Arxiu d'etiquetes: prey

Evolution for beginners 2: coevolution

After the success of Evolution for beginners, today we’ll continue  knowing the basics of biological evolution. Why  exist insects that seem orchids and vice versa? Why gazelles and cheetahs are almost equally fast? Why your dog understands you? In other words, what is coevolution?

WHAT IS COEVOLUTION?

We know that it is inevitable that living beings establish symbiotic relationships between them. Some depend on others to survive, and at the same time, on elements of their environtment as water, light or air. These mutual pressures between species make that evolve together, and as one evolve as a species, in turn it forces the other to evolve. Let’s see some examples:

POLLINATION

The most known process of coevolution is pollination. It was actually the first co-evolutionary study (1859) by Darwin, although he didn’t use that term. The first to use the word coevolution were Ehrlich and Raven (1964).

Insects existed long before the appearance of flowering plants, but their success was due to the discovery that nectar is a good reserve of energy. In turn, the plants found in the insects another way more effectively to carry pollen to another flower. Pollination by the wind (anemophily) requires more production of pollen and a good dose of luck to at least fertilize some flowers of the same species. Many plants have developed flowers that trap insects until they are covered with pollen and then set them free. These insects have hairs in their body to enable this process. In turn some animals have developed long appendages (beaks of hummingbirds, butterflies’ proboscis…) to access the nectar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Darwin’s moth (Xantophan morganii praedicta). Photo by Minden Pictures/Superstock

It is the famous case of the Darwin’s moth (Xanthopan morganii praedicta) of which we have already talked about. Charles Darwin, studying orchid Christmas (Angraecum sesquipedale) saw that the nectar was 29 cm inside the flower. He sensed that there should exist an animal with a proboscis of this size. Eleven years later, Alfred Russell Wallace reported him that the Morgan’s sphinxs had proboscis over 20 cm long, and a time later they were found in the same area where Darwin had studied that species of orchid (Madagascar). In honor of both it was added “praedicta” to the scientific name.

There are also bee orchids that mimic female insects to ensure their pollination. To learn more about these orchids and the Christmas one, do not miss this post by Adriel.

Anoura fistulata, murcielago, bat
The bat Anoura fistulata and its long tongue. Photo by Nathan Muchhala

But many plants not only depend on insects, also some birds (like humming birds) and mammals (such as bats) are essential to pollination. The record for the longest mammal tongue in the world is for a bat from Ecuador (Anoura fistulata); its tongue measures 8 cm (150% of the length of its body). It is the only who pollinates one plant called Centropogon nigricans, despite the existence of other species of bats in the same habitat of the plant. This raises the question of whether evolution is well defined, and occurs between pairs of species or it is diffuse due to the interaction of multiple species.

PREDATOR-PREY RELATIONSHIPS

The cheetah (Acinonyx jubatus) is the fastest vertebrate on land (up to 115 km/h). Thomson’s gazelle (Eudorcas thomsonii), the second (up to 80 km/h). Cheetahs have to be fast enough to catch a gazelle (but not all, at risk of disappearing themselves) and gazelles fast enough to escape almost once and reproduce. The fastest gaelles survive, so nature selects in turn faster cheetahs, which are who eat to survive. The pressure from predators is an important factor that determines the survival of a population and what strategies should follow the population to survive. Also, the predators will find solutions to possible new ways of life of their prey to succeed.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi
Cheetah hunting a Thomson’s gazelle in Kenya. Photo by Federico Veronesi

The same applies to other predator-prey relationships, parasite-host relationships, plants-herbivores, improving their speed or other survival strategies like poison, spikes…

HUMAN AND DOGS … AND BACTERIA

Our relationship with dogs since prehistoric times, it is also a case of coevolution. This allows, for example, to create bonds with just looking at them. If you want more information, we invite you to read this post where we talk about the issue of the evolution of dogs and humans in depth.

Another example is the relationship we have established with the bacteria in our digestive system, essential for our survival. Or with pathogens: they have co-evolved with our antibiotics, so using them indiscriminately has favored these species of bacteria to develop resistance to antibiotics.

THE IMPORTANCE OF COEVOLUTION

Coevolution is one of the main processes responsible for the great biodiversity of the Earth. According to Thompson, is responsible for the millions of species that exist instead of thousands.

