Arxiu d'etiquetes: planta

Plantas hiperacumuladoras de metales pesados

Durante millones de años la evolución ha llevado a las plantas a desarrollar diferentes estrategias para defenderse de los enemigos naturales, dando pie a una lucha de armamento evolutiva en la cual la supervivencia de unos y otros depende de la habilidad de hacer frente a las adaptaciones de los otros. Y es en este escenario donde la acumulación de metales pesados en altos niveles en planta juega un papel muy importante.

 INTRODUCCIÓN

Según Boyd (2012), la defensa de las plantas puede considerarse bajo distintos puntos de vista:

  • mecánica: espinas, coberturas, etc.
  • química: diferentes compuestos inorgánicos y orgánicos.
  • visual: cripsis y mimetismo.
  • comportamiento: relacionado con modificaciones en la fenología.
  • y asociativa: simbiosis con otros organismos, como es el caso del género Cecropia que establece simbiosis con las hormigas del género Azteca, las cuales protegen a estas plantas – para saber más: Plantas y animales también pueden vivir en matrimonio– .
espinas-karyn-christner-flickr
Defensa mecánica con espinas (Autor: Karyn Christner, Flickr, CC).

 

Se ha visto que la defensa química es ubicua, y por lo tanto, muchas interacciones entre organismos se explican bajo este punto de vista. Además, algunas plantas contienen grandes cantidades de ciertos elementos químicos, frecuentemente metales o componentes metálicos, que juegan un papel de defensa relevante, son las llamadas plantas hiperacumuladoras.

Plantas hiperacumuladoras  y sus características principales

Estas plantas pertenecen a diferentes familias, por lo tanto la hiperacumulación es una adquisición independiente que ha surgido varias veces durante la evolución, pero que en todos los casos genera la habilidad de crecer en suelos metalíferos y acumular extraordinarias cantidades  de metales pesados en órganos aéreos, a diferencia de los niveles encontrados en la mayoría de especies. Se sabe que las concentraciones de estos elementos químicos pueden ser entre 100 – 1000 veces mayores que las presentes en especies no hiperacumuladoras.

Generalmente, la química describe los metales pesados como aquellos metales de transición con una masa atómica superior a 20 y una densidad relativa cercana a 5. Pero, des del punto de vista biológico, los metales pesados son aquellos metales o metaloides que pueden ser tóxicos en bajas concentraciones. Aun así, las plantas hiperacumuladoras consiguen ser tolerantes, es decir, hiperacumulan estos metales pesados sin sufrir efectos fitotóxicos (toxicidad expresada en la planta).

En este sentido, hay tres características principales que describen las plantas hiperacumuladoras:

  • Fuerte aumento de la tasa de absorción de metales pesados.
  • Raíces que realizan la translocación más rápidamente.
  • Gran habilidad por detoxificar y acumular metales pesados en hojas.

Por lo tanto, las plantas hiperacumuladoras están bien preparadas para la asimilación, translocación a hojas y acumulación de grandes cantidades de metales pesados en vacuolas o en paredes celulares. En parte, esto es debido a una sobreexpresión constitutiva de genes que codifican para transportadores de membrana

Los valores límite que permiten diferenciar una planta hiperacumuladora de una que no lo es, están relacionados con la fitotoxicidad específica de cada metal pesado. Según este criterio, las plantas hiperacumuladoras son plantas que cuando crecen en suelos naturales acumulan en las partes aéreas (en gramos de peso seco):

  • > 10 mg·g-1 (1%) de Mn o Zn,
  • > 1 mg·g-1 (0,1%) de As, Co, Cr, Cu, Ni, Pb, Sb, Se o Ti
  • Ó > 0,1 mg·g-1 (0,01%) de Cd.
minuartia-verna-cu-candiru-flickr
Minuartia verna, hiperacumuladora de cobre (Autor: Candiru, Flickr, CC).

LA APARICIÓN DE PLANTAS HIPERACUMULADORAS Y SUS IMPLICACIONES

Hasta el momento se ha planteado diferentes hipótesis para explicar porque ciertas plantas han llegado a ser hiperacumuladoras de metales pesados:

  • Tolerancia y disposición de metales.
  • Resistencia a la sequía.
  • Interferencia con otras plantas vecinas
  • Defensa contra los enemigos naturales.

La hipótesis que recibe más soporte  es la denominada “Elemental defence” (defensa por elementos), que indica que ciertos metales pesados podrían tener un rol defensivo en la planta contra los enemigos a naturales, tales como los herbívoros y los patógenos. Estos organismos al consumir la planta presentarían efectos tóxicos, lo cual los llevaría a la muerte o bien a reducir el consumo de esta planta en un futuro. Aun así, aunque los metales pesados pueden actuar a través de su toxicidad, esto no garantiza que la planta no sea dañada o atacada antes que el enemigo natural sea afectado por estos. Por ellos sigue siendo necesario una defensa más efectiva que permita evitar el ataque.

Por otro lado, de acuerdo con una hipótesis más moderna, “Joint effects” (efectos conjuntos), los metales pesados podrían actuar juntamente con otros compuestos orgánicos de defensa dando lugar a una mayor defensa global. Las ventajas de los elementos inorgánicos, donde se incluyen los metales pesados, es que no son sintetizados por la planta, se absorben del suelo directamente y por lo tanto no hay tanto consumo energético invertido en la defensa, y además no pueden ser biodegradados. Aun así, algunos enemigos naturales pueden llegar a quelar los metales pesados gracias a quelatos (sustancias que se unen a estos metales pesados para reducir su toxicidad) o acumularlos en órganos donde se reduciría su actividad. Esta nueva hipótesis justificaría la presencia simultánea de distintos metales pesados y compuestos orgánicos de defensa en la misma planta, con la finalidad de conseguir una defensa mayor que afecte a más enemigos naturales, los cuales se esperaría no fuesen capaces de tolerar los distintos elementos tóxicos.

SONY DSC
Thlaspi caerulescens, hiperacumuladora de zinc (Autor: Randi Hausken, Flickr, CC).

Por otro lado, se ha visto que ciertos herbívoros tienen habilidades para evitar el consumo de plantas con altos niveles de metales pesados, realizando lo que se denomina “taste for metals” (“degustación de metales”). Aunque se sabe que esto sucede, no es del todo conocido el mecanismo exacto de todo este proceso de alerta y evitación.

solanum-nigrum-cd-john-tann-flickr
Solanum nigrum, hiperacumuladora de cadmio (Autor: John Tann, Flickr, CC).

Además, aunque las concentraciones de metales pesados que asumen estas plantas son elevadas, algunos  herbívoros logran sobrepasar esta defensa siendo tolerantes, es decir, su dieta les permite ingerir elevadas dosis de metales y por tanto alimentarse de la planta. Esto lleva a pensar que ciertos herbívoros podrían convertirse en especialistas en el consumo de estas plantas, y que, por tanto, este tipo de defensa quedaría reducido a organismos con dietas variadas, los denominados generalistas. Esto ha resultado no ser del todo cierto, ya que algunas veces los herbívoros generalistas presentan una preferencia y tolerancia superior por las plantas hiperacumuladoras que los organismos especialistas.

Por todos estos motivos se puede decir que la evolución continua jugando un papel importante en esta lucha de armamento.

