Arxiu d'etiquetes: planta

Les Reines del Jardí; flors amb corona

Si creies que les corones eren només pels reis i les reines, estaves ben equivocat. En aquest article podràs veure que algunes flors, com els narcisos, també són portadores de corones i en són ben dignes d’elles! A més no totes porten la mateixa, sinó que n’hi ha de ben diferents, de totes mides i colors. I són aquestes estructures tan peculiars les que han ocasionat que moltes d’aquestes plantes siguin cultivades per a la jardineria.

INTRODUCCIÓ 

En primer lloc, cal presentar les amarilidoidees (Subfamília Amaryllidoideae, Fam. Amaryllidaceae) perquè és on trobarem aquestes flors reials portadores de corona.

Els membres d’aquesta subfamília són plantes herbàcies perennes o biennals amb bulbs o rarament amb rizomes (tiges subterrànies habitualment allargades i de creixement horitzontal, semblants a arrels i que sovint emmagatzemen substàncies de reserva). Aquestes acostumen a presentar fulles allargades i estretes, que envolten una part de la tija, amb els nervis paral·lels, sense pèls, caduques, planes i amb el marge sencer, llis.

Narcís
Foto d’un narcís (Narcissus) com a exemple d’un membre d’Amaryllidoideae.

LES SEVES FLORS

Ara que ja ens fem una idea de com són les plantes, hem de conèixer les característiques de les flors. És a dir, com són:

  • Hermafrodites: contenen òrgans reproductors tan masculins com femenins.
  • Bracteades: cada flor consta d’una fulla especialitzada que l’acompanya i que s’origina a la seva axil·la.
  • Poden créixer solitàries o en conjunt.
  • Sense diferenciació entre sèpals i pètals. Per tant, en aquest cas no es distingeix entre una corol·la i un calze, sinó que es tracta d’un periant format per dos verticils de tèpals petaloides. En cada verticil trobem 3 tèpals i en total 6 per flor. Aquests poden estar lliures o units entre ells. Quan es troben soldats poden formar corones, tal i com s’explica a l’apartat següent.
característiques florals
Parts de la flor: 1. tèpal petaloide; 2. corona; 3. bràctea floral (Modificació foto de Miguel Ángel García).

DIVERSITAT DE CORONES

El grup Amaryllidaceae es composa de 59 gèneres diferents. Però no tots són dignes de portar corona. I, a continuació, podràs veure quins sí que ho són i a on apareixen.

PARACOROL·LES

A Europa, regió mediterrània i a l’oest d’Àsia trobem unes de les flors amb corona més conegudes. Es tracta del narcis (Narcissus), una de les plantes més utilitzada en jardineria i segurament la reina del jardí més habitual. Aquest gènere consta d’una corona llarga amb forma de copa o embut. El seu origen és petaloide, és a dir, part dels tèpals es fusiona per donar lloc a aquesta estructura. A aquest tipus de corona se la denomina paracorol·la.

Narcissus
Narcissus (Autor: Blondinrikard Fröberg).

CORONES ESTAMINALS

D’altra banda, dins del mateix territori trobem al gènere Pancratium. Però aquest llueix una corona totalment diferent; en aquest cas l’origen és estaminal, és a dir, les bases dels estams s’han eixamplat i fusionat entre elles per formar l’embut.

Pancratium illyricum
Pancratium illyricum (Autor: Tigerente).

Des del centre fins al est d’Àsia i a Austràlia trobem els gèneres Calostemma i Proiphys, els quals porten una corona estaminal  (com al cas anterior).

Calostemma_luteum
Calostemma luteum (Autor: Melburnian).
Proiphys_amboinensis
Proiphys amboinensis (Autor: Tauʻolunga).

ALTRES CORONES

A més, dins la mateixa distribució que els dos exemples anteriors, apareix Lycoris. Però, aquest llueix una corona més petita, ja que esta formada només per la unió de la base dels 6 tèpals que donen lloc a petit tub.

Lycoris_aurea
Lycoris aurea (Public Domain).

Finalment a Amèrica és on trobem una gran varietat de gèneres i de corones ben diverses, formades de diferents maneres; algunes com en els casos anteriors. Els gèneres d’aquest territori són: Clinanthus, Pamianthe, Paramongaia, Hieronymiella, Placea, Hymenocallis, Ismene, Leptochiton, Eucrosia, Mathieua, Phaedranassa, Rauhia i Stenomesson

Pamianthe peruviana
Pamianthe peruviana (Autor: Col Ford and Natasha de Vere).
Placea amoena
Placea amoena (Autor: Dick Culbert).
Phaedranassa tunguraguae
Phaedranassa tunguraguae (Autor: Michael Wolf).
Ismene amancaes
Ismene amancaes (Autor: Mayta).
Hymenocallis caribaea
Hymenocallis caribaea (Autor:Tatters ❀).
Eucrosia bicolor
Eucrosia bicolor (Autor: Raffi Kojian – http://www.gardenology.org).
Clinanthus_variegatus
Clinanthus variegatus (Autor: Melburnian)

Ara que ja coneixes les diferents corones reials, quina seria la reina del teu jardí?Difusió-català

REFERÈNCIES

  • Aguilella & F. Puche. 2004. Diccionari de botànica. Col·leció Educació. Material. Universitat de València: pp. 500.
  • Bolòs, J. Vigo, R. M. Masalles & J. M. Ninot. 2005. Flora manual dels Països catalans. 3ed. Pòrtic Natura, Barcelona: pp. 1310.
  • W. Byng. 2014. The Flowering Plants Handbook: A practical guide to famílies and genera of the world. Plant Gateway Ltd., Hertford, UK.
  • Apunts de Fanerògames, Grau de Biologia Ambiental, UAB.
  • Guía de Consultas Diversidad Vegetal. FACENA (UNNE). Monocotiledoneas- Asparagales: Amaryllidaceae.

Les plantes i el canvi climàtic

Des de fa uns quants anys hem sentit parlar del canvi climàtic. Avui dia ja és una evidència i també una preocupació. No només ens afecta a nosaltres, als humans, sinó que també a tota la vida. S’ha parlat bastant de l’escalfament global, però potser no s’ha fet tanta transmissió del que succeeix amb la vegetació. Són moltes coses les que es veuen afectades pel canvi climàtic i la vegetació també n’és una d’elles. A més, els canvis produïts en aquesta també ens afecten a nosaltres. Però, quins són aquests canvis?, com els pot regular la vegetació? I, com podem ajudar a mitigar-los a través d’aquesta?

CANVIS EN LA VEGETACIÓ

Distribució dels biomes

En general, degut al canvi climàtic s’espera un increment de les precipitacions a algunes parts del planeta, mentre que en d’altres s’espera un descens. També es denota un increment global de la temperatura. Això comporta un desplaçament en la localització dels biomes, les grans unitats de vegetació (per exemple: selves, boscos tropicals, tundres, etc.).

biomes
Triangle dels biomes segons altitud, latitud i humitat (Imatge de Peter Halasaz).

Per una altra banda, existeix una tendència al augment de la distribució de les espècies en els rangs septentrionals (latituds altes) i un detriment en regions meridionals (latituds baixes). Això porta greus problemes associats; el canvi en la distribució de les espècies afecta a la seva conservació i la seva genètica. En conseqüència, les poblacions situades als marges meridionals, que han estat considerades molt importants per a la conservació a llarg termini de la diversitat genètica i pel seu potencial evolutiu, es veuen en perill per aquesta pèrdua. I, en canvi, els rangs septentrionals es veurien afectats per l’arribada d’altres espècies competidores que podrien desplaçar a les presents, essent doncs invasores.

Distribució de les espècies

Dins l’escenari del canvi climàtic, les espècies tenen una certa capacitat per reajustar la seva distribució i per adaptar-se a aquest.

Però, quin tipus d’espècies podrien estar responent més ràpidament a aquest canvi? Es dedueix que aquelles amb un cicle de vida més ràpid i una capacitat de dispersió major seran les que mostrin una major adaptació i responguin millor. Això podria comportar una pèrdua de les plantes amb ritmes més lents.