The interactions that have been developed with coevolution are important for the conservation of species. In cases where evolution has been very close between two species, if one become extint will lead to the extinction of the other almost certainly. Humans constantly alter ecosystems and therefore biodiversity and evolution of species. Just declining one species, we are affecting many more. This is the case of the sea otter (Enhydra lutris), which feeds on sea urchins.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Sea otter (Enhydra lutris) eating sea urchins. Photo by Vancouver Aquarium

Being hunted for their fur, urchins increased number, devastated entire populations of algae (consumer of CO2, one of the responsible of global warming), seals who found refuge in the algae nonexistent now were more hunted by killer whales… the sea otter is therefore a key species for the balance of this ecosystem and the planet, as it has evolved along with urchins and algae.

Coevolutive relations between flowers and animals depend on the pollination of thousands of species, including many of agricultural interest, so we must not lose sight of the seriousness of the issue of the disappearance of a large number of bees and other insects in recent years. A complex case of coevolution that directly affects us is the reproduction of fig.

TO SUMMARIZE

As we have seen, coevolution is the evolutionary change through natural selection between two or more species that interact reciprocally.

It is needed:

  • Specificity: the evolution of each feature of a species is due  to selective pressures of the feature of the other species.
  • Reciprocity: features evolve together.
  • Simultaneity: features evolve simultaneously.

REFERENCES

MIREIA QUEROL ALL YOU NEED IS BIOLOGY

Carnivorous plants

The carnivorism is a nutrition style associated to animals, to the world of heterotrophs. But it has been seen that there are plants that are also able to feed on other organisms. They are called carnivorous plants and their strategies to capture dams are very different and curious.

WHAT IS A CARNIVOROUS PLANT?

A carnivorous plants , even being autotroph, get part of their nutritional supplement by feeding on animals, especially insects.

There are three basic requirements that  carnivorous plants must comply:

  • they must be able to attract, capture and kill the preys. To get their attention, they usually show reddish coloration and secrete nectar. Morphological and anatomical adaptations for retaining and killing the preys such as traps are used.
  • Digestion and absorbance of the nutrients releasedby the damn .
  • And finally, it has to draw significant benefit from the process.

Dionaea muscipula
Venus flytrap (Dionaea muscipula) (Author: Jason).

WHERE DO THEY LIVE?

Carnivorous plants are  not competitive in normal environments and tend to have a small root system, they need this specialization to allow them to grow faster. They are usually found in low mineralization soils, but with a high concentration of organic matter, sunny areas (as they still perform photosynthesis) and with  a high humidity.

Normally they are also calcifuges, i.e., they are not well adapted to alkaline soils and prefer acidic environments, where the source of calcium comes from the prey. They tend to inhabit soils with low oxygen and  saturated in water in a reducing environment. Some are aquatic and live either floating or submerged, but always near the surface.

TRAPS AND EXAMPLES

The capture system is quite diverse, but can be classified according to whether there is movement or not. We consider active strategies for those plants having mechanical or suction movements. Semi-active strategies which present mucilaginous glands and have movement and finally, passive ones, with no motion for prey capture. They can present mucilaginous glands or pitfall traps. Somes amples are given below.

ACTIVE TRAPS

Venus flytrap

In the case of this plant, the traps are mechanical and they are formed by two valves joined by a central axis. These valves are the result of non photosynthetic leave transformations. The stem acts as a petiole and performs photosynthesis, for this reason, it is thickened, increasing its surface and facilitating the process. Furthermore, the valves have nectar glands to attract preys and its perimeter is surrounded by teeth which help the capture, as when the trap is closed, the teeth overlay perfectly avoiding the animal’s escape..

But, what mechanism drives the closing? There’s a gigh number of triggers hairs inside the valves. When the dam is located on the trap and makes the trigger hairs move twice or more in less than 20 seconds, the valves close immediately.

In this vídeos From the BBC one (Youtube Channel: BBC) we can observe the whole process.

Utricularia, the bladderwort

This plant lives submerged near the surface and is known as the bladderwort, because it has bladder-like traps. The bladders are characterized for having sensitive hairs that activate the suction mechanism of the dam. Then, the bladder generates a very strong internal pressure that sucks water in, dragging the animal to the trap. It’s volume can increase up to 40% when water enters.

