
Dinosaur evolutionary tree according to Baron et al. (2017), in which we can see the different clades; Dinosauria (A), Saurischia (B) and Ornithoscelida (C).

Even if this study shows really interesting results about the origin of dinosaurs, we cannot dismiss hundreds of previous studies about this group of animals. We’ll have to remain alert to new articles that step by step will keep unveiling more information about the relationships between these Mesozoic reptiles. And that’s what’s so stimulating about biology, that there’s nothing sure! And that with new investigation techniques and new discoveries, little by little we learn more about the world around us.

Keep your mind open and keep investigating!

REFERENCES

The following sources have been consulted during the elaboration of this entry:

difusio-angles

Classification and phylogeny for beginners

In this blog, we usually use therms related with the classification of living beings and their phylogeny. Due to the difficulty of these therms, in this post we will explain them for those who are introducing to the topic. 

INTRODUCTION

Before introducing in the topic, it is necessary to explain two concepts, which are usually confused: systematics and taxonomy.

Systematics is the science of the classification and reconstruction of phylogeny, it means that is responsible for reconstructing the origin and diversification of a taxon (unit that we want to classify, such as a species, a family or an order).

On the other hand, taxonomy is the study of the principles of scientific classification, the order and the name of organisms.

In other words, while systematics is responsible for creating systems of classification, which are represented by trees, taxonomy establishes the rules and methods to identify, name and classify each species in the different taxonomic categories based on systematics.

ABOUT SPECIES AND BEYOND

We cannot begin to talk about how to classify species without knowing what is a species and other classification levels of organisms.

WHAT IS A SPECIES?

Along history, it has been given several definitions to the concept species with different approaches.

  • Morphological concept of species: a species is a group of organisms with fix and essential features that represent a pattern or archetype. This concept is totally discarded nowadays, despite morphological features are used in guides to identify species.

INFO-BALLENA
Despite all guides use morphological features to identify species, morphological concept of species is not used (Picture: Revista Viva).

  • Biological concept of species: a species is a group of natural populations which reproduce among them and reproductively isolated and have their own niche in nature. So, a species has common ancestry and share traits of gradual variation.  This definition has some problems: it is only applicable in species with sexual reproduction and it is not applicable in extinct species.
  • Evolutionary concept of species: a species is a single lineage of ancestor-descendent populations that maintains its identity in front of other lineages and has its evolutionary tendencies and historical destination. This approach and the biological one are, in fact, complementary because they are talking about different phenomenons.
  • Phylogenetic concept of species: according to this point of view, a species is an irreducible group of organisms, diagnostically distinguishable from other similar groups and inside which there is a parental pattern of ancestry and descendants.  This point of view covers sexual and asexual reproduction.

ensatina_phylogeny
According to the phylogenetic definition of species, A, B and C are different species. In the C group, all of them are the same species with different types (Picture: Sesbe).

BEYOND SPECIES

Species are classified into a hierarchical system based on more taxonomical categories. From the highest to the lowest category, organisms can be classified in: Domain> Kingdom> Phylum> Class> Order> Family> Genus> Species> Subspecies> Variety> Form. 

We are giving an example: imagine dogs.  Dogs, like wolf, are included in the same species: Canis lupus, but dog is the subspecies Canis lupus familiaris. The naming of a species is its genus (Canis) followed by the specific epithet (lupus). The other taxonomical categories of dogs are: Eukarya Domain, Animal Kingdom, Chordata Phylum, Vertebrata Subphylum, Mammalia Class, Carnivora Order and Canidae Family.

DSC02196
Dogs and wolfs are included in the same species, but they are different subspecies (Picture: Marc Arenas Camps).

HOW IS TREE OF LIFE RECONSTRUCTED?

To reconstruct tree of life, it is the relationships between living and extinct species (phylogeny), we use traits. Traits are features of organisms that are used to study the variation inside a species and among them.

To reconstruct the phylogeny, it is used the shared traits among different taxa. We have to distinguish two types of similarity: when similarity of traits is a result of a common lineage is called homology, while when it is not the result of common ancestry is known as homoplasy.

Probably, it will be easier to understand it with an example. The wings of owls and quails are similar because they have the same origin (homology), but the wings of insects, birds and bats, despite they have the same function, they do not have the same origin (homoplasy).

bio_evoluc_convergente
The wings of insects, birds and bats are an homoplasy (Picture: Natureduca).

There are three types of homoplasy:

  • Parallelism: the ancestral condition of a variable trait (plesiomorphic) is present in the common ancestor, but the derived state (apomorphic) has evolved independently. An example is the development of a four-cavity heart in birds and mammals.
  • Convergence: in this case, the homoplastic trait is not present in the common ancestor. The structures originated by convergence are called analogy. An example is the wings of insects and birds.
  • Secondary loss or reversion: consist on the reversion of a trait to a state that looks ancestral. So, it looks and old state but, in fact, is derived.

paralelismo, convergencia, reversion
Biological parallelism, convergence and reversion (Picture: Marc Arenas Camps).

There are different types of traits that are used to order living beings: morphological, structural, embryological, palaeontological, ethological, ecological, biochemical and molecular.

Species that share derived states of a trait constitute clades and the trait is known as synapomorphy. Synapomorphies are traits that were originated in a common ancestor and are present in that ancestor and all its descendants. So, mammary glands are a synapomorphy of mammals.

animalia54
Mammary glands are a synapomorphy of mammals (Picture: Tiempo de éxito).

After the selection of traits, the several classification schools use them in different ways to get the best relationship between living beings.

REFERENCES

  • Notes of the subject Advanced Biology Basics, Degree in Biology (University of Barcelona).
  • Hickman, Roberts, Larson, l’Anson & Eisenhour (2006). Principios integrales de zoología. Ed. McGraw Hill (13 ed).
  • Izco (2004). Botánica. Ed. McGraw Hill (2 ed).
  • Shnek & Massarini (2008). Biología. Ed. Médica Panamericana (7 ed).
  • Vargas (2009). Glosario de Cladística: Introducción a la sistemática filogenética.
  • Cover picture: Tree of life mural, Kerry Darlington

Difusió-anglès