Galactites tomentosa
La calcida blanca (Galactites tomentosa) una planta de cicle ràpid i amb gran dispersió (Imatge de Ghislain118).

Un factor que facilita el reajustament en la distribució és la presència de corredors naturals: aquests són parts del territori geogràfic que permeten la connectivitat i desplaçament d’espècies d’un lloc a un altre. Són importants per evitar que aquestes quedis aïllades i puguin desplaçar-se cap a noves regions.

Un altre factor és el gradient altitudinal, aquest proporciona molts refugis per a les espècies, facilita la presència de corredors i permet la redistribució de les espècies en altitud. Per tant, en aquells territoris on hi hagi més rang altitudinal es veurà afavorida la conservació.

En resum, la capacitat de les espècies per fer front al canvi climàtic depèn de les característiques pròpies de l’espècie i les del territori. I, per contra, la vulnerabilitat de les espècies al canvi climàtic es produeix quan la velocitat que aquestes presenten per poder desplaçar la seva distribució o adaptar-se és menor a la velocitat del canvi climàtic.

A nivell intern

El canvi climàtic també afecta a la planta com a organisme, ja que li produeix canvis al seu metabolisme i a la seva fenologia (ritmes periòdics o estacionals de la planta).

Un dels factors que porta a aquest canvi climàtic és l’increment de la concentració de diòxid de carboni (CO2) a l’atmosfera. Això podria produir un fenomen de fertilització de la vegetació. Amb l’augment de COa l’atmosfera s’incrementa també la captació d’aquest per les plantes, augmentat així la fotosíntesi i permetent una major assimilació. Però, no és tot avantatges, perquè per això es produeix una pèrdua d’aigua important, degut a que els estomes (estructura que permeten l’intercanvi de gasos i la transpiració) romanen oberts molt temps per incorporar aquest CO2. Per tant, hi ha efectes contraposats i la fertilització dependrà de la planta en sí, com també del clima local. Molts estudis han demostrat que diverses plantes reaccionen diferent a aquest increment de CO2, ja que el compost afecta a varis processos fisiològics i per tant les respostes no són úniques . Per tant, ens trobem amb un factor que altera el metabolisme de les plantes i que no es pot predir com seran els seus efectes sobre elles. A més, aquest efecte fertilitzat està limitat per la quantitat de nutrients presents i sense ells la producció es frena.

fotosíntesi
Procés de fotosíntesi (Imatge de At09kg).

Per un altre costat, no hem d’oblidar que el canvi climàtic també altera el règim estacional (les estacions de l’any) i que això afecta al ritme de la vegetació, a la seva fenologia. Això pot comportar repercussions inclús a escala global; per exemple, podria produir un desajust en la producció de plantes cultivades per a l’alimentació.

PLANTES COM A REGUALADORES DEL CLIMA

Encara que no es pot parlar de les plantes com a reguladores del clima global, esta clar que hi ha una relació entre el clima i la vegetació. Però, aquesta relació és un tant complicada perquè la vegetació té tan efectes d’escalfament com de refredament del clima.

La vegetació disminueix l’albedo; els colors foscos absorbeixen més la radiació solar i per tant menys llum solar es reflecteix cap al exterior. A més. al ser organismes amb superfície rugosa s’augmenta l’absorció. En conseqüència, si hi ha més vegetació, la temperatura local (calor transferida) augmenta més.

Però, per altra banda, al augmentar la vegetació hi ha més evapotranspiració (conjunt de l’evaporació d’aigua d’una superfície i la transpiració a través de la planta). De manera que el calor es consumeix en passar l’aigua líquida a forma gasosa, el que comporta un refredament. A més, l’evapotranspiració també ajuda augmentar les precipitacions locals.

Biophysical effects of landcover
Efectes biofísics de diferents usos del sòl i la seva acció sobre el clima local (Imatge de Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Per tant, és un efecte ambigu i en determinats entorns pesa més l’efecte de refredament, mentre que en altres té més rellevància el d’escalfament.

MITIGACIÓ

Avui dia hi ha varies propostes per reduir el canvi climàtic, però com poden ajudar les plantes?

Les comunitats vegetals poden actuar com a embornals, reserves de carboni, ja que a través de l’assimilació de COajuden a compensar les emissions. Un maneig adequat dels ecosistemes agraris i dels boscos pot ajudar a la captació i emmagatzematge del carboni. Per altra banda, si s’aconsegueix reduir la desforestació i augmentar la protecció d’habitats naturals i boscos, es reduirien les emissions i s’estimularia aquest efecte embornal. Tot i així, existeix el risc de que aquests embornals es puguin convertir en fonts d’emissió; per exemple, degut a un incendi.

Finalment, presentar els biocombustibles: aquests, a diferència dels combustibles fòssils (com el petroli), són recursos renovables, ja que es tracta de cultius de plantes destinats al ús de combustible. Encara que no aconsegueixen retirar CO2 de l’atmosfera ni redueixen emissions de carboni, eviten l’increment d’aquest a l’atmosfera. Per aquest motiu no arribarien a ser una tècnica del tot mitigadora, però mantenen el balanç d’emissió i captació neutre. El problema és que poden generar efectes colaterals a nivell social i ambiental, com l’increment de preus d’altres cultius o la desforestació per a instaurar aquests cultius, cosa que no hauria de succeir.

800px-Canaviais_Sao_Paulo_01_2008_06
Cultiu de canya de sucre (Saccharum officinarum) a Brasil per produir biocombustible (Imatge de Mariordo).

Difusió-català

REFERÈNCIES

Las plantas y el cambio climático

Desde hace unos cuantos años hemos oído hablar del cambio climático. Hoy en día ya es una evidencia y también una preocupación. No solo nos afecta a nosotros, a los humanos, sino también a toda la vida. Se ha hablado bastante del calentamiento global, pero quizá no se haya hecho tanta transmisión de lo que sucede con la vegetación. Son muchas cosas las que se ven afectadas por el cambio climático y la vegetación también es una de ellas. Además, los cambios producidos en esta también nos afectan a nosotros. Pero, ¿cuáles son estos cambios?, ¿cómo los puede regular la vegetación? Y, ¿cómo podemos ayudar a mitigarlos a través de esta?

CAMBIOS EN LA VEGETACIÓN

Distribución de los biomas

En general, debido al cambio climático se espera un incremento de las precipitaciones en algunas partes del planeta, mientras que en otras se espera un descenso. También se denota un incremento global de la temperatura. Esto conlleva a un desplazamiento en la localización de los biomas, las grandes unidades de vegetación (por ejemplo: selvas, bosques tropicales, tundras, etc.).

biomes
Triangulo de los biomas según altitud, latitud y humedad (Imagen de Peter Halasaz).

Por otro lado, existe una tendencia al aumento de la distribución de especies en los rangos septentrionales (altas latitudes) y un detrimento en regiones meridionales (baja latitud). Esto conlleva graves problemas asociados; el cambio en la distribución de las especies afecta a su conservación y a su diversidad genética. En consecuencia, las poblaciones situadas en los márgenes meridionales, que han estado consideradas muy importantes para la conservación a largo plazo de la diversidad genética y por su potencial evolutivo, se ven en peligro por esta perdida. Y, en cambio, los rangos septentrionales se verían afectados por la llegada de otras especies competidoras que podrían desplazar a las ya presentes, siendo pues invasoras.

Distribución de las especies

Dentro del escenario del cambio climático, las especies tienen una cierta capacidad para reajustar su distribución y para adaptarse a este.

Pero, ¿qué tipo de especies podrían estar respondiendo más rápidamente a este cambio? Se deduce que aquellas con un ciclo de vida más rápido y una capacidad de dispersión mayor serán las que muestren mayor adaptación y respondan mejor. Esto podría conllevar a una pérdida de las plantas con ritmos más lentos.

Galactites tomentosa
La cardota (Galactites tomentosa) una planta de ciclo rápido y con gran dispersión (Imagen de Ghislain118).