In the following video we can see the bladderwort trapping a tadpole of cane toad (Youtube Channel: Philip Stoddard):

SEMIACTIVE TRAPS

When I caught you, you won’t be able to escape

The presence of stalked mucilaginous glands is not unique in the carnivorous plant world, many plants use them as a defence or to prevent water loss. But, some carnivorous plants they are used to capture animals, as the sundews (Drosera) does.

The glands presents on the leaves of the sundews are formed by a stalk and an apical cell that releases mucilage. This substance attracts preys by its smell and taste. When the dam is located on the leaves, some drops of mucilage join each other to form a viscous mass that will cover all the prey, preventing its escape. We note that the glands have some mobility and move themselves to get in contact with the prey. Also, as a result, the leaf wrappes, facilitating the subsequent digestion.

The following video shows the operation of this mechanism (Youtube Channel: TheShopofHorrors):

PASSIVE TRAPS

Don’t get to sticky! 

The Drosophyllum‘s case is very similar to the previous one, but this time the stalked mucilaginous glands don’t have mobility and, therefore, the leaf doesn’t have either. The insect gets caught just because it is hooked on it’s sticky trap and cannot escape.

Drosophyllum
Insects trapped by Drosophyllum‘s stalked mucilaginous glands  (Author: incidencematrix).

Carefull not to fall!

Finally, we see the passive pitfall traps. They sometimes have a lid that protects them from an excess wàter getting in, even though it isn’t a part of the trap mechanism. The pitfall traps can be formed by the leaf itself or by an additional structure that is originated from an extension of the midrib (the tendril). The tendril lowers to ground level and then forms the trap.

Nepenthes
Nepenthes (Author: Nico Nelson).

Dams are attracted to these traps due to nectar glands located inside. Once inside, going out is very complicated!  Walls may be viscous,  have downwardly inclined hairs that hinder to escape or present translucent spots that suggest the prey that there’s an exit, acting like windows , confusing and exhausting the prey, making it fall to the bottom, where it will drown. Other species also release substances that stun the preys, preventing them from running away.

Heliamphora
Heliamphora (Author: Brian Gratwicke).

In some cases, large animals have fallen into these traps, though it is considered more as an effect of “bad-luck” than the plants supposed diet, though some traps measure up to 20cm long.

Difusió-anglès

REFERENCES

Symbiosis: relationships between living beings

Predation, parasitism, competition… all living beings, besides interacting with the environment, we relate to other living beings. What types of relationships in addition to those you know? Do you feel like to know them?

INTRODUCTION

The group of all living beings in an ecosystem is called biocenosis or community. The biocenosis is formed in turn by different populations, which would be the set of individuals of the same species occupying an area. For survival, it is imperative that relations between them are established, sometimes beneficial and sometimes harmful.

INTERESPECIFIC RELATIONSHIPS

They are those that occur between individuals of different species. This interaction it is called symbiosis. Symbiotic relationships can be beneficial to a species, both, or harmful to one of the two.

Detrimental to all the species involved:

Competition: occurs when one or more resources are limiting (food, land, light, soil …). This relationship is very important in evolution, as it allows natural selection acts by promoting the survival and reproduction of the most successful species according to their physiology, behavior …

Las selvas son un claro ejemplo de competencia de los vegetales en busca de la luz. Selva de Kuranda, Australia. Foto de Mireia Querol
Rainforests are a clear example of competition between vegetals in the search for light. Kuranda rainforest, Australia. Photo by Mireia Querol

One species has benefits and the other is detrimented:
  • Predation: occurs when one species (predator) feeds on another (prey). This is the case of cats, wolves, sharks

foca, león marino,
Great white shark (Carcharodon carcharias) jumping to depretade a marine mamal, maybe a sea lion. Photo taken from HQ images.

  • Parasitism: one species (parasite) lives at the expense of other (host) and causes it injury. Fleas, ticks, pathogenic bacteria are the best known, but there are also vertebrate parasites, like the cuckoo that lay their eggs in the nests of other birds, which will raise their chicks (brood parasitism). Especially interesting are the “zombie parasites”, which modify the behavior of the host. Read this post to learn more!

    Carricero (Acrocephalus scirpaceus) alimentando una cría de cuco (Cuculus canorus). Foto de Harald Olsen
    Reed warbler (Acrocephalus scirpaceus) feeding a cuckoo’s chick (Cuculus canorus). Photo by Harald Olsen

    Parasites that live inside the host’s body are called endoparasites (such as tapeworms), and those who live outside ectoparasites (lice). Parasitism is considered a special type of predation, where predator is smaller than prey, although in most cases does not cause the death of the host. When a parasite causes illness or death of the host, it is called pathogen.

    Cymothoa exigua es un parásito que acaba sustituyendo la lengua de los peces por su propio cuerpo. Foto de Marcello Di Francesco.
    Cymothoa exigua is a parasite that replaces the tongue of fish with their own body. Picture by Marcello Di Francesco.

Kleptoparasitism is stealing food that other species has caught, harvested or prepared. This is the case of some raptors, whose name literally means “thief.” See in this video a case of kleptoparasitism on an owl:


Kleptoparasitism can also occur between individuals of the same species.

One species has benefits and the other is not affected:
  • Commensalism: one species (commensal) uses the remains of food from another species, which does not benefit or harm. This is the case of bearded vultures. It is also commensalism the use as transportation from one species over another (phoresy), as barnacles attached to the body of whales. The inquilinism is a type of commensalism in which a species lives in or on another. This would apply to the woodpeckers and squirrels that nest in trees or barnacles living above mussels. Finally, metabiosis is the use of the remains of a species for protection (like hermit crabs) or to use them as tools.

    El pinzón carpintero (Camarhynchus pallidus) utiliza espinas de cactus o pequeñas ramas para extraer invertebrados de los árboles. Foto de
    The woodpecker finch (Camarhynchus pallidus) uses cactus spines or small branches to remove invertebrates from the trees. Picture by Dusan Brinkhuizen.

    Both species have benefits:
  • Mutualism: the two species cooperate or are benefited. This is the case of pollinating insects, which get nectar from the flower and the plant is pollinated. Clownfish and anemones would be another typical example, where clown fish gets protection and food scraps while keeps predators away and clean parasites of the sea anemonae. Mutualism can be optional (a species do not need each other to survive) or forced (the species can not live separately). This is the case of mycorrhizae, an association of fungi and roots of certain plants, lichens (mutualism of fungus and algae), leafcutter ants

    Las hormigas Atta y Acromyrmex (hormigas cortadoras de hogas) establecen mutualismo con un hongo (Leucocoprinus gongylophorus), en las que recolectan hojas para proporcionarle nutrientes, y ellas se alimentan de él. Se trata de un mutualismo obligado. Foto tomada de Ants kalytta.
    Atta and Acromyrmex ants (leafcutter ants) establish mutualism with a fungus (Leucocoprinus gongylophorus), in which they gather leaves to provide nutrients to the fungus, and they feed on it. It is an obligate mutualism. Photo taken from Ants kalytta.

INTRAESPECIFIC RELATIONSHIPS

They are those that occur between individuals of the same species. They are most beneficial or collaborative:

  • Familiars: grouped individuals have some sort of relationship. Some examples of species we have discussed in the blog are elephants, some primates, many birds, cetaceans In such relationships there are different types of families.
  • Gregariousness: groups are usually of many unrelated individuals over a permanent period or seasonal time. The most typical examples would be the flocks of migratory birds, migration of the monarch butterfly, herds of large herbivores like wildebeest, shoal of fish

    El gregarismo de estas cebras, junto con su pelaje, les permite confundir a los depredadores. Foto tomada de Telegraph
    Gregariousness of these zebras, along with their fur, allow them to confuse predators. Photo taken from Telegraph
  • Colonies: groups of individuals that have been reproduced asexually and share common structures. The best known case is coral, which is sometimes referred to as the world’s largest living being (Australian Great Barrier Reef), but is actually a colony of polyps (and its calcareous skeletons), not single individual.
  • Society: they are individuals who live together in an organized and hierarchical manner, where there is a division of tasks and they are usually physically different from each other according to their function in society. Typical examples are social insects such as ants, bees, termites

Intraspecific relations of competition are:

  • Territorialityconfrontation or competition for access to the territory, light, females, food can cause direct clashes, as in the case of deer, and/or develop other strategies, such as marking odor (cats, bears), vocalization

    Tigres peleando por el territorio. Captura de vídeo de John Varty
    Tiger figthing for territory. Video caption by John Varty
  • Cannibalism: predation of one individual over another of the same species.

And you, as a human, have you ever thought how do you relate with individuals of your species and other species?

MIREIA QUEROL ALL YOU NEED IS BIOLOGY

REFERENCES