Difusió-castellà

 REFERENCIAS

  • Boyd, R., Davis, M.A., Wall, M.A. & Balkwill K. (2002). Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12, p. 91–97.
  • Boyd, R. (2007). The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant soil 293, p. 153-176.
  • Boyd, R. (2012). Elemental Defenses of Plants by Metals. Nature Education Knowledge 3 (10), p. 57.
  • Laskowski, R. & Hopkin, S.P. (1996). Effect of Zn, Cu, Pb and Cd on Fitness in Snails (Helix aspersa). Ecotoxicology and environmentak safety 34, p. 59-69.
  • Marschner, P. (2012). Mineral Nutrition of Higher Plants (3). Chennai: Academic Press.
  • Noret, N., Meerts, P., Tolrà, R., Poschenrieder, C., Barceló, J. & Escarre, J. (2005). Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytologist 165, p. 763-772.
  • Prasad, A.K.V.S.K. & Saradhi P.P. (1994).Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39, p. 45-47.
  • Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Science 180 (2),p. 169-181.
  • Shiojiri, K., Takabayashi, J., Yano, S. & Takafuji, A. (2000) Herbivore-species-specific interactions between crucifer plants and parasitic wasps (Hymenoptera: Braconidae) that are mediated by infochemicals present in areas damaged by herbivores. Applied Entomology and Zoology 35, p. 519–524.
  • Solanki, R. & Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66 (2), p. 195-204.
  • Verbruggen, N., Hermans, C. & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181 (4), p. 759–776.
  • Wenzel, W.W. & Jockwer F. (1999). Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental pollution 104, p. 145-155.
Anuncis

Plantes hiperacumuladores de metalls pesants

Durant milions d’anys l’evolució ha portat a les plantes a desenvolupar diferents estratègies per defensar-se contra els enemics naturals, donant lloc a una lluita d’armament evolutiva en la qual la supervivència d’uns i altres depèn de l’habilitat per fer front a les adaptacions dels altres. I és en aquest escenari on la acumulació de metalls pesants a alts nivells en les plantes juga un paper molt important.

 INTRODUCCIÓ

Segons Boyd (2012), la defensa de les plantes pot tractar-se sota diferents punts de vista:

  • mecànica: espines, cobertures rígides, etc.
  • química: diferents compostos inorgànics i orgànics.
  • visual: cripsis i mimetisme.
  • comportament: relacionat amb modificacions en la fenologia.
  • i associativa: simbiosis amb altres organismes, com és el cas del gènere Cecropia que estableix simbiosi amb les formigues del gènere Azteca, les qual protegeixen aquestes plantes – per saber-ne més: Plantes i animals també poden viure en matrimoni – .
espinas-karyn-christner-flickr
Defensa mecànica amb espines (Autor: Karyn Christner, Flickr, CC).

S’ha vist que la defensa química és ubiqua, i, per tant, moltes interaccions entre organismes s’explicarien sota aquest punt de vista. A més a més, algunes plantes contenen grans quantitats de certs elements químics, freqüentment metalls o components metàl·lics, que juguen un paper defensiu important, són les anomenades plantes hiperacumuladores.

Plantes hiperacumuladores i les seves característiques principals

Aquestes plantes pertanyen a diferents famílies, per tant la hiperacumulació és una adquisicuió independentment que ha sorgit distintes vegades durant l’evolució, però que en tots els casos genera l’habilitat per créixer en sòls metal·lífers i acumular altes quantitats extraordinàries de metalls pesants en els òrgans aeris, a diferència dels nivells trobats en la majoria d’espècies. Se sap que les concentracions d’aquests elements químics pot ser entre 100 – 1000 vegades majors que les presents en espècies no hiperacumuladores.

Generalment la química defineix els metalls pesants com aquells metalls de transició amb una massa atòmica superior a 20 i una densitat relativa al voltant de 5.  Però, sota un punt de vista biològic, els metalls pesants són aquells metalls o metal·loides que poden ser tòxics en baixes concentracions. Tot i així, les plantes hiperacumuladores aconsegueixen ser tolerants, hiperacumulen aquests metalls pesants sense patir efectes fitotòxics (toxicitat expressada en la planta).

En aquest sentit, hi ha tres característiques principals que defineixen les plantes hiperacumuladores:

  • Fort augment de la taxa d’absorció de metalls pesants.
  • Arrels que duen a terme la translocació més ràpidament.
  • Gran habilitat per detoxificar i segrestar metalls pesants a les fulles.

Per tant, les plantes hiperacumuladores estan ben preparades per a l’assimilació, translocació a fulles i segrest de grans quantitats de metalls pesants en vacuoles o parets cel·lulars. En part, això és degut a una sobrexpressió constitutiva dels gens que codifiquen per a transportadors en membrana.

Els valors llindars que permeten distingir una planta hiperacumuladora d’una altra que no ho és estan relacionats amb la fitotoxicitat especifica de cada metall pesant. Segons aquest criteri, les plantes hiperacumuladores són plantes que quan creixen en sòls naturals acumulen en les parts aèries (en grams de pes sec):

  • > 10 mg·g-1 (1%) de Mn o Zn,
  • > 1 mg·g-1 (0,1%) de As, Co, Cr, Cu, Ni, Pb, Sb, Se o Ti
  • ó > 0,1 mg·g-1 (0,01%) de Cd.
minuartia-verna-cu-candiru-flickr
Minuartia verna, hiperacumuladora de coure (Autor: Candiru, Flickr, CC).

L’APARICIÓ DE PLANTES HIPERACUMULADORES I LES SEVES IMPLICACIONS

Fins al moment s’ha plantejat diferents hipòtesis per explicar per què certes plantes han esdevingut hiperacumuladores de metalls pesants:

  • Tolerància i disposició de metalls.
  • Resistència a la sequera.
  • Interferència amb les plantes veïnes.
  • Defensa contra els enemics naturals.

La hipòtesis que rep més suport és l’anomenada “Elemental defence” (defensa per elements), que indica que certs metalls pesants poden tenir un rol defensiu en la planta contra els enemics naturals, com els herbívors i els patògens. Aquests organismes al consumir la planta presentarien efectes tòxics, els quals els portarien a la mort o a la reducció del consum d’aquesta planta en un futur. Tot i això, encara que els metalls pesants poden actuar a través de la seva toxicitat, això no garanteix que la planta no sigui danyada o atacada abans que l’enemic natural sigui afectat per aquests. En aquest sentit segueix essent necessari una defensa més efectiva que permeti evitar l’atac.

D’altra banda, d’acord amb una hipòtesi més moderna, “Joint effects” (efectes conjunts), els metalls pesants poden actuar juntament amb els compostos orgànics de defensa donant lloc a una major defensa global. Els avantatges dels elements inorgànics, incloent aquí als metalls pesants, és que no són sintetitzats per la planta, s’absorbeixen del sòl directament i per tant no hi ha tanta despesa energètica invertida en la defensa, i a més no poden ser biodegradats. Tot i així, alguns enemics especialistes poden quelar els metalls pesants, gracies als quelat (substàncies que s’uneixen a aquests metalls pesants per a reduir la seva toxicitat) o segrestar-los dins d’òrgans d’acumulació on es reduiria la seva activitat. Aquesta nova hipòtesi justificaria la presència simultània de diferents metalls pesants i compostos orgànics de defensa en la mateixa planta, amb la finalitat d’aconseguir una defensa major que afecti a més enemics naturals, els quals s’esperaria que no fossin capaços de tolerar els diferents elements tòxics.