Un factor que facilita el reajuste en la distribución es la presencia de corredores naturales: estos son partes del territorio geográfico que permiten la conectividad y desplazamiento de especies de un lado a otro. Son importantes para evitar que estas queden aisladas y puedan desplazarse hacia nuevas regiones.

Otro factor es el gradiente altitudinal, el cual proporciona muchos refugios para las especies, facilita la presencia de corredores y permite la redistribución de las especies en altitud. Por lo tanto, en aquellos territorios dónde haya mayor rango altitudinal se verá favorecida la conservación.

En resumen, la capacidad de las especies para hacer frente al cambio climático depende de las características propias de la especie y de las del territorio. Y, por el contrario, la vulnerabilidad de las especies al cambio climático se produce cuando la velocidad que estas presentan para poder desplazar su distribución o adaptarse es menor a la velocidad del cambio climático.

A nivel interno

El cambio climático también afecta a la planta como organismo, ya que le produce cambios en su metabolismo y en su fenología (ritmos periódicos o estacionales de la planta).

Uno de los efectos que empujan a este cambio climático es el incremento de la concentración de dióxido de carbono (CO2) en la atmosfera. Esto podría producir un fenómeno de fertilización de la vegetación. Con el aumento de CO2 en la atmosfera se incrementa también la captación de este por las plantas, aumentando así la fotosíntesis y permitiendo una mayor asimilación. Esto, pero, no son todo ventajas, porque para ello se produce una pérdida de agua importante, debido a que los estomas (estructuras que permiten el intercambio de gases y la transpiración) permanecen largo tiempo abiertos para incorporar este CO2. Por lo tanto, hay efectos contrapuestos y la fertilización dependerá de la planta en sí, como también del clima de ese lugar. Muchos estudios han demostrado que diversas plantas reaccionan diferente a este incremento del CO2, ya que el compuesto afecta a varios procesos fisiológicos y por lo tanto las respuestas no son únicas. Por lo tanto, nos encontramos con un factor que altera el metabolismo de las plantas y que no se puede predecir cómo serán sus efectos sobre ellas. Además, este efecto fertilizante está limitado por la cantidad de nutrientes presentes y sin ellos la producción se frena.

fotosíntesi
Proceso de fotosíntesis (Imagen de At09kg).

Por otro lado, no debemos olvidar que el cambio climático también altera el régimen estacional (las estaciones del año) y que esto afecta al ritmo de la vegetación, a su fenología. Esto puede tener repercusiones incluso a escala global; por ejemplo, podría producir un desajuste en la producción de plantas cultivadas para la alimentación.

PLANTAS COMO REGULADORAS DEL CLIMA

Aunque no se puede hablar de las plantas como reguladoras del clima global, está claro que hay una relación entre el clima y la vegetación. Sin embargo, esta relación es un tanto complicada porque la vegetación tiene tanto efectos de enfriamiento como de calentamiento del clima.

La vegetación disminuye el albedo; los colores oscuros absorben más la radiación solar y por lo tanto se refleja menos luz solar hacía el exterior. Además, al ser organismos de superficie rugosa se aumenta la absorción. En consecuencia, cuanta más vegetación, la temperatura local (calor transferido) aumenta más.

Pero, por otro lado, al aumentar la vegetación hay más evapotranspiración (conjunto de la evaporación de agua de una superficie y la transpiración a través de la plantas). De manera que el calor se gasta en pasar el agua líquida a gaseosa, lo que conlleva a un enfriamiento. Además, la evapotranspiración también ayuda aumentar las precipitaciones locales.

Biophysical effects of landcover
Efectos biofísicos de diferentes usos del suelo y su acción sobre el clima local. (Imagen de Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Por lo tanto es un efecto ambiguo y en determinados ambientes pesa más el efecto de enfriamiento, mientras que en otros tiene más relevancia el de calentamiento.

MITIGACIÓN

Hoy en día hay varias propuestas para reducir el cambio climático, pero ¿cómo pueden ayudar las plantas?

Las comunidades vegetales pueden actuar como sumideros, reservas de carbono, ya que a través de la asimilación de COayudan a compensar las emisiones. Un manejo adecuado de los ecosistemas agrarios y los bosques puede ayudar a la captación y almacenamiento del carbono. Por otro lado, si se lograra reducir la deforestación y aumentar la protección de hábitats naturales y bosques, se reducirían las emisiones y se estimularía este efecto sumidero. Aun así, existe el riesgo de que estos sumideros puedan convertirse en fuentes de emisión; por ejemplo, debido a incendios.

Finalmente, presentar los biocombustibles: estos, a diferencia de los combustibles fósiles (como el petróleo), son recursos renovables, ya que se trata de cultivos de plantas destinados al uso como combustibles. Aunque no logran retirar CO2 de la atmosfera ni reducen emisiones de carbono, evitan el incremento de este en la atmosfera. Por este motivo no llegaría a ser una medida del todo mitigadora, pero mantienen el balance de emisión y captación neutro. El problema es que pueden generar efectos colaterales a nivel social y ambiental, como el incremento de precios de otros cultivos o la deforestación para instaurar estos cultivos, cosa que no debería suceder.

800px-Canaviais_Sao_Paulo_01_2008_06
Cultivo de caña de azucar (Saccharum officinarum) en Brasil para producir biocombustible (Imagen de Mariordo).

Difusió-castellà

REFERENCIAS

 

Comunicación entre plantas: relaciones alelopáticas

Como siempre se ha dicho, las plantas no saben hablar, pero que no hablen no quiere decir que no se comuniquen entre ellas. Hace relativamente pocos años, durante el período 1930-40, se vio que las plantas también transmiten ciertos estímulos hacía otras. Pero, ¿qué tipo de comunicación hay entre ellas? ¿Cuáles son sus palabras y como las pronuncian? ¿Y que conlleva su interacción?

INTRODUCCIÓN

En 1937, Molisch introdujo el término de alelopatía haciendo referencia a las dos palabras del latín “Allelon” y “Pathos”, que quieren decir “de otro” y “sufrimiento” respectivamente. Pero el significado actual de esta palabra fue determinado por Rice en 1984. Ahora por alelopatía se entiende cualquier efecto que una planta transmite a otra de forma directa o indirecta a través de la producción de diferentes compuestos del metabolismo, ya sea causando un efecto positivo o negativo sobre la otra planta. Estos compuestos son los denominados aleloquímicos.

La planta libera los aleloquímicos al medio, pero no los dirige directamente a la zona de acción, por lo tanto se trata de un mecanismo pasivo. Para que la interacción alelopática sea efectiva se necesita que estas sustancias se distribuyan por el suelo o el aire y que lleguen a la otra planta. Una vez dentro de la planta receptora, ésta puede tener mecanismos de defensa y degradación de los compuestos, evitando el efecto, o por el contrario se producirá un efecto patológico.

tree-dialeg-cast
Alelopatía (Imagen adaptada de OpenClips)

VÍAS DE LIBERACIÓN

La liberación de aleloquímicos puede ser por 4 vías principales:

  • Lixiviación: la parte aérea de la planta deja ir sustancias por lavado, por la lluvia, y éstas caen sobre otras plantas o en el suelo. Por lo tanto, puede ser de efecto directo o indirecto según si cae encima de otra planta o no, aunque en principio se considera indirecto.
  • Descomposición: se trata de los restos que la planta deja caer al suelo, donde se descomponen por efecto de los microorganismos, los cuales ayudan a la liberación de los compuestos. Pueden ser desde hojas hasta ramas o raíces. Las sustancias que ahí se encuentran pueden estar inactivadas hasta que entren en contacto con la humedad o con los microorganismos o bien pueden estar activas y ser luego inactivadas por la actividad de los microorganismos o quedar retenidas en el suelo. Es una vía indirecta y es por la cual se liberan más compuestos al medio.
  • Volatilización: las sustancias se liberan por los estomas (estructuras que permiten el intercambio de gases y la transpiración). Éstas son volátiles e hidrosolubles, por lo tanto se pueden absorber por los estomas de otras plantas o sino se disuelven en el medio. Comúnmente las plantas que utilizan estas vías son de climas temperados y cálidos. Se considera una vía directa.
  • Exudación radicular: son las sustancias que las plantas liberan  por las raíces vivas de forma directa y se trata de compuestos de todo tipo. El sistema de exudación depende sobretodo del estado de las raíces, de su sistema radicular y de si se encuentran en crecimiento o no.
allelopathy
Las 4 vías principales de liberación de aleloquimicos: volatilización (V), lixiviación (L), descomposición (D) y exudación radicular (E). (Imagen adaptada de OpenClips)

FACTORES REGULADORES

Los factores que influencian en la liberación de aleloquímicos son normalmente abióticos, como la elevada radiación de luz, la falta de humedad, un pH inadecuado, la luz ultravioleta, la temperatura, la falta de nutrientes, la polución o la contaminación (incluidos los pesticidas). Cuanto más estrés provoquen estos factores a la planta, más aleloquímicos se liberarán de rutas metabólicas secundarias.

  • Esto es importante a nivel de investigación y farmacia: para la generación de aceites relevantes muchas plantas se cultivan en condiciones de estrés, ya que es gracias a la producción de estos metabólicos secundarios que logran sobrevivir.

Después actúan también factores bióticos, como los insectos, los herbívoros o la competencia con otras especies de plantas. Estos activan las defensas de la planta, la cual puede segregar sustancias amargas, que endurecen los tejidos, que son toxicas o que desprenden olores desagradables, etc.

Finalmente, cada planta tiene su propio genoma y esto hace que sintetice unas sustancias u otras. Aunque también vienen determinadas por la fenología (etapas de la vida) y por el desarrollo (si el tamaño del organismo es más grande, podrá liberar más).

MODO DE ACCIÓN

Los aleloquímicos son muy diversos y por lo tanto es difícil establecer un modelo general de acción; ya que depende del tipo de compuesto, de las plantas receptoras y de como actúa éste.

Cuando hablamos de actuación a nivel interno, los aleloquímicos pueden actuar sobre una gran cantidad de parámetros fisiológicos. Tienen acción sobre la membrana celular, alteran la actividad de diferentes encimas o de proteínas estructurales o alteran el balance hormonal. También pueden inhibir o reducir la respiración celular o la síntesis de clorofila, lo que genera una reducción en la vitalidad, el crecimiento y el desarrollo general de la planta. Además, estas sustancias también pueden reducir la germinación de semillas o el desarrollo de plántulas, o afectar a la división celular, a la germinación de polen, etc.

Por otro lado, a nivel externo, los aleloquímicos pueden estar relacionados con la liberación o limitación de nutrientes retenidos en el suelo. Otros actúan sobre microorganismos, lo que conlleva una afección sobre las relaciones simbióticas que estos establecen. Además, estas sustancias tienen una gran importancia sobre la sucesión de generaciones, ya que determinan ciertas tendencias de competencia y actúan en la ecología del hábitat. Aun así, se trata de una competencia sucesiva, ya que no se compite directamente por los recursos principales.

EJEMPLOS

Uno de los aleloquímicos más conocidos es la juglona, producida por el nogal negro americano (Juglans nigra). Éste, una vez se libera al suelo, puede inhibir mucho el crecimiento de otras plantas alrededor del nogal. Esto permite al organismo emisor disponer de más recursos, evitando la competencia.

black walnut
Nogal negro americano (Juglans nigra) (Foto de Hans Braxmeier)

Un caso bien curioso es el de las acacias (Acacia). Estas plantas sintetizan un alcaloide toxico que migra a las hojas cuando el organismo es atacado por un herbívoro. La toxicidad de esta sustancia es elevada, ya que daña al contacto y también con la ingestión, llegando a ser mortal incluso para grandes herbívoros. Además, este alcaloide es volátil y se transfiere por el aire hacia otras acacias cercanas, funcionando como una alarma. Cuando las acacias cercanas reciben esta señal, segregan a sus hojas el componente toxico haciendo que se vuelvan más oscuras. Aun así, el efecto es temporal. Esto hace que animales como las jirafas se tengan que desplazar constantemente para comer unas pocas hojas de cada acacia, y siempre en dirección contraria al viento, para así evitar la toxicidad.

acacia
Acacias (Acacia) (Foto de Sarangib)

Difusió-català

REFERECIAS

  • A. Aguilella & F. Puche. 2004. Diccionari de botànica. Col·leció Educació. Material. Universitat de València: pp. 500.
  • A. Macías, D. Marín, A. Oliveros-Bastidas, R.M. Varela, A.M. Simonet, C. Carrera & J.M.G. Molinillo. 2003. Alelopathy as a new strategy for sustainable ecosystems development. Biological Sciences in Space 17 (1).
  • J. Ferguson, B. Rathinasabapathi & C. A. Chase. 2013. Allelopathy: How plants suppresss other plants. University of Florida, IFAS Extension HS944
  • Apuntes de Fanerógamas, Fisiología Vegetal Aplicada y Análisis de la Vegetación, Grado de Biología Ambiental, UAB.

Comunicació entre plantes: relacions al·lelopàtiques

Com sempre s’ha dit, les plantes no saben parlar, però que no parlin no vol dir que no es comuniquin entre elles. Fa relativament pocs anys, durant el període 1930-40, es va veure que les plantes també transmetien certs estímuls cap a d’altres. Però, quin tipus de comunicació hi ha entre elles? Quines són les seves paraules i com les pronuncien? I què comporta la seva interacció?

INTRODUCCIÓ

Al 1937, Molisch va introduir el terme al·lelopatia fent referència a les dues paraules del llatí “Allelon” i “Pathos”, que volen dir “d’un altre” i “patiment”, respectivament. Però, el significat actual d’aquesta paraula va ser determinat per Rice al 1984. Ara per al·lelopatia s’entén qualsevol efecte que una planta transmet a una altre de forma directe o indirecta a través de la producció de diferents compostos del metabolisme, ja sigui causant un efecte positiu o negatiu sobre l’altre planta. Aquests compostos són els anomenats al·leloquímics.

La planta allibera els al·leloquímics al medi, però no els dirigeix directament a la zona d’acció, per tant és un mecanisme passiu. Per a que la interacció al·lelopàtica sigui efectiva cal que aquestes substàncies es distribueixen pel sòl o l’aire i que arribin a l’altre planta. Un cop dins la planta receptora, aquesta pot tenir mecanismes de defensa i degradació dels compostos, evitant l’efecte, o pel contrari es produirà un efecte patològic.

tree-dialeg
Al·lelopatia (Imatge adaptada de OpenClips)

VIES D’ALLIBERAMENT

L’alliberació dels al·leloquímics pot ser per 4 vies principals:

  • Lixiviació: la part aèria de la planta deixa anar substancies per rentat, per la pluja, i aquestes cauen sobre altres plantes o sobre el sòl. Per tant, pot ser d’efecte directe o indirecte segons si cau a sobre de la planta o no, tot i que en un principi indirecta.
  • Descomposició: es tracta de les restes que la planta deixa anar al sòl, on es descomponen per efecte dels microorganismes, els quals ajuden a alliberar els compostos. Pot ser des de fulles fins a branques o arrels. Les substàncies que es troben aquí poden estar inactivades fins que entrin en contacte amb la humitat o amb els microorganismes o bé poden ser actives y tornar-se inactives per l’activitat microbiana o quedar retingudes al sòl. És una via indirecta i és per la qual s’alliberen més components al medi.
  • Volatilització: les substancies s’alliberen pels estomes (estructures que permeten l’intercanvi de gasos i la transpiració). Aquestes són volàtils i hidrosolubles, per tant es poden absorbir pels estomes d’altres plantes o bé ser dissoltes al medi. Sovint les plantes que utilitzen aquestes vies són de climes temperats i càlids. Es considera una via directa.
  • Exsudació radicular: són les substàncies que les plantes alliberen per les arrels vives de forma directa i són compostos de tots tipus. Aquest sistema d’exsudació depèn sobretot de l’estat de les arrels, del seu sistema radicular i de si aquestes es troben en creixement o no.
allelopathy
Les 4 vies principals de d’alliberació dels al·leloquímics: volatilització (V), lixiviació (L), descomposició (D) i exsudació radicular (E). (Imatge adaptada de OpenClips)

FACTORS REGULADORS

Els factors que influencien en l’alliberació d’al·leloquímics són normalment abiòtics, com l’elevada radiació de llum, la falta d’humitat, un pH inadequat, la llum ultraviolada, la temperatura, la falta de nutrients, la pol·lució o la contaminació (inclosos els pesticides). Com més estrès provoquin aquests factors a la planta, més compostos d’aquests alliberarà de rutes metabòliques secundàries.

  • Això és important a nivell d’investigació i farmàcia: per a la generació d’olis rellevants moltes plantes es cultiven en condicions d’estrès, ja que és gracies a la producció d’aquests metabòlics secundaris que aconsegueixen sobreviure.

Després actuen també factors biòtics, com insectes, herbívors o la competència amb altres espècies de plantes. Aquests activen les defenses de la planta, la qual pot secretar substàncies amargues, que endureixen els teixits, que són tòxiques o que desprenen olors desagradables, etc.

Finalment, cada planta té el seu genoma i això farà que sintetitzi unes substàncies o altres. Tot i que també vindran determinades per l’estat fenològic (etapes de la vida) com pel desenvolupament (si la mida del individu és més gran, podrà alliberar-ne més).

MODE D’ACCIÓ

Els al·leloquímics són molt diversos i per tant és molt difícil d’establir un model general d’acció; ja que depèn del tipus de compost, de les plantes receptores i de com actua aquest.

Quan parlem d’actuació a nivell intern, els al·leloquímics poden actuar sobre un gran ventall de paràmetres fisiològics. Tenen acció sobre la membrana cel·lular, alteren l’activitat de diferents enzims o de proteïnes estructurals o alteren el balanç hormonal. També poden inhibir o reduir la respiració cel·lular o la síntesi de clorofil·la, el que genera una reducció en la vitalitat, el creixement i el desenvolupament general de la planta. A més a més, aquestes substàncies també poden reduir la germinació de llavors o el desenvolupament de plàntules, o afectar a la divisió cel·lular, a la germinació del pol·len, etc.

D’altra banda, a nivell extern, els al·leloquímics poden estar relacionats amb l’alliberació o limitació de nutrients retinguts al sòl. D’altres actuen sobre els microorganismes, el que comporta una afecció sobre les relacions simbiòtiques que aquests estableixen. A més, aquestes substàncies tenen una gran importància sobre la successió de generacions, ja que determinen certes tendències de competència i actuen sobre l’ecologia de l’hàbitat. Tot i així, es tracta d’una competència successiva, ja que no es competeix directament pels recursos principals.

EXEMPLES

Un dels al·leloquímics més coneguts és la juglona, produït per la noguera negra de l’est (Juglans nigra). Aquest, un cop s’allibera al sòl, pot inhibir molt el creixement d’altres plantes al voltant de la noguera. Això permet a l’organisme emissor disposar de més recursos, evitant la competència.

black walnut
Noguera negra de l’est (Juglans nigra) (Foto de Hans Braxmeier)

Un cas ben curiós és el de les acàcies (Acacia). Aquestes plantes sintetitzen un alcaloide tòxic que migra a les fulles quan l’organisme és atacat per un herbívor. La toxicitat d’aquesta substància és elevada, ja que fa mal al contacte i també amb la ingestió, arribant a ser mortal fins i tot per als grans herbívors. A més, aquest alcaloide és volàtil i és transferit per l’aire cap a altres acàcies properes, funcionant com una alarma. Quan les acàcies properes reben aquesta senyal, segreguen a les seves fulles el component tòxic fent que aquestes es tornin més fosques. Tot i així, l’efecte és temporal. Això fa que animals com les girafes s’hagin de desplaçar constantment per menjar unes poques fulles de cada acàcia, i sempre en direcció contraria al vent, per tal d’evitar la toxicitat.

acacia
Acàcies (Acacia) (Foto de Sarangib)

Difusió-català

REFERÈNCIES

  • A. Aguilella & F. Puche. 2004. Diccionari de botànica. Col·leció Educació. Material. Universitat de València: pp. 500.
  • A. Macías, D. Marín, A. Oliveros-Bastidas, R.M. Varela, A.M. Simonet, C. Carrera & J.M.G. Molinillo. 2003. Alelopathy as a new strategy for sustainable ecosystems development. Biological Sciences in Space 17 (1).
  • J. Ferguson, B. Rathinasabapathi & C. A. Chase. 2013. Allelopathy: How plants suppresss other plants. University of Florida, IFAS Extension HS944
  • Apunts de Fanerògames, Fisiologia Vegetal Aplicada i Anàlisi de la Vegetació, Grau de Biologia Ambiental, UAB.

Flors amb turbant, la febre de les tulipes

Amb l’arribada de la primavera molts de vosaltres haureu gaudit dels colors tan macos que tenen les flors de les plantes que ja han florit. Aquesta vegada justament us vull parlar d’una de les flors més vistoses, senzilles, però meravelloses que segurament ja haureu tingut l’oportunitat d’observar en molts jardins o en la natura. Es tracta de la tulipa. A més d’introduir-vos aquesta planta, en aquest article també us faré una descripció més detallada de les seves parts. Crec que és un bon cas per començar a introduir vocabulari, degut a que la seva estructura és bastant clara i simple. Per tant, si esteu interessats en aprendre un vocabulari més tècnic, ara tindreu l’oportunitat. Però, no penseu que només parlaré dels aspectes tècnics, per que també podreu conèixer la història que les tulipes porten al darrera, i, com veureu, aquestes flors van causar una bona febre!

tulipes
Imatge artística de diferents tulipes (Foto de Adriel Acosta).

 INTRODUCCIÓ

Les tulipes (Tulipa sp.), flors que quan són tancades tenen forma de turbant, són unes de les plantes més populars i conegudes des de fa segles degut al seu alt interès ornamental.

El seu gènere està distribuït per l’Àsia central i occidental, per la Mediterrània i per Europa. Se sap que el seu origen es troba al centre d’Àsia i des d’allà s’ha anat expandint tant de forma natural com per accions antròpiques. I, tot i que es coneixen aproximadament unes 150 espècies a la natura, la intervenció de l’home ha fet augmentar molt la llista d’espècies. Ocasionades tant per hibridacions (forçant la descendència de dues espècies d’interès) com per millora genètica (seleccionant els individus fills que més valor tenen).

Tulipa_cultivars_Amsterdam
Cultiu de tulipes a Amsterdam (Foto de Rob Young). 

 LA FEBRE DE LES TULIPES

Com ja s’ha esmentat anteriorment, les tulipes són de les plantes més utilitzades en ornamentació, tant en decoracions com en jardineria. I tot i que el cultiu d’aquestes flors és ben antic, el boom a Europa es va donar al segle XVII. Originant el que es conegué com a tulipomania o febre de les tulipes. En aquells moments, especialment als Països Baixos i a França, es despertà un alt interès pel cultiu d’aquestes plantes. La febre va ser tan gran que la gent va arribar a vendre possessions de tota mena per tal de comprar bulbs de tulipes, arribant fins i tot a vendre els bens més apreciats com la casa o animals de granja.

La causa d’això s’origina a Holanda, on en aquells moments ja es venien els bulbs de tulipes d’un únic color. Però, després van aparèixer els bulbs d’orient que originaven flors de diversos colors barrejats entre ells i que resultaren molt atractius. Tot i que es desconeixia la causa, es sabia que si es tocaven els bulbs de les flors d’un sòl color amb els bulbs de les flors amb varis colors, aquests primers es transformaven. Això va fer que el preu de les tulipes comences a augmentar i poc després es va provocar la primera bombolla especulativa de la història.

Ara se sap que la causa es deguda a un virus que es transmet d’uns bulbs a uns altres; aquest virus es coneix com Tulip breaking virus.

Semper Augustus Tulip 17th century
Aquarel•la anònima del segle XVII de “Semper Augustus”, una de les tulipes més famoses, venuda a preu rècord als Països Baixos (Imatge de domini públic).

CARACTERÍSTIQUES MORFÒLOGIQUES

 La planta

Les tulipes són geòfits, és a dir, consten d’òrgans de resistència sota terra per a sobreviure durant l’època desfavorable, l’hivern. Aquests òrgans són els bulbs, els quals s’han utilitzat per a fer cultius i per a conservar aquestes plantes.

 Les seves fulles són linears o linear-lanceolades, és a dir, són llargues i estretes i acaben en pic. Tenen nervació paral·lela, un nervi al costat del altre i amb el mateix sentit. La disposició de les fulles acostuma a ser en roseta basal: això vol dir que les fulles neixen aglomerades a la part baixa de la planta, per sobre del bulb, i en un mateix nivell. Tot i que a vegades també es poden observar algunes fulles al llarg de la tija, les caulinars. Aquestes són sèssils, sense pecíol, i envolten una mica la tija.

 Per a cultivar les tulipes, es poden utilitzar tant els bulbs com els fruits. En aquest cas parlem de càpsules, uns fruits secs, que s’obren gràcies a unes valves. Al principi les llavors estan enganxades al interior d’aquestes càpsules i després es van alliberant i repartint per l’entorn.

20150329_165102[1]
Tulipa (Foto de Adriel Acosta).

 Les flors

Les tulipes apareixen als primers mesos de la primavera, és a dir, fan floració primerenca. Això és degut a que són plantes adaptades a climes mediterranis secs o bé a zones molt fredes.

Com em vist, les flors són solitàries o bé apareixen fins a 3 reunides en una mateixa tija. A més, són generalment grans i vistoses, hermafrodites, per tant, tenen òrgans reproductors tan masculins com femenins, i són actinomorfes, és a dir, poden ser dividides simètricament per més de dos plans de simetria.

Aquestes flors consten de 3 tèpals interns i 3 externs lliures entre ells, sense estar units o soldats. Parlem de tèpals quan els sèpals (peces del calze) i els pètals (peces de la corol·la) són similar entre ells. En aquest cas són tèpals petaloides, ja que adopten colors i formes típics dels pètals.

A la part interna de la flor podem observar 6 estams repartits equitativament en 2 verticils, tot i que com aquests dos verticils estan molt junts entre ells, sembla que els estams neixin d’un mateix punt. I just al centre, envoltat per aquests estams, hi ha el gineceu, la part femenina de la flor. Aquest gineceu consta del seu ovari i de 3 estigmes units a aquest directament. Els estigmes són la part del òrgan reproductor femení on ha d’arribar el pol·len per tal de fecundar els ovaris.

part tulipa
Parts de la flor d’una tulipa: 1. Sèpal, 2. Pètal, 3. Estam, 4. Òrgan reproductor femení (ovari i 3 estigmes) (Foto de Adriel Acosta).

 Com heu vist en aquest article, moltes de les flors tenen històries ben curioses i han causat impacte en la nostre societat. A més, heu pogut observar amb detall les parts de la flor de la tulipa. Un cop més, espero que us hagi agradat.

Difusió-català

REFERÈNCIES

  • A. Aguilella & F. Puche. 2004. Diccionari de botànica. Col·leció Educació. Material. Universitat de València: pp. 500.
  • Bolòs, J. Vigo, R. M. Masalles & J. M. Ninot. 2005. Flora manual dels Països catalans. 3ed. Pòrtic Natura, Barcelona: pp. 1310.
  • Apunts de Fanerògames i de Fisiologia Vegetal Aplicada, Grau de Biologia Ambiental, UAB
  • F. Schiappacasse. Cultivo del tulipan. http://www2.inia.cl/medios/biblioteca/seriesinia/NR21768.pdf
  • Fundación para la Innovación Agraria; Ministerio de Agricultura. 2008. Resultados y Lecciones en Tulipán. Proyecto de Innovación en XII Región de Magallanes. Flores y FOllajes/ Flores de corte (11).

Flores con turbante, la fiebre de los tulipanes

Con la llegada de la primavera muchos de vosotros habréis disfrutado de los colores tan bonitos que tienen las flores de las plantas que ya florecieron. Esta vez justamente os voy hablar de una de las flores más vistosas, sencillas, pero maravillosas que seguramente ya habréis tenido la oportunidad de observar en muchos jardines o en la naturaleza. Se trata del tulipán. Además de introduciros esta planta, en este artículo os haré una descripción más detallada de sus partes. Creo que es un buen caso para comenzar a introducir vocabulario, debido a que su estructura es bastante clara y simple. Por lo tanto, si estáis interesados en aprender un vocabulario más técnico, ahora tendréis la oportunidad. Pero, no penséis que solo hablaré de los aspectos más técnicos, porque también podréis conocer la historia los tulipanes tienen detrás, y, como veréis, estas flores causaron ¡una buena fiebre! 

tulipes
Imagen artística de diferentes tulipanes (Foto de Adriel Acosta).

 INTRODUCCIÓN

Los tulipanes (Tulipa sp.), flores que cuando se cierran tienen forma de turbante, son unas plantas muy populares y conocidas desde hace muchos siglos debido a su alto interés ornamental.

Su género está distribuido por el Asia central y occidental, por la Mediterránea y por Europa. Se sabe que su origen se encuentra en el centro de Asia y desde allí se han expandido tanto de forma natural como por acciones antrópicas. Y, aunque se conocen aproximadamente 150 especies en la naturaleza, la intervención del hombre ha aumentado mucho la lista de especies. Ocasionadas tanto por hibridación  (forzando la descendencia de dos especies de interés) como por mejora genética (seleccionando los individuos hijos que más valor tienen).

Tulipa_cultivars_Amsterdam
Cultivo de tulipanes en Ámsterdam (Foto de Rob Young). 

 LA FIEBRE DE LOS TULIPANES

Como ya se ha comentado anteriormente, los tulipanes son de las plantas más utilizadas en ornamentación, tanto en decoraciones como en jardinería. Y aunque el cultivo de estas flores es bien antiguo, el boom en Europa ocurrió durante el siglo XVII. Dando pie a lo que se conoce como tulipomanía o fiebre de los tulipanes. En aquellos momentos, especialmente en los Países Bajos y en Francia, se despertó un alto interés por el cultivo de estas plantas. La fiebre fue tan grande que la gente vendía bienes de toda clase para comprar bulbos de tulipanes, llegando incluso a vender los bienes más preciados como la casa o animales de granja.

La causa de esto se originó en los Países Bajos, donde en aquellos momentos ya se vendía el bulbo de tulipán de un único color. Pero, después aparecieron los bulbos de oriente que daban pie a flores con colores jaspeados, los cuales resultaron muy atractivos. Aunque se desconocía la causa, se sabía que si se tocaban los bulbos de un único color con los bulbos de las flores jaspeadas, estos primeros se transformaban en bulbos jaspeados. Esto hizo que el precio de los tulipanes comenzara aumentar y poco después se provocó la primera burbuja especulativa de la historia.

Ahora se sabe que la causa es debida a un virus que se transmite de unos bulbos a otros; este virus se conoce como Tulip breaking virus.

Semper Augustus Tulip 17th century
Acuarela anónima del siglo XVII de “Semper Augustus”. Representación de uno de los tulipanes más populares que se vendió a precio récord en los Países Bajos (Imagen de domino público).

CARACTERÍSTICAS MORFOLÓGICAS

 La planta

 Los tulipanes son geófitos, es decir, tienen órganos de resistencia debajo de la tierra para poder sobrevivir durante la época desfavorable, el inverno. Estos órganos son los bulbos, los cuales se han utilizado en los cultivos para conservar estas plantas.

 Sus hojas son lineales o lineal-lanceoladas, es decir, son alargadas y estrechas y acaban en pico. Tienen nerviación paralela, un nervio al lado del otro y con el mismo sentido. La disposición de las hojas suele ser en roseta basal: esto quiere decir que las hojas nacen aglomeradas en la parte baja de la planta, por encima del bulbo, y en un mismo nivel. Aunque a veces también se pueden observar algunas hojas a lo largo del tallo, las caulinares. Estas son sésiles, sin peciolo, y envuelven un poco el tallo.

Para cultivar los tulipanes, se pueden utilizar tanto los bulbos como los frutos. En este caso hablamos de cápsulas, unos frutos secos, que se abren gracias a unas valvas. Al principio las semillas están enganchadas en el interior de estas cápsulas y después se van liberando y repartiendo por el entorno.

20150329_165102[1]
Tulipán (Foto de Adriel Acosta).

 Las flores

Los tulipanes aparecen en los primeros meses de la primavera, por lo tanto hacen floración primaveral. Esto es debido a que son plantas adaptadas a climas mediterráneos secos o bien a zonas frías.

Como hemos visto, las flores son solitarias o bien aparecen hasta 3 reunidas en un mismo tallo. Además, son generalmente grandes y vistosos, hermafroditas, por lo tanto, tienen órganos reproductores tanto masculinos como femeninos, y son actinomorfos, es decir, pueden ser divididos simétricamente por más de dos planos de simetría.

Estas flores constan de 3 tépalos internos y 3 externos libres entre ellos, sin estar unidos o fusionados. Hablamos de tépalos cuando los sépalos (piezas del cáliz) y los pétalos (piezas de la corola) son similares entre ellos. En este caso son tépalos petaloides, ya que adoptan colores y formas típicas de los pétalos.

En la parte interna de la flor podemos ver 6 estambres repartidos equitativamente en 2 verticilos, aunque al estar estos dos muy juntos entre ellos, parece que nazcan de un mismo punto. Y justo en el centro, rodeado por estos estambres, hay el gineceo, la parte femenina de la flor. Este gineceo consta de su ovario y de 3 estigmas unidos a este directamente. Los estigmas son la parte del órganos reproductor femenino donde tiene que llegar el polen para fecundar los ovarios.

part tulipa
Partes de la flor de un tulipán: 1. Sépalo, 2. Pétalo, 3. Estambre, 4. Órgano reproductor femenino (ovario y 3 estigmas) (Foto de Adriel Acosta).

 Como habéis visto en este artículo, muchas de las flores tienen historias bien curiosas y han causado gran impacto en nuestra sociedad. Además, habéis podido observar con detalle las partes de la flor de la tulipa. Una vez más, espero que os haya gustado.

Difusió-castellà

REFERENCIAS

  • A. Aguilella & F. Puche. 2004. Diccionari de botànica. Col·leció Educació. Material. Universitat de València: pp. 500.
  • Bolòs, J. Vigo, R. M. Masalles & J. M. Ninot. 2005. Flora manual dels Països catalans. 3ed. Pòrtic Natura, Barcelona: pp. 1310.
  • Apuntes de Fanerógamas y de Fisiología Vegetal Aplicada, Grado de Biología Ambiental, UAB
  • F. Schiappacasse. Cultivo del tulipan. http://www2.inia.cl/medios/biblioteca/seriesinia/NR21768.pdf
  • Fundación para la Innovación Agraria; Ministerio de Agricultura. 2008. Resultados y Lecciones en Tulipán. Proyecto de Innovación en XII Región de Magallanes. Flores y FOllajes/ Flores de corte (11).

Socratea exorrhiza: las plantas también aprenden a caminar!

Esta vez voy a presentaros la planta que se esta haciendo famosa en todo el mundo, la palmera que camina (Socratea exorrhiza). Siempre se había dicho que las plantas no se mueven de sitio, pero la naturaleza nos sorprende una vez más con un ejemplo como este. A continuación descubre más de esta planta tan extraordinaria.

INTRODUCCIÓN

La planta que camina, Socratea exorrhiza, es una palmera (Arecaceae) que vive en la selva tropical del centro y Sur América. Esta puede llegar a medir 25 metros de altura y alcanzar los 16 centímetros de diámetro, aunque normalmente se sitúa alrededor de los 15-20 metros de altura.

Socratea exorrhiza, walking palm
La planta que camina en los Puentes Colgantes cerca del Volcán Arenal, Costa Rica (Foto de Hans Hillewaert).

Junto a las orquídeas y otras hierbas, las palmeras son de las plantas más abundantes en los bosques tropicales. Pero, las palmeras resultan bien curiosas, ya que tienen porte arbóreo: altura y medidas de árbol. Aun así, no desarrollan crecimiento secundario verdadero, es decir, no disponen de tejidos que permitan el incremento en grosor de las raíces, tallos y ramas. Esto conlleva que si la planta crece en altura, tenga que existir un mecanismo que soporte su propio peso. Y se sabe que no es gracias al grosor del tallo, el cual es bastante delgado. Entonces, cual es este mecanismo? Y cómo actúa?

RAÍCES AÉREAS

Muchas palmeras arborescentes es decir, que tienen medidas de árbol, desarrollan un conjunto de raíces aéreas. Estas se caracterizan por estar situadas por encima del nivel del suelo. Es el caso de la planta que camina (Socratea exorrhiza) y de otras palmeras (como por ejemplo Iriartea deltoidea). Las raíces aéreas son en general muy numerosas y altas.

Socratea exorriza
Raíces aéreas de la planta que camina (Foto de Ruestz).

FUNCIONES DE LAS RAÍCES AÉREAS

Las funciones que realizan estas raíces han sido y son aún un debate. Aun así, se ha propuesto diferentes beneficios  que pueden proporcionar.

En primer lugar, su presencia permite una mayor estabilidad y soporte del tallo, el cual puede crecer más rápido. Esto resulta muy interesante, ya que en los bosques tropicales la luz es un factor restrictivo muy potente. Y el hecho que la planta pueda alcanzar alturas superiores destinando menos energía en la elaboración de un tronco grueso que la estabilice o en raíces subterráneas, la hace más competitiva. Pero, aunque proporcionan estabilidad, no se ha demostrado que resulten una ventaja para crecer en pendientes.

Por otro lado, también se piensa que las raíces permiten colonizar (expandirse) nuevas áreas que contienen muchos residuos orgánicos grandes, generalmente ramas o troncos muertos de otros árboles. Esto es debido a que los pueden evitar desplazando sus raíces por encima.

A demás, se ha comprobado que las raíces aéreas incrementan la supervivencia de las plantas cuando hay temporales tropicales violentos (tal y como se explica en el siguiente apartado) y también facilitan su aireación cuando hay inundaciones. Aun así, no se ha validado que permitan a la palmera crecer en lugares pantanosos.

Aunque se comienza a tener un conocimiento más extenso, aún se desconocen todas las funciones de estas raíces tan peculiares de las palmeras. Pero, aún se debe mencionar una función más que se ha descrito en la palmera que camina y que es justamente la que permite que la planta “ande”.

COMO CAMINA LA PLANTA QUE CAMINA

Socratea exorrhiza  es conocida como la palmera que camina y esto es debido a que puede cambiar de posición por dos motivos. Aunque el segundo, que se presenta a continuación, es el que da origen a su nombre común.

El primero, conocido des de hace más tiempo, es bastante común debido a los fuertes temporales tropicales. Se ocasiona cuando la palmera que esta en posición normal (fase 1 de la imagen) es tumbada por otro árbol o rama y queda aplastada (fase 2 de la imagen). La palmera una vez en el suelo tiene la capacidad de rebrotar y recuperarse, gracias al desarrollo de nuevas raíces aéreas del antiguo tallo; al mismo tiempo se mueren las antiguas (fase 3 de la imagen). Finalmente, el individuo crece otra vez pero habiendo cambiado de lugar (fase 4 de la imagen). Por lo tanto, el organismo puede sobrevivir aún siendo tumbado y a demás se recupera.

Socratea exorrhiza  diagram
Smartse – Bodley, John; Foley C. Benson (March 1980). Stilt-Root Walking by an Iriateoid Palm in the Peruvian Amazon. Biotropica (jstor: The Association for Tropical Biology and Conservation) 12 (1): 67-71

El segundo caso ha estado descubierto más recientemente y es por éste que se ha popularizado a esta planta. Según se cree, sus raíces crecen en dirección a las zonas dónde hay más luz y por el otro lado se van pudriendo. Así el tronco se desplaza de lugar muy lentamente, pero alcanzando desplazamientos de hasta 1 metro cada año.

Vídeo explicativo en inglés de Simon Hart (Canal de Youtube Harold Eduarte).

Como habéis visto, las plantas no dejan nunca de sorprendernos. Llegando a casos tan curiosos como este. Recuerda, si te ha gustado, no olvides compartirlo en las diferentes redes sociales. Gracias.

REFERENCIAS

  • Apuntes de Ecología Forestal, Grado de Biología Ambiental, UAB.
  • Avalos, Gerardo; Salazar, Diego; and Araya, Ana (2005). Stilt root structure in the neotropical palmsIrlartea deltoidea and Socratea exorrhiza. Biotropica 37 (1): 44–53.
  • Avalos, Gerardo and Fernández Otárola, Mauricio (2010). Allometry and stilt root structure of the neotropical palm Euterpe precatoria (Arecaceae) acroos sites and successional stages. Ametican Joranl of Botany 97 (3): 388-394.
  • Goldsmith, Gregory; and Zahawi, Rakan (September–December 2007).The function of stilt roots in the growth strategy of Socratea exorrhiza (Arecaceae) at two neotropical sites. Revista de Biologia Tropical 55 (3–4): 787–793.
  • Zotz, G.; Vollrath, B. (2003).The epiphyte vegetation of the palm Socratea exorrhiza – correlations with tree size, tree age and bryophyte cover. Journal of Tropical Ecology 19

Licencia Creative CommonsLicencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.

Socratea exorrhiza: les plantes també aprenen a caminar!

Aquest cop us vull presentar la planta que s’està fent famosa arreu del món, la palmera que camina (Socratea exorrhiza). Sempre s’havia dit que les plantes no es mouen de lloc, però la natura ens ha deixat sorpresos un com més amb un exemple com aquest. A continuació descobreix més d’aquesta planta tan extraordinària.

INTRODUCCIÓ

La planta que camina, Socratea exorrhiza, és una palmera (Arecaceae) que viu a la selva tropical del centre y Sud América. Aquesta pot arribar a mesurar 25 metres d’alçada i 16 centímetres de diàmetre, tot i que normalment es situa al voltant dels 15-20 metres d’alçada.

Socratea exorrhiza, walking palm
La planta que camina als Puentes Colgantes prop del Volcà Arenal, Costa Rica (Foto de Hans Hillewaert).

Juntament amb les orquídies i altres herbes, les palmeres són de les plantes més abundants en els boscos tropicals. Però, les palmeres resulten ben curioses, ja que tenen port arbori, alçada i mida d’arbre. Tot i així, no desenvolupen creixement secundari veritable, és a dir, no disposen de teixits que permetin l’increment del gruix de les arrels, tiges i branques. Això comporta que si la planta creix en alçada, hagi d’existir un mecanisme que suporti el seu pes. I se sap que no és gràcies al gruix de la tija, que és prou prima. Llavors, quin és aquest mecanisme? I com actua?

ARRELS AÈRIES

Moltes palmeres arborescents, és a dir, que tenen mides d’arbres, desenvolupen un conjunt d’arrels aèries. Aquestes es caracteritzen per estar situades per sobre el nivell del sòl. Aquest és el cas de la planta que camina (Socratea exorrhiza) i d’altres palmeres (com ara Iriartea deltoidea). Les arrels aèries són en general molt nombroses i altes.

Socratea exorriza
Arrels aèries de la planta que camina (Foto de Ruestz).

FUNCIONS DE LES ARRELS AÈRIES

Les funcions que duen a terme aquestes arrels han estat i són encara un debat. Tot i així, s’ha proposat diferent avantatges que poden proporcionar.

En primer lloc, la seva presència permet una major estabilitat i suport de la tija, la qual pot créixer més en alçada i més ràpidament. Això resulta molt interessant, ja que en els boscos tropicals la llum és un factor limitant molt important. I el fet que la planta pugui assolir alçades superiors destinant menys energia en l’elaboració d’un tronc gruixut que l’estabilitzi o en arrels subterrànies, la fa més competitiva. Tot i que proporcionen estabilitat, no s’ha demostrat que suposin un benefici per a créixer en pendents.

D’altra banda, també es pensa que les arrels aèries permeten colonitzar (expandir-se) noves àrees que contenen molts residus orgànics grans, generalment, branques o troncs morts d’altres arbres. Això és degut a que els poden evitar desplaçant les seves arrels per sobre.

A més, s’ha comprovat que les arrels aèries incrementen la supervivència de les plantes quan hi ha tempestes tropicals violentes (tal i com s’explica al següent apartat) i també faciliten la seva aeració quan hi ha inundacions.  Tot i això no s’ha validat que permetin a la palmera créixer en llocs pantanosos.

Tot i que es comença a tenir un coneixement més extens, encara es desconeixen totes les funcions d’aquestes arrels tan peculiars de les palmeres. Però, encara cal mencionar una darrera funció que s’ha descrit en la planta que camina i que és justament la que permet que la planta “camini”.

COM CAMINA LA PLANTA QUE CAMINA

Socratea exorrhiza  és coneguda com la planta que camina i això és degut a que pot canviar de posició per dos motius. Tot i que el segon, que es presenta a continuació, és el que dóna peu al seu nom vulgar.

El primer, conegut des de fa més temps, és prou comú degut a les fortes tempestes tropicals. Es dóna quan la palmera que es troba en posició normal (fase 1 de la imatge) és tombada per un altre arbre o branca i queda trepitjada (fase 2 de la imatge). La palmera un cop al terra té la capacitat de rebrotar i recuperar-se, gràcies al desenvolupament de noves arrels aèries en l’antiga tija; al mateix temps es moren les antigues (fase 3 de la imatge). Finalment, l’individu creix una altra vegada però havent canviat de lloc (fase 4 de la imatge). Per tant, l’organisme pot sobreviure tot i ser tombat i a més es recupera de nou.

Socratea exorrhiza  diagram
Smartse – Bodley, John; Foley C. Benson (March 1980). Stilt-Root Walking by an Iriateoid Palm in the Peruvian Amazon. Biotropica (jstor: The Association for Tropical Biology and Conservation) 12 (1): 67-71

El segon cas ha estat descobert més recentment i és per ell que s’ha popularitzat aquesta planta. Segons es creu, les seves arrels aèries creixen cercant les zones on hi ha més llum i per l’altre cantó es van marcint. Així el tronc es desplaça de lloc molt lentament, però arribant a desplaçar-lo fins a 1 metre cada any.

Vídeo explicatiu en anglès de Simon Hart (Canal de Youtube Harold Eduarte).

Com heu vist, les plantes no deixen mai de sorprendre’ns. Arribant a casos tan curiosos com aquest. Recorda, si t’ha agradat, no t’oblidis de compartir-lo a les diferents xarxes socials. Gràcies.

REFERÈNCIES

  • Apunts d’Ecologia Forestal, Grau de Biologia Ambiental, UAB.
  • Avalos, Gerardo; Salazar, Diego; and Araya, Ana (2005). Stilt root structure in the neotropical palmsIrlartea deltoidea and Socratea exorrhiza. Biotropica 37 (1): 44–53.
  • Avalos, Gerardo and Fernández Otárola, Mauricio (2010). Allometry and stilt root structure of the neotropical palm Euterpe precatoria (Arecaceae) acroos sites and successional stages. Ametican Joranl of Botany 97 (3): 388-394.
  • Goldsmith, Gregory; and Zahawi, Rakan (September–December 2007).The function of stilt roots in the growth strategy of Socratea exorrhiza (Arecaceae) at two neotropical sites. Revista de Biologia Tropical 55 (3–4): 787–793.
  • Zotz, G.; Vollrath, B. (2003).The epiphyte vegetation of the palm Socratea exorrhiza – correlations with tree size, tree age and bryophyte cover. Journal of Tropical Ecology 19

Licencia Creative CommonsLicencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.