Arxiu d'etiquetes: probóscide

Evolució i adaptacions de l’alimentació en els insectes

Durant milions d’anys, els insectes han aconseguit adaptar-se a tot tipus de canvis ecològics. En articles anteriors, vam parlar sobre com el fet de volar va fer aquests organismes més diversos, a més a més de les diferents adaptacions al vol. En aquesta nova entrada, us expliquem l’origen i els canvis de l’aparell bucal i, per tant, de la diversificació de l’alimentació dels insectes al llarg de la seva història evolutiva.

Introducció: entògnats vs ectògnats

Abans de parlar sobre l’evolució de l’alimentació en els insectes, cal que deixem ben clara la diferència entre els termes “insecte” i “hexàpode”. Els insectes constitueixen la classe més important i diversificada dins del subfilum dels hexàpodes, i dins d’ella es troben els grups més coneguts: lepidòpters, himenòpters, coleòpters, dípters, etc. Tanmateix, dins dels hexàpodes també hi ha tres ordres que constitueixen la classe Entognatha: col·lèmbols, proturs i diplurs.

Així doncs, dins dels hexàpodes existeixen dues classes ben diferenciades: Insecta i Entognatha. Què les diferencia? Essencialment, les seves peces bucals: en els entògnats (de ento- ‎(“dins”) +‎ del grec antic gnáthos (“mandíbula”)), les peces bucals es troben protegides dins la càpsula cefàlica i només les projecten quan mengen, mentre que en els insectes o ectògnats (amb el prefix ecto- (“fora”)) les peces bucals sempre són externes.

ectognatha-vs-entognatha
Peces bucals d’un coleòpter (ectògnat, esquerra) i part anterior del cap d’un col·lèmbol, en la que no s’observen exteriorment les peces bucals (entògnat, dreta). Font: coleòpter de Fyn Kynd Photography, CC; col·lèmbol de Gilles San Martin, CC.

Peces bucals dels insectes o ectògnats

La diversificació de les peces bucals i de les formes d’alimentació dels insectes és el resultats d’un llarg procés evolutiu. Per tant, és d’esperar que existeixin formes ancestrals i derivades (o evolucionades).

L’aparell bucal més primitiu i que ha sofert menys modificacions adaptatives és el de tipus mastegador, lligat a una alimentació basada en aliments sòlids. El trobem en molts grups actualment: ortòpters (grills, saltamartins), odonats (libèl·lules), coleòpters (escarabats), dictiòpters (paneroles i mantis), mecòpters, neuròpters… a més a més de en les larves d’alguns insectes que, a la fase adulta, presenten un altre tipus d’aparell bucal (p.ex. erugues de lepidòpter).

Degut a la seva condició primitiva, l’aparell de tipus mastegador s’utilitza com a model per explicar la morfologia de l’aparell bucal i les seves posteriors modificacions. Un dels models més emprats és el dels ortòpters.

ortopthera-mouthparts-chewing
Model mastegador d’un ortòpter. Font: imatges originals de John R. Meyer, North Carolina State University. Link.

Seguint aquest model, l’aparell bucal està constituït per 5 peces: labre, mandíbules, maxil·les, hipofaringe i llavi. Les mandíbules, les maxil·les i el llavi són apèndixs verdaders o apendiculars, és a dir, durant el desenvolupament embrionari es formen a partir d’un segment o metàmer del cos de l’insecte, motiu pel qual serien equivalents des d’un punt de vista morfològic als apèndixs locomotors. Per una altra banda, el labre i la hipofaringe no es consideren apèndixs verdaders, tot i que per la seva importància en l’alimentació també formen part de les peces bucals.

Per a què serveix cada peça?