Thlaspi caerulescens - Zn - Randi Hausken, Flickr.jpg
Thlaspi caerulescens, hiperacumuladora de zinc (Autor: Randi Hausken, Flickr, CC).

D’altra banda, s’ha vist que certs herbívors tenen habilitats per evitar alimentar-se de plantes amb alts nivells de metalls pesants fent el que s’anomena “taste for metals” (“tasta dels metalls”). Tot i saber que això succeeix, encara no es coneix el mecanisme exacte de tot aquest procés d’alerta i evitament.

Solanum nigrum - Cd- John Tann, Flickr.jpg
Solanum nigrum, hiperacumuladora de cadmi (Autor: John Tann, Flickr, CC).

A més a més, tot i les elevades concentracions de metalls pesants que assumeixen aquestes plantes, alguns herbívors aconsegueixen sobrepassar aquesta defensa essent tolerants, és a dir, la seva dieta permet ingerir altes dosis de metalls i per tant alimentar-se de la planta. Això porta a pensar que certs herbívors podrien esdevenir especialistes en alimentar-se d’aquestes plantes, i que, per tant, aquest tipus de defensa quedaria reduït als organismes amb dietes variades, els anomenats generalistes. Tot i així, s’ha vist que algunes vegades els herbívors generalistes presenten una preferència i tolerància superior per les plantes hiperacumuladores que no pas els especialistes.

Per tots aquests motius es pot dir que l’evolució continua jugant un paper molt important en aquesta lluita d’armaments.

Difusió-català

REFERÈNCIES

  • Boyd, R., Davis, M.A., Wall, M.A. & Balkwill K. (2002). Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12, p. 91–97.
  • Boyd, R. (2007). The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant soil 293, p. 153-176.
  • Boyd, R. (2012). Elemental Defenses of Plants by Metals. Nature Education Knowledge 3 (10), p. 57.
  • Laskowski, R. & Hopkin, S.P. (1996). Effect of Zn, Cu, Pb and Cd on Fitness in Snails (Helix aspersa). Ecotoxicology and environmentak safety 34, p. 59-69.
  • Marschner, P. (2012). Mineral Nutrition of Higher Plants (3). Chennai: Academic Press.
  • Noret, N., Meerts, P., Tolrà, R., Poschenrieder, C., Barceló, J. & Escarre, J. (2005). Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytologist 165, p. 763-772.
  • Prasad, A.K.V.S.K. & Saradhi P.P. (1994).Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39, p. 45-47.
  • Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Science 180 (2),p. 169-181.
  • Shiojiri, K., Takabayashi, J., Yano, S. & Takafuji, A. (2000) Herbivore-species-specific interactions between crucifer plants and parasitic wasps (Hymenoptera: Braconidae) that are mediated by infochemicals present in areas damaged by herbivores. Applied Entomology and Zoology 35, p. 519–524.
  • Solanki, R. & Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66 (2), p. 195-204.
  • Verbruggen, N., Hermans, C. & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181 (4), p. 759–776.
  • Wenzel, W.W. & Jockwer F. (1999). Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental pollution 104, p. 145-155.

¿Cómo se aplica la ingeniería genética en plantas?

Durante años, mediante el cruzamiento, se han conseguido plantas con una característica deseada después de muchas generaciones. La biotecnología acelera este proceso y permite a los científicos coger sólo los genes deseados de una planta, consiguiendo así los resultados esperados en una generación. La ingeniería genética nos permite hacer todo esto. En este artículo explicaré en qué consiste y su metodología.  

¿QUÉ ES LA INGENIERÍA GENÉTICA?

La ingeniería genética es una rama de la biotecnología que consiste en modificar las características hereditarias de un organismo mediante la alteración de su material genético. Habitualmente se utiliza para conseguir que determinados microorganismos, como bacterios o virus, aumenten la síntesis de compuestos, formen compuestos nuevos o se adapten a medios diferentes.

Es una herramienta más segura y más eficiente para el mejoramiento de especies que los métodos tradicionales (cruzamientos), ya que elimina gran parte de la aleatoriedad y del azar. Por otro lado, la biotecnología moderna también una deviene una nueva tecnología en disponer de la facultad de modificar los atributos de los organismos vivos mediante la introducción de material genético preparado in vitro.

Se podría definir como el conjunto de metodologías que permiten transferir genes de un organismo a otro y expresarlos (producir proteínas para las cuales estos genes codifican) en organismos diferentes al de origen. El ADN que combina fragmentos de organismos diferentes se llama ADN recombinante. Como consecuencia, las técnicas que utiliza la ingeniería genética se llaman técnicas de ADN recombinante.

A día de hoy hay muchos más organismos vegetales modificados genéticamente que no organismos animales. Por esta razón explicaré la ingeniería genética basándome en plantas.

INGENIERÍA GENÉTICA vs. MÉTODOS TRADICIONALES

Esta metodología tiene tres ventajas fundamentales respecto a las técnicas convencionales de mejora genética basadas en la hibridación:

  • Los genes que se tienen que incorporar pueden venir de cualquier especie, emparentada o no (por ejemplo un gen de una bacteria se puede incorporar al genoma de la soja).
  • A la planta mejorada genéticamente se le puede introducir un único gen nuevo preservando el resto de los genes de la planta original a su descendencia.
  • Este proceso de modificación retrasa mucho menos los plazos que la mejora por cruzamiento.

De esta forma se pueden modificar propiedades de las plantas de manera más amplia, más precisa y más rápida.

Con el cruzamiento tradicional se genera un híbrido que combina al azar genes de los dos organismos parentales, entre ellos el gen de interés que codifica para el rasgo deseado. Con las técnicas de la biotecnología se pasan uno o algunos genes, que codifican una característica específica conocida. La planta nueva está integrada con todos los genes originales de la planta y un gen introducido de manera precisa y dirigida (Figura 1).

fig1ESP.jpg
Figura 1. (A) Método tradicional donde, mediante el cruzamiento, se obtiene una nueva variedad. Ésta lleva el gen de interés (rojo) pero también otros genes al azar. (B) Con la ingeniería genética obtenemos una nueva variedad de la planta comercial con el gen de interés (rojo) de cualquier otra especie (Fuente: Mireia Ramos, All You Need is Biology)

METODOLOGÍA DE LA INGENIERÍA GENÉTICA

La obtención de un organismo transgénico a través de técnicas de ingeniería genética implica la participación de un organismo que da el gen de interés y un organismo receptor del gen que expresará la nueva característica deseada. Las etapas y técnicas del proceso son las siguientes:

0/ DECIDIR EL OBJETIVO: REALIZAR UN KNOCK-IN O UN KNOCK-OUT

Técnica KNOCK-OUT:

El bloqueo de genes o knock-out es la técnica que consiste en suprimir la expresión de un gen, sustituyéndolo por una versión mutada de sí mismo, siendo esta copia no funcional. Esta técnica permite hacer que un gen se deje de expresar.

Técnica KNOCK-IN:

La técnica del knock-in es el proceso opuesto al del knock-out. Se remplaza un gen por una versión modificada de sí mismo, el cual produce una variación en la función resultante de éste.

En el ámbito de la medicina, el knock-in de genes se ha aplicado como estrategia para sustituir o mutar los genes que causan enfermedades como la Corea de Huntington, con el fin de ayudar a crear una terapia exitosa.

1/ CORROBORAR QUE EXISTE UN GEN QUE CODIFICA PARA LA CARACTERÍSTICA DE INTERÉS

Primero se tiene que comprobar que la característica que interesa proviene de un gen, ya que así será más fácil transferirla a un organismo que no la tenga.

2/ CLONAR EL GEN DE INTERÉS

Es un proceso complejo, pero a rasgos generales los pasos que se siguen son los siguientes:

  • Extraer el ADN
  • Buscar un gen entre todos los genes de este ADN
  • Secuenciarlo
  • Construir el vector recombinante

El ADN de interés se inserta en un plásmido, una molécula de ADN circular con replicación autónoma. Los más utilizados son los plásmidos de origen bacteriano (Video 1).

Video 1. “Clonación plásmido traducido”. Explicación de la utilitzación de plàsmidos en el proceso de clonación  como vector (Font: YouTube)

El desarrollo de estas técnicas fue posible gracias al descubrimiento de las enzimas de restricción. Estas enzimas reconocen secuencias específicas, de pocas bases, y cortan por este punto el ADN. Los extremos generados se pueden sellar con la enzima ligasa y obtener así una nueva molécula de ADN, nombrada recombinante (Figura 2).

adnrecombi
Figura 2. (1) ADN del plásmido. (2) ADN de otro organismo. (3a, 3b) Se corta el ADN con una enzima de restricción. (4) La enzima de restricción reconoce la secuencia AATT y corta entre los nucleótidos A y T de las cadenas de ADN. (5) Se ponen en contacto los dos ADN para que se formen moléculas recombinantes. (6) Una enzima ligasa une los extremos del ADN con tal de tener una nueva molécula (Fuente: GeoPaloma)

3/ CARACTERIZAR EL GEN DE INTERÉS

Conociendo la secuencia del gen se puede comparar con esta secuencia con la de genes ya conocidos a través de la bioinformática, con tal de determinar a qué gen se parece y asignarle una posible función. Después de haber predicho la función del gen clonado se confirma la función in vivo, normalmente transfiriéndolo a un organismo modelo.

4/ MODIFICAR EL GEN DE INTERÉS

Si se desea se puede agregar (promotor, intrones…) o mutar secuencias dentro de la región codificante para que se puede expresar en el sistema de interés.

5/ TRANSFORMACIÓN DE UN ORGANISMO CON EL GEN DE INTERÉS

Una vez finalizada la construcción genética con el gen y el promotor deseado, se inserta el ADN recombinante a las células del individuo que se quiere modificar.

6/ CARACTERIZACIÓN DEL OGM

Cuando ya se tiene el OGM (Organismo Genéticamente Modificado) se analiza desde el punto de vista molecular y biológico. En el análisis molecular se tiene que demostrar, entre otros, si tiene una (o más) copias del transgen o como y a qué tejidos se expresa el gen. En el análisis biológico se mira si cumple el objetivo por el cual se ha diseñado.

REFERENCIAS

MireiaRamos-castella

Com s’aplica l’enginyeria genètica en plantes?

Durant anys, mitjançant el creuament, s’han aconseguit plantes amb una característica desitjada després de moltes generacions. La biotecnologia accelera aquest procés i permet als científics agafar només els gens desitjats d’una planta, aconseguint així els resultats buscats en només una generació. L’enginyeria genètica ens permet fer tot això. En aquest article explicaré en què consisteix i la seva metodologia.

QUÈ ÉS L’ENGINYERIA GENÈTICA?

L’enginyeria genètica és una branca de la biotecnologia que consisteix a modificar les característiques hereditàries d’un organisme mitjançant l’alteració del seu material genètic. Habitualment s’utilitza per aconseguir que determinats microorganismes, com ara bacteris o virus, augmentin la síntesi de compostos, formin compostos nous o s’adaptin a medis diferents. És una eina més segura i més eficient pel millorament d’espècies que els mètodes tradicionals (creuaments), ja que elimina gran part de l’aleatorietat i l’atzar. D’altra banda, la biotecnologia moderna també esdevé una nova tecnologia, en disposar de la facultat de modificar els atributs dels organismes vius mitjançant la introducció de material genètic preparat in vitro.

Es podria definir com el conjunt de metodologies que permeten transferir gens d’un organisme a un altre i expressar-los (produir proteïnes per a les quals aquests gens codifiquen) en organismes diferents al d’origen. L’ADN que combina fragments d’organismes diferents s’anomena ADN recombinant. En conseqüència, les tècniques que utilitza l’enginyeria genètica es denominen tècniques d’ADN recombinant.

A dia d’avui hi ha molts més organismes vegetals modificats genèticament que no pas animals. Per aquesta raó explicaré l’enginyeria genètica basant-me en plantes.

ENGINYERIA GENÈTICA vs. MÈTODES TRADICIONALS

Aquesta metodologia té tres avantatges fonamentals respecte de les tècniques convencionals de millora genètica basades en la hibridació:

  • Els gens que s’han d’incorporar poden venir de qualsevol espècie, emparentada o no (per exemple un gen d’una bactèria es pot incorporar al genoma de la soja).
  • A la planta millorada genèticament s’hi pot introduir un únic gen nou preservant la resta dels gens de la planta original a la seva descendència.
  • Aquest procés de modificació endarrereix molt menys els terminis que no pas la millora per encreuament.

D’aquesta forma es poden modificar propietats de les plantes de manera més àmplia, més precisa i més ràpida.

Amb el creuament tradicional es genera un híbrid que combina a l’atzar gens d’ambdós organismes parentals, entre ells el gen d’interès que codifica pel tret desitjat. Amb les tècniques de la biotecnologia es passen un o alguns gens, que codifiquen una característica específica coneguda. La nova planta està integrada amb tots els gens originals de la planta i un gen introduït de manera precisa i dirigida (Figura 1).

fig1CAT.jpg
Figura 1. (A) Mètode tradicional on, mitjançant el creuament, s’obté una nova varietat. Aquesta porta el gen d’interès (vermell), però també altres gens a l’atzar. (B) Amb l’enginyeria genètica obtenim una nova varietat de la planta comercial amb el gen d’interès (vermell) de qualsevol altra espècie (Font: Mireia Ramos, All You Need is Biology)

METODOLOGIA DE L’ENGINYERIA GENÈTICA

L’obtenció d’un organisme transgènic a través de tècniques d’enginyeria genètica implica la participació d’un organisme que dóna el gen d’interès i un organisme receptor del gen que expressarà la nova característica desitjada. Les etapes i tècniques del procés són les següents:

0/ DECIDIR L’OBJECTIU: REALITZAR UN KNOCK-IN O UN KNOCK-OUT

Tècnica KNOCK-OUT:

El bloqueig de gens o knock-out és la tècnica que consisteix en suprimir l’expressió d’un gen, substituint-lo per una versió mutada de si mateix, sent aquesta còpia no funcional. Aquesta tècnica permet fer que un gen deixi d’expressar-se.

Tècnica KNOCK-IN:

La tècnica del knock-in és el procés oposat al del knock-out. Es reemplaça un gen per una versió modificada de si mateix, el qual produeix una variació en la funció resultant d’aquest.

En l’àmbit de la medicina, el knock-in de gens s’ha aplicat com estratègia per substituir o mutar els gens que causen malalties com la Corea de Huntington, per tal d’ajudar a crear una teràpia exitosa.

1/ CORROBORAR QUE EXISTEIX UN GEN QUE CODIFICA PER LA CARACTERÍSTICA D’INTERÈS

Primer s’ha de comprovar que la característica que interessa prové d’un gen, ja que així serà més fàcil transferir-la a un organisme que no la té.

2/ CLONAR EL GEN D’INTERÈS

És un procés complex, però a trets generals, els passos que es segueixen són els següents:

  • Extreure ADN
  • Buscar un gen entre tots els gens d’aquest ADN
  • Seqüenciar-lo
  • Construir un vector recombinant

L’ADN d’interès s’insereix en un plàsmid, una molècula d’ADN circular amb replicació autònoma. Els més utilitzats són els plàsmids d’origen bacterià (Vídeo 1).

Vídeo 1. “Clonación plásmido traducido”. Explicació de la utilització de plàsmids en el procés de clonació  com a vector (Font: YouTube)

El desenvolupament d’aquestes tècniques va ser possible gràcies a la descoberta dels enzims de restricció. Aquests enzims reconeixen seqüències específiques, de poques bases, i tallen l’ADN per aquest punt. Els extrems generats es poden segellar amb l’enzim lligasa i així obtenir una molècula d’ADN nova, anomenada recombinant (Figura 2).

adnrecombi
Figura 2. (1) ADN del plàsmid. (2) ADN d’un altre organisme. (3a, 3b) Es talla l’ADN amb un enzim de restricció. (4) L’enzim de restricció reconeix la seqüència AATT i talla entre els nucleòtids A i T de les cadenes d’ADN. (5) Es posen en contacte els dos ADNs perquè es formin molècules recombinants. (6) Un enzim lligasa uneix els extrems de l’ADN per tal de tenir una nova molècula (Font: GeoPaloma)

3/ CARACTERITZAR EL GEN D’INTERÈS

Coneixent la seqüència del gen es pot comparar aquesta seqüència amb la de gens ja coneguts a través de la bioinformàtica, per tal de determinar a quin gen s’assembla i assignar-li una possible funció. Després d’haver predit la funció del gen clonat es confirma la funció in vivo, normalment transferint-lo a un organisme model.

4/ MODIFICAR EL GEN D’INTERÈS

Si es desitja es pot agregar (promotor, introns…) o mutar seqüències dins de la regió codificant perquè es pugui expressar en el sistema d’interès.

5/ TRANSFORMACIÓ D’UN ORGANISME AMB EL GEN D’INTERÈS

Un cop acabada la construcció genètica amb el gen i el promotor desitjat, s’insereix l’ADN recombinant a les cèl·lules de l’individu que es vol modificar.

6/ CARACTERITZACIÓ DE L’OGM

Un cop obtingut l’OGM (Organisme Genèticament Modificat) s’analitza des del punt de vista molecular i biològic. En l’anàlisi molecular cal demostrar, entre altres, si té una (o més) còpies del transgen o com i a quins teixits s’expressa el gen. En l’anàlisi biològic es mira si compleix l’objectiu pel qual s’ha dissenyat.

REFERÈNCIES

 

MireiaRamos-catala

Plantas y animales también pueden vivir en matrimonio

Cuando pensamos en la vida de las plantas se hace difícil imaginarla sin la interacción con los animales, puesto que estos día a día establecen diferentes relaciones simbióticas con ellas. Entre estas relaciones simbióticas encontramos la herbívora, o el caso contrario, el de las plantas carnívoras. Pero, hay muchas otras interacciones súper importantes entre plantas y animales, como la que lleva a estos organismos a ayudarse los unos a los otros y a convivir juntos. Por eso, esta vez os quiero presentar el mutualismo entre plantas y animales.

Y ¿qué es el mutualismo? Pues es la relación que se establece entre dos organismos en la que ambos se benefician de la convivencia en conjunto, es decir, los dos consiguen una recompensa cuando viven en compañía. Esta relación consigue aumentar su eficacia biológica (fitness) por lo que existe una tendencia de los dos organismos a convivir siempre juntos.

Según esta definición tanto polinización como dispersión de semillas a través de animales son casos de mutualismo. Veámoslo.

POLINIZACIÓN POR ANIMALES

Muchas plantas reciben visitas a sus flores por parte de animales que pretenden alimentarse del néctar, del polen o de otros azúcares que éstas producen y a cambio transportan polen hacia otras flores, permitiendo que este llegue al estigma de una manera muy eficaz. Así, la planta obtiene el beneficio de la fecundación con un coste de producción menor de polen que el que supondría dispersarlo por el aire (el cual llegaría con menor probabilidad al estigma de otras flores). Y los animales a cambio obtienen como recompensa el alimento. Se establece así una verdadera relación de mutualismo entre los dos organismos.

 “Video:The Beauty of Pollination” – Super Soul Sunday – Oprah Winfrey Network (www.youtube.com)

El caso extremo de mutualismo se da cuando estas especies evolucionan una dependiendo de la otra, es decir, cuando se da coevolución. Entendemos por coevolución esas adaptaciones evolutivas que permiten a los dos o más organismos establecer una relación de simbiosis estrecha, ya que las adaptaciones evolutivas de uno influyen en las adaptaciones evolutivas del otro organismo. Por ejemplo esto se da entre varías orquídeas  y sus polinizadores, como es el conocido caso de la Orquídea de Darwin. Pero hay muchas otras plantas que también han coevolucionado con sus polinizadores, como la higuera  o la yuca.

De ninguna manera esto se debe confundir con el engaño que algunas plantas producen sobre sus polinizadores, los cuales no obtienen ningún beneficio directo. Por ejemplo, algunas orquídeas también atraen a sus polinizadores a través de olores (feromonas) y de sus curiosas formas que se asemejan a las hembras del polinizador, haciendo que éste se acerque a ellas para copularlas y quede impregnado de polen que será transportado a otras flores gracias al mismo engaño.

14374841786_121feb4632_o.jpg
Orquídea abejera (Ophrys apifera) (Autor: Bernard DUPONT, flickr).

DISPERSIÓN DE SEMILLAS POR ANIMALES

La dispersión de semillas por animales se considera que ha tenido lugar gracias a un proceso coevolutivo entre los animales y los mecanismos de dispersión de las semillas en el cual tanto plantas como animales obtienen un beneficio. Lo más probable es que este proceso se iniciara en el Carbonífero (~300MA), donde ya se cree que algunas plantas como las cícadas desarrollaban unos falsos frutos carnosos que podrían ser consumidos por reptiles primitivos que actuarían de agentes dispersores de semillas. Este proceso se habría intensificado con la diversificación de las plantas con flores (Angiospermas) y de pequeños mamíferos y aves durante el Cretácico (65-12MA), hecho que permitió la diversificación de los mecanismos de dispersión y de las estructuras del fruto.

El mutualismo se puede dar de dos maneras dentro de la dispersión de semillas por animales.

El primer caso la llevan a cabo los dispersores que ingieren semillas o frutos que expulsaran posteriormente, sin ser digeridos, por defecación o regurgitación. Los frutos y semillas preparados para este caso son portadores de recompensas o señuelos, con los que a la vez atraen a sus agentes dispersantes, ya que los frutos suelen ser carnosos, dulces y a menudo tienen colores vistosos o emiten olores para atraer a los animales.

Por ejemplo, Acacia cyclops forma unas vainas que contienen semillas rodeadas por eleosomas (sustancias muy nutritivas formadas normalmente por aceites) que son mucho más grandes que la propia semilla. Esto supone un coste elevado de energía por parte de la planta, ya que no solo tiene que hacer las semillas sino que también tiene que formar esta recompensa. Pero a cambio, la cacatúa Galah (Eolophus roseicapillus) transporta a larga distancia sus semillas, ya que al alimentarse de este eleosoma ingiere las semillas que serán transportadas por su vuelo a larga distancia hasta que sean expulsadas por defecación en otros lugares.

Cacatua_Acacia.jpg
Izquierda, Cacatúa Galah (Eolophus roseicapillus) (Autor: Richard Fisher, flickr) ; Derecha, Vainas de Acacia cyclops (semillas negras, eleosoma rosa) (Autor: Sydney Oats, flickr).

Y el otro tipo de dispersión de semillas por animales que establece una relación de mutualismo es aquel donde las diásporas son recogidas por el animal en época de abundancia y las entierra para disponer de ellas como alimento cuando tenga necesidad. Pero no todas son comidas y algunas germinan.

3748563123_eeb32302cf_o.jpg
Ardilla recogiendo frutos (Autor: William Murphy, flickr)

Pero no todo acaba aquí, puesto que hay otros ejemplos bien curiosos y menos conocidos que de alguna manera han hecho que tanto animales como plantas vivan juntos en un perfecto “matrimonio”.  Veamos un par de ejemplos:

Azteca y Cecropia

Las plantas del género Cecropia viven en los bosques tropicales húmedos de Centroamérica y Sudamérica, siendo unas grandes luchadoras. Su estrategia por conseguir alzarse y captar luz evitando la competencia con otras plantas ha sido la firme relación que mantienen con las hormigas del género Azteca.

Las plantas proporcionan nidos a las hormigas, puesto que sus tallos terminales son normalmente huecos y septados (con separaciones) lo que les permite a las hormigas habitarlas por dentro, y además las plantas también producen cuerpos müllerianos, que son pequeños cuerpos alimenticios ricos en glicógeno de los cuales las hormigas se alimentan. A cambio, las hormigas protegen a Cecropia de lianas o bejucos, otorgando un gran éxito como planta pionera.

Ant Plants: CecropiaAzteca Symbiosis (www.youtube.com)

Marcgravia y murciélagos

Hace pocos años se ha descubierto que una planta de Cuba polinizada por murciélagos ha evolucionado dando pie a hojas modificadas que actúan como antena parabólica para la ecolocalización (radar) de los murciélagos. Es decir, su forma facilita que los murciélagos la localicen rápidamente lo que les permite recolectar néctar de manera más eficaz y a las plantas ser polinizadas con mayor éxito, ya que los murciélagos se desplazan rápidamente visitando cientos de flores cada noche para alimentarse.

6762814709_6dfaf49fff_o.jpg
Marcgravia (Autor: Alex Popovkin, Bahia, Brazil, Flickr)

 

En general, vemos que la vida de las plantas depende mucho de la vida de los animales, ya que estos están conectados de una forma u otra. Toda estas interacciones que hemos presentado forman parte de un conjunto aún mayor que hacen de la vida una más compleja y peculiar, en la que la vida de uno no se explica sin la vida del otro. Por este motivo, podemos decir que la vida de algunos animales y algunas plantas se asemeja a un matrimonio.

Difusió-castellà

REFERENCIAS

  • Apuntes obtenidos en diversas asignaturas durante la realización del Grado de Biología Ambiental (Universidad Autónoma de Barcelona) y el Máster de Biodiversidad (Universidad de Barcelona).
  • Bascompte, J. & Jordano, P. (2013) Mutualistic Networks (Chapter 1. Biodiversity and Plant-Animal Coevolution). Princeton University Press, pp 224.
  • Dansereau, P. (1957): Biogeography: an Ecological Perspective. The Ronald Press, New York., pp. 394.
  • Fenner M. & Thompson K. (2005). The Ecology of seeds. Cambridge: Cambridge University Press, 2005. pp. 250.
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica ªEdición. McGraw-Hill, pp. 906.
  • Murray D. R. (2012). Seed dispersal. Academy Press. 322 pp.
  • Tiffney B. (2004). Vertebrate dispersal of seed plants through time. Annual Review of Ecology, Evolution and Systematics. 35:1-29.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, pp. 424.
  • National Geographic (2011). Bats Drawn to Plant via “Echo Beacon”. http://news.nationalgeographic.com/news/2011/07/110728-plants-bats-sonar-pollination-animals-environment/

Plantes i animals també poden viure en matrimoni

Quan pensem en la vida de les plantes es fa difícil imaginar-la sense la interacció amb els animals, ja que aquests dia rere dia estableixen diferents relacions simbiòtiques amb elles. Entre aquestes relacions simbiòtiques trobem la herbívora, o el cas contrari, el de les plantes carnívores. Però, hi ha moltes altres interaccions súper importants entre plantes i animals, com la que porta a aquests organismes a ajudar-se els uns als altres i a conviure junts. Per això, aquesta vegada us vull presentar el mutualisme entre plantes i animals. 

I, què és el mutualisme? Doncs és la relació que s’estableix entre dos organismes en la qual ambdós obtenen un benefici de la convivència en conjunt, és a dir, els dos aconsegueixen una recompensa quan viuen en companyia. Aquesta relació aconsegueix augmentar la seva eficàcia biològica (fitness) i per tant existeix una tendència dels dos organismes a conviure sempre junts.

Segons aquesta definició tant la pol·linització com la dispersió de llavors a través d’animals són casos de mutualisme.

POL·LINITZACIÓ PER ANIMALS

Moltes plantes reben visites a les seves flores per part d’animals que pretenen alimentar-se del nèctar, del pol·len o d’altres sucres que aquestes produeixen  i a canvi transporten pol·len cap a altres flors, permeten que aquest arribi al estigma d’una manera molt eficaç. Així la planta obté el benefici de la fecundació amb un cost de producció menor de pol·len que el que suposaria dispersar-lo per l’aire (el qual arribaria amb menor probabilitat al estigma d’altres flors). I els animals a canvi obtenen com a recompensa l’aliment. S’estableix així una veritable relació de mutualisme entre els dos organismes.

 “Video:The Beauty of Pollination” – Super Soul Sunday – Oprah Winfrey Network (www.youtube.com)

El cas més extrem de mutualisme es dona quan aquestes especies evolucionen unes depenent de les altres, és a dir, quan es dona coevolució. Entenem per coevolució aquelles adaptacions evolutives que permeten als dos o més organismes establir una relació de simbiosis estreta, ja que les adaptacions evolutives d’un influeixen en les adaptacions evolutives de l’altre organisme. Per exemple, això es dona entre varies orquídies i els seus pol·linitzadors, com és el conegut cas de l’Orquídea de Darwin. Però, hi ha moltes altres plantes que també han coevolucionat amb els seus polinitzadors, com la figuera o la mandioca o iuca.

De cap manera això s’ha de confondre amb l’engany que algunes plantes preparen per al seus pol·linitzadors, els quals no obtenen cap benefici directe. Per exemple, algunes orquídies també atrauen als seus pol·linitzadors amb olors (feromones) i les seves formes curioses que s’assemblen a les femelles dels pol·linitzadors, fent que aquests s’acostin a elles per copular-les i quedin impregnats de pol·len que serà transportant a altres flors gracies al mateix parany.

14374841786_121feb4632_o.jpg
Orquidea abellera (Ophrys apifera) (Autor: Bernard DUPONT, flickr).

DISPERSIÓ DE LLAVORS PER ANIMALS

La dispersió de llavors per animals es considera que ha tingut lloc gracies a un procés coevolutiu entre animals i els mecanismes de dispersió de les llavors en el qual tant plantes com animals obtenen un benefici. El més probable és que aquest procés s’iniciés en el Carbonífer (~300 Ma), on ja es creu que algunes plantes com les cícades desenvolupaven uns falsos fruits carnosos que podrien ser consumits per rèptils primitius que actuarien d’agents dispersadors de llavors. Aquest procés s’hauria intensificat amb la diversificació de plantes amb flors (Angiospermes) i de petits mamífers i aus durant el Cretaci (65-12 Ma), fet que va permetre la diversificació dels mecanismes de dispersió i de les estructures del fruit.

El mutualisme es pot donar de dues maneres dins de la dispersió de llavors per animals.

El primer cas el duen a terme els dispersadors que ingereixen llavors o fruits que expulsaran posteriorment, sense ser digerits, per defecacions o regurgitats. Els fruits i llavors preparats per aquest cas són portadors de recompenses o reclams, amb els quals atrauen als seus agents dispersadors, ja que els fruits acostumen a ser carnosos, dolços i normalment tenen colors vistosos o emeten olors per atraure als animals.

Per exemple, Acacia cyclops forma unes beines que contenen llavors rodejades per un eleosoma (substancia molt nutritiva formada normalment per lípids) que són molt més grans que la pròpia llavor. Això suposa un cost elevat d’energia per part de la planta, ja que no tan sols ha de produir la llavor sinó que també té que formar aquesta recompensa. Però a canvi, la cacatua Galah o de cap rosat (Eolophus roseicapillus) transporta a llarga distancia les seves llavors, ja que al alimentar-se d’aquest eleosoma ingereix les llavors que seran transportades pel seu vol a llarga distancia fins que siguin expulsades per defecació en altres llocs.

Cacatua_Acacia.jpg
Esquerra, Cacatua Galah (Eolophus roseicapillus) (Autor: Richard Fisher, flickr) ; Dreta, beines d’Acacia cyclops (llavors negres, eleosoma rosa) (Autor: Sydney Oats, flickr).

I l’altre tipus de dispersió de llavors per animals que estableix una relació de mutualisme és aquella on les diàspores són recollides per animals en èpoques d’abundància i les enterren per a disposar d’elles com aliment quan tinguin necessitat. Però no totes són menjades i algunes germinen.

3748563123_eeb32302cf_o.jpg
Esquirol recollint fruits (Autor: William Murphy, flickr)

Però no tot acaba aquí, ja que hi ha altres exemples ben curiosos i menys coneguts que d’alguna manera han fet que tant animals com plantes visquin junts en un perfecte “matrimoni”. Mirem ara un parell d’exemples:

Azteca i Cecropia

Les plantes del gènere Cecropia viuen en els boscos tropicals humits de Centre-Amèrica i Sud-Amèrica essent unes grans lluitadores. La seva estratègia per aconseguir alçar-se i captar llum evitant la competència amb d’altres plantes ha sigut la estreta relació que mantenen amb les formigues del gènere Azteca. Les plantes proporcionen a les formigues refugi, ja que les seves tiges terminals són normalment foradades i septades (amb separacions), el que permet a les formigues habitar-les per dins, i a més les plantes també produeixen cossos de Müller, que són petits cossos nutritius rics en glicogen dels quals les formigues s’alimenten. A canvi, les formigues protegeixen a Cecropia de lianes o plantes trepadores, permetent-li un gran èxit com a planta  pionera.

Ant Plants: CecropiaAzteca Symbiosis (www.youtube.com)

Marcgravia i Ratpenats

Fa pocs anys s’ha descobert que una planta de Cuba que és pol·linitzada per ratpenats ha evolucionat donant peu a fulles modificades que actuen com antenes parabòliques per a l’ecolocalització (radar) dels ratpenats. És a dir, la seva forma facilita que els ratpenats la localitzin ràpidament el que els permet recol·lectar nèctar de manera més eficient i a les plantes ser pol·linitzades amb major èxit, ja que els ratpenats es desplacen ràpidament visitant centenars de flors cada nit per alimentar-se.

6762814709_6dfaf49fff_o.jpg
Marcgravia (Autor: Alex Popovkin, Bahia, Brazil, Flickr)

En general, veiem que la vida de les plantes depèn molt de la vida dels animals, ja que aquests estan connectats d’una manera o altre. Totes aquestes interaccions que hem presentat formem part d’un conjunt encara més gran que fa de la vida una més complexa i singular, en la que la vida d’uns no s’explica sense la vida dels altres. Per aquest motiu podem dir que la vida d’alguns animals i algunes plantes s’assembla a un matrimoni.

Difusió-català

REFERÈNCIES

  • Apunts obtinguts en diferents assignatures durant la realització del Grau de Biologia Ambiental (Universitat autònoma de Barcelona) i el Màster de Biodiversitat (Universitat de Barcelona).
  • Bascompte, J. & Jordano, P. (2013) Mutualistic Networks (Chapter 1. Biodiversity and Plant-Animal Coevolution). Princeton University Press, pp 224.
  • Dansereau, P. (1957): Biogeography: an Ecological Perspective. The Ronald Press, New York., pp. 394.
  • Fenner M. & Thompson K. (2005). The Ecology of seeds. Cambridge: Cambridge University Press, 2005. pp. 250.
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica ªEdición. McGraw-Hill, pp. 906.
  • Murray D. R. (2012). Seed dispersal. Academy Press. 322 pp.
  • Tiffney B. (2004). Vertebrate dispersal of seed plants through time. Annual Review of Ecology, Evolution and Systematics. 35:1-29.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, pp. 424.
  • National Geographic (2011). Bats Drawn to Plant via “Echo Beacon”. http://news.nationalgeographic.com/news/2011/07/110728-plants-bats-sonar-pollination-animals-environment/

Fotosíntesi i vida vegetal

En aquest article parlarem de la fotosíntesi i de les primeres formes de vida vegetal. En la sistemàtica actual , el nom de planta s’ajusta a plantes principalment del medi terrestre, en canvi, el terme vegetal és més antic i de connotació aristotèlica que fa referència a organismes amb funcions fotosintètiques. Però, com en tot, hi ha excepcions. 

La paraula planta va sorgir fa moltíssim temps. Però, prèviament, Aristòtil va ser qui va diferenciar els éssers vius en tres grans grups:

  • Vegetals (ànima vegetativa): realitzen la nutrició i reproducció.
  • Animals (ànima sensitiva): nutrició, reproducció, percepció, moviment i desig.
  • Ésser humà: afegeix a la llista anterior la capacitat de raonament.
Aristotle_Dominiopublico
Aristòtil (Domini públic)

Aquesta manera simplista de percebre el món ha perdurat durant molt de temps, tot i que ha anat variant amb els estudis de diferents autors com Linné o Whittaker, entre d’altres.

Una classificació molt actual és la proposada en 2012, The Revised Classification of Eukaryotes. J. Eukariot. Microbiol. 59 (5): 429-493; i ens revela un veritable àrbre de la vida.

image description
Sina ;. Adl, et al. (2012) The revised classification of Eukaryotes.  J Eukaryot Microbiol.; 59 (5): 429-493

¿QUÈ ÉS LA FOTOSÍNTESI? ¿ÉS UN PROCÉS ÚNIC?

La fotosíntesi és un procés metabòlic que permet utilitzar l’energia lumínica per transformar compostos simples i inorgànics en complexos orgànics. Per això és necessari un conjunt de pigments fotosintètics  que captin els raigs de llum i que mitjançant una sèrie de reaccions químiques puguin realitzar processos interns que donin lloc a compostos orgànics.

Aquesta opció nutritiva ha sigut desenvolupada per molts organismes en múltiples grups i branques de l’arbre de la vida dels eucariotes I entre ells trobem als Archaeplastida, el llinatge d’organismes que ha donat peu a les plantes terrestres.

Les plantes terrestres (Embryophyta) es poden definir fàcilment, però i les algues? En general, es diu que són organismes eucariotes que viuen principalment en medi aquàtic i que tenen organització relativament simple (colònies simples o amb òrgans senzills), però això no és sempre cert. Per aquest motiu, tot els grups d’Archeaplastida que queden fora del concepte de planta terrestre (petit grup dins dels Archaeplastida) es denominen “algues“.

També hi ha procariotes fotosintètics dins del domini Eubacteria, i es en aquests on la fotosíntesi presenta una gran variabilitat. En canvi, en els eucariotes és única: la fotosíntesi oxigénica.

El domini eubacteria és molt ampli, i en les seves ramificacions hi ha fins a 5 grans grups d’organismes fotosintètics: Chloroflexi, Firmicutes, Chlorobi, Proteobacteria i Cianobacteris. Aquests últims són els únics eubactèris que realitzen una fotosíntesi oxigénica; amb alliberació d’oxigen de les molècules d’aigua i utilitzant com a donar d’electrons l’hidrogen de l’aigua. La resta duu a terme la fotosíntesi anoxigénica on el donador d’electrons és el sofre o sulfur d’hidrogen, però mai alliberen O2 i molt rarament intervé l’aigua en el procés; és per això que es coneixen com les bactèries vermelles o porpres del sofre.

La fotosíntesi és, probablement més antiga que la vida mateixa. La oxigénica que està circumscrita a aquest grup de bactèries és probablement posterior, però va resultar imprescindible per al desenvolupament de la vida en el nostre planta, ja que va transformar l’atmosfera en una molt més oxigenada i gràcies a això la vida a la Terra ha pogut evolucionar.

SONY DSC
Amazones, el pulmó de la Terra (Autor: Christian Cruzado; Flickr)

¿QUINS PIGMENTS S’UTILITZEN?

Els cianobacteris comparteixen pigments amb les plantes terrestres i la resta d’eucariotes fotosintètics. Aquests pigments són principalment clorofil·les a i b (les universals), essent la c i d només presents en alguns grups. A més hi ha dos pigments que també són universals: els carotens, que actuen com antenes que transfereixen l’energia a les clorofil·les i protegeixen el centre de reacció contra l’autooxidació, i les ficobiliproteínes (ficocianina, ficoeritrina, etc.), que apareixen tant en cianobacteris com en altres grups fotosintètics i s’encarreguen de capturar l’energia lumínica.

Però, perquè hi ha aquesta variabilitat de pigments accessoris? perquè cada pigment té un espectre d’absorció diferent, i al presentar diferents molècules es pot recollir molt millor l’espectre de la llum solar, és a dir, la captació d’energia és molt més eficient.

La resta de bacteris fotosintètics anoxigènics no tenen clorofil·les, i, en el seu lloc, tenen molècules especifiques de procariotes, les bacterioclorofil·les.

Pigment_spectra.png
Espectre d’absorció de diferents pigments (Font: York University)

¿On es situen els pigments?

En organismes amb fotosíntesi oxigénica, els cianobacteris i els eucariotes fotosintètics, els pigments es troben en estructures complexes. En els cianobacteris, en el citoplasma perifèric hi ha una sèrie de sacs aplanats concèntrics denominats tilacoides, els quals només estan rodejats per una membrana. Al lumen tilacoïdal és on es localitzen els pigments. En els eucariotes, en canvi, trobem els cloroplasts: orgànuls intracel·lulars propis dels eucariotes fotosintètics on es realitza la fotosíntesi, que tenen com a mínim dues membranes, encara que poden ser més, i que presenten diversos tilacoides disposats de diferents maneres segons els organismes. Tots dos grups, per tant, realitzen la fotosíntesi oxigénica i tenen tilacoides; la diferencia és que en els eucariotes, els tilacoides es troben a l’interior dels cloroplasts.

Plagiomnium_affine_laminazellen
Cél·lules vegetals en les que són visibles els cloroplasts (Autor: Kristian Peters – Fabelfroh)

En canvi, en organismes amb fotosíntesi anoxigénica hi ha diverses opcions.Les bactèries porpres contenen pigments en cromatòfors, una espècie de vesícules al centre o la perifèria de la cèl·lula. Per una altra banda, en les bactèries verdes (Chlorobi y Chloroflexi) es troben vesícules aplanades a la perifèria de la cèl·lula sobre la membrana plasmàtica on estan les bacterioclorofil·les. En Heliobacterium, el pigment està adossat a la cara interna de la membrana plasmàtica. Generalment no són estructures complexes, i acostumen a presentar membranes simples.

ORIGEN DELS ORGANISMES FOTOSINTÉTICS

L’evidència fòssil dels primers organismes fotosintètics són els estromatòlits (3,2 Ga).Són unes estructures formades per capes fines superposades d’organismes juntament amb els seus depòsits de carbonat càlcic. Aquestes formacions apareixen en zones someres, de mars càlids i ben irradiats. Encara que moltes tenen forma de columna, s’observen desviacions, ja que s’orienten cara al Sol. En el seu moment, van tenir una importància capital en la construcció de formacions d’esculls i, també, en els canvis de composició de l’atmosfera. Actualment hi ha alguns que encara segueixen vius.

1301321830_947d538a4d_o.jpg
Estromatòlits (Autor:Alessandro, Flickr)

REFERÉNCIES

  • Apunts obtinguts en diverses assignatures durant la realització del Grau de Biologia Ambiental (Universitat Autònoma de Barcelona) y el Màster de Biodiversitat (Universitat de Barcelona).
  • Font Quer, P. (1953): Diccionario de Botánica. Editorial Labor, Barcelona.
  • Izco, J., Barreno, E., Brugués, M., Costa, M., Devesa, J. A., Fernández, F., Gallardo, T., Llimona, X., Parada, C., Talavera, S. & Valdés, B. (2004) Botánica 2.ªEdición. McGraw-Hill, pp. 906.
  • Willis, K.J. & McElwain, J.C. (2014) The Evolution of Plants (second edition). Oxford University Press, 424 pp.

Difusió-català