Conèixer la funció de cada peça al model mastegador ens ajuda a entendre els canvis que aquestes han patit en les diferents formes adaptatives sorgides al llarg de l’evolució:

chewing-mouthparts-beetle-grasshopper
Dissecció de les peces bucals de l’aparell mastegador d’un escarabat (esquerra) i d’un saltamartí (dreta). Font: imatges originals propietat de John R. Meyer, North Carolina State University. Link.
  • Labre. És la peça que protegeix per davant la resta de peces bucals. La seva mida pot variar entre grups i ajuda a retenir els aliments. La cara posterior rep el nom d’epifaringe.
  • Mandíbules. Peces encarregades d’aixafar, moldre o triturar l’aliment. Es mouen de costat a costat.
  • Maxil·les. Formades por tres peces: el card, que articula amb el cap; l’estip, que presenta un palp sensorial; la gàlea i la lacínia, que funcionen com cullera i forquilla manipulant l’aliment.
  • Hipofaringe. Aquesta petita peça, situada darrere de les mandíbules i entre les maxil·les, actua com una llengua que ajuda a barrejar l’aliment i la saliva.
  • Llavi. A diferència de les mandíbules i de les maxil·les, els apèndixs que constitueixen el llavi estan fusionats per la part medial. Format per dues peces: el postmentum, que articula amb el cap, i el prementum, unes peces distals amb un parell de palps sensorials que, a més a més, estan dividides en 4 lòbuls distals: les glosses i les paraglosses.
mouthparts_mandibles_maxilla
Detall de la mandíbula, la maxil·la, el llavi i la hipofaringe (Davies, 1991).

Modificacions de les peces bucals

Com van evolucionar?

Es considera que, a partir de l’aparell bucal de tipus mastegador, van derivar la resta de models. Tanmateix, el més probable és que aquest procés tingués lloc de forma més o menys simultània en diferents grups com a conseqüència de la seva expansió, un major accés als recursos i a l’aparició de noves fonts d’aliment. Aquest és un clar exemple de radiació adaptativa (quan dues o més poblacions sotmeses a pressions selectives diferents divergeixen d’un ancestre comú).

Gràcies a alguns registres fòssils (insectes en ambre, copròlits o evidències de l’atac sobre plantes fòssils), sabem que l’aparició dels diferents tipus de peces bucals tingué lloc en, com a mínim, 5 fases en un període comprès fa 420-110 MA. A poc a poc, alguns grups van passar d’una alimentació basada en aliments sòlids a una basada en la ingesta de líquids exposats (p.ex. nèctar), líquids dins de teixits (p.ex. saba o sang) o de partícules. Adoptar a una dieta basada en líquids va suposar un gran avantatge adaptatiu i selectiu per alguns insectes, especialment durant l’expansió de les angiospermes (plantes amb flor) durant el Cretàcic.

img_1558-min-min
El pas cap a una alimentació basada en aliments líquids, com en els lepidòpters, va suposar un gran avantatge adaptatiu per molts insectes durant la diversificació de les plantes amb flor. A més a més, va donar peu a l’inici d’un procés coevolutiu entre insectes i plantes. Autora: Irene Lobato.

Tipus d’aparells bucals

Veiem ara un petit resum de les principals modificacions de l’aparell bucal dels insectes a partir del model mastegador:

MASTEGADOR-LLEPADOR

S’associa a una alimentació basada en líquids naturals, com el nèctar, però en alguns casos encara conserva la capacitat per mastegar. És propi d’himenòpters: en els símfits (grups més primitiu d’himenòpters) presenta modificacions respecte de l’aparell mastegador original; en vespes i abellots, les mandíbules i les maxil·les es redueixen i es desenvolupa la llengua (glosses del llavi allargades) amb la que ingereixen líquids, tot i que encara poden mastegar; finalment, en les abelles les mandíbules han perdut la funció mastegadora típica (encara que les fan servir per defensar-se, netejar-se o treballar la cera) i les maxil·les i les glosses del llavi s’allarguen formant una llengua pilosa amb un canal intern (canal salivar), motiu pel qual la seva alimentació és totalment líquida.

bee_mouthparts-min
Esquema de l’aparell mastegador-llepador d’una abella (esquerra; fragment d’una imatge original de Xavier Vázquez, modificada posteriorment per Siga, CC) i aparell bucal d’una abella de l’espècie Colletes willistoni (dreta; imatge original de domini público). Md: Mandíbula; mx: Maxil·la; lb: llavi.

XUCLADOR-LLEPADOR

Els insectes que presenten aquest model han patit una reducció important, o inclús una desaparició, de les mandíbules, i la seva alimentació es basa totalment en la ingesta d’aliments exposats. En cas d’estar presents, en cap cas la seva funció està relacionada amb l’alimentació. Existeixen dues variacions dins d’aquest model: el xuclador maxil·lar típic dels lepidòpters adults i el xuclador labial típic de les mosques.

En les mosques, les mandíbules desapareixen, les maxil·les es redueixen fins quedar únicament representades pels seus palps i s’hipertrofia la part posterior del llavi, formant uns lòbuls coberts de petits canals que convergeixen formant un únic canal per on succionen els aliments.

fly-min
Esquema de l’aparell xuclador-llepador d’una mosca (esquerra; font: Educational Media Group (EMG), RMIT University, 2002-06-01, Fly mouthparts illustration [Online, Image Illustration], Educational Media Group (EMG), Melbourne, Vic) i detall de l’aparell bucal d’una mosca de l’espècie Gonia capitata (dreta; imatge de Richard Bartz, CC).

En els lepidòpters més evolucionats, les mandíbules i el llavi pràcticament desapareixen (només són visibles els palps labials), mentre que les gàlees de les maxil·les es desenvolupen formant l’espiritrompa, la qual presenta un canal alimentari al seu interior.

butterfly-min
Aparell xuclador d’una papallona (esquerra; imatge de tdlucas5000, CC) i imatge de microscopia electrònica de l’espiritrompa (dreta; imatge de domini públic).

PICADOR-XUCLADOR

Aquest model es troba en diferents grups d’insectes que l’han adquirit per vies evolutives ben diferents, motiu pel qual existeixen moltes variacions. Veiem alguns exemples:

  • Heteròpters (xinxes): són l’únic grup amb un aparell bucal d’aquest tipus des del moment de l’eclosió. Els palps maxil·lars i labials són absents, i el llavi forma un canal que amaga 4 estilets similars a agulles, dos corresponents a les mandíbules i dos a les maxil·les. Aquesta estructura rep el nom de rostre. Els estilets maxil·lars delimiten un canal aspirador i un canal salival, i juntament als mandibulars serveixen per penetrar en diferents teixits i absorbir els seus fluids: saba en les formes fitòfagues i sang o altres fluids en les formes depredadores, entre les quals existeixen variacions morfològiques.
heteroptera-min
Esquema de l’aparell bucal d’un heteròpter (esquerra; imatge extreta de Baker, 2011) i primer pla de l’aparell bucal d’un exemplar de la família Reduviidae, depredadors (dreta; imatge propietat de John R. Meyer, North Carolina State University. Link).
  • Mosquits: molt similar al dels heteròpters, encara que, a banda dels estilets maxil·lars i mandibulars, també tenen un estilet corresponent a la hipofaringe a l’interior del qual circula un canal salivar (que emet anticoagulants i altres substàncies per facilitar la succió de la sang dels seus hostes). El labre i la hipofaringe formen el canal aspirador, i el llavi només acompaña els estilets.
mosquito
Esquema del aparato bucal de un mosquito (izquierda; fragmento de una imagen original de Xavier Vázquez, modificada posteriormente por Siga, CC) e imagen de una hembra de mosquito (derecha; imagen de Grzegorz “Sculptoris” Krucke, CC). Lr: labro; hp: hipofaringe; mx: maxilas; md: mandíbulas; lb: labio.
  • Ftiràpters i Sifonàpters (polls i puces): l’aparell picador, que fan servir per parasitar animals i succionar la seva sang, està constituït en aquets cas per l’epifaringe, els palps labials i les lacínies maxil·lars. Els palps maxil·lars, molt desenvolupats, queden per davant.
head_of_the_flea_lens_aldous_tagged-min
Aparell bucal d’un sifonàpter o puça. 1: ull; 2: palps labials; 3: estilet maxil·lar (lacínia); 4: epifaringe; 5: palps maxil·lars; 6: maxil·les (gàlea). Font: domini públic.
  • Tisanòpters (trips): aquests petits insectes solen constituir plagues de cultius i, a vegades, actuen com a vectors de virus vegetals. El seu aparell bucal és asimètric: l’estructura picador està delimitada pel llavi, les maxil·les i el labre, i totes elles són clarament desiguals. Interiorment, presenten dos estilets maxil·lars i un mandibular (l’altra s’atrofia). Per menjar, rasquen a superfície del vegetal i després claven els seus estilets per succionar els seus fluids.
trips-min
Esquema de l’aparell bucal d’un trip (esquerra; imatge extreta d’apunts personals de l’assignatura Biologia i Diversitat d’Artròpodes, UAB) i imatge d’un exemplar de trip (dreta; imatge propietat de John W. Dooley, USDA APHIS PPQ, Bugwood.org, CC).

UN CAS EXTREM: L’ATRÒFIA

En alguns insectes, com en les formes adultes de les efímeres o d’alguns dípters, es produeix una reducció total de les peces bucals, doncs la seva funció queda reduïda a la reproducció i deixen de menjar.

.           .            .

No hi ha cap dubte que els insectes són el grup d’organismes més diversificat de la Terra, fet que queda demostrat, un cop més, amb tan sols fixar-se en la gran varietat de formes d’alimentació que han desenvolupat.

I tu, coneixes alguna altra forma d’alimentació que et sembli curiosa? Pots deixar la teva contribució als comentaris.

REFERÈNCIES

També s’han consultat els apunts de l’assignatura Biologia i Diversitat d’Artròpodes impartida durant el curs 2013-2014 a la Universitat Autònoma de Barcelona.

Foto de portada, d’esquerra a dreta: Lisa Brown, CC; Domini Públic i Richard Bartz, CC.

Difusió-català

Tardígrados: Animales con superpoderes

Los osos más pequeños del mundo tienen capacidades dignas de superhéroes. En realidad, no son osos propiamente dichos: los osos de agua en realidad son los tardígrados. Son animales invertebrados prácticamente indestructibles: sobreviven décadas sin agua ni alimento, a temperaturas extremas e incluso han sobrevivido al espacio exterior. Conoce al animal que parece llegado de otro planeta y aprende a observarlo en tu casa si dispones de un microscopio.

¿QUÉ ES UN TARDÍGRADO?

Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes
Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes

Los tardígrados u osos de agua, son un grupo de invertebrados de 0,05-1,5 mm que viven preferiblemente en lugares húmedos. Son especialmente abundantes en la película de humedad que recubre musgos y helechos, aunque no faltan especies oceánicas y de agua dulce, por lo que podemos considerar que viven en cualquier parte del mundo. Incluso a escasos metros de ti, en el hueco entre baldosa y baldosa. En un gramo de musgo se han llegado a encontrar hasta 22.000 ejemplares. Se han encontrado en la Antártida bajo capas de 5 metros de hielo, en desiertos cálidos, en fuentes termales, en montañas de 6.000 metros de altura y a profundidades oceánicas abisales. Se trata pues de animales extremófilos. Se calcula que existen más de 1.000 especies.

MORFOLOGÍA

Su nombre popular hace referencia a su aspecto y el científico a la lentitud de sus movimientos. Tienen el cuerpo dividido en 5 segmentos: el cefálico, donde tienen la boca en forma de trompa (probóscide) con dos estiletes internos y en ocasiones ojos simples  (omatidios) y pelos sensoriales,  y los 4 restantes con un par de patas por segmento. Cada pata posee unas garras para anclarse al terreno.

Vista ventral de un tardígrado donde seobservan los cinco segmentos del cuerpo. Foto de Eye Of Science/Photo LIbrary
Vista ventral de un tardígrado donde se observan los cinco segmentos del cuerpo. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye Of Science/Science Photo Library
Tardigrade. Coloured scanning electron micrograph (SEM) of a freshwater tardigrade or water bear (Echiniscus sp.). Tardigrades, are tiny invertebrates that live in coastal waters and freshwater habitats, as well as semi-aquatic terrestrial habitats like damp moss. They require water to obtain oxygen by gas exchange. In dry conditions, they can enter a cryptobiotic tun (or barrel) state of dessication to survive. Tardigrades feed on plant and animal cells and are found throughout the world, from the tropics to the cold polar waters.
Tardígrado (Echiniscus sp.) en el que se le pueden observar las garras. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye Of Science/Science Photo Library

Observa en este vídeo de Craig Smith los movimientos del tardígrado con más detalle:

ALIMENTACIÓN

Gracias a los estiletes de su boca, perforan los vegetales de los que se alimentan y succionan los productos de la fotosíntesis, pero también pueden alimentarse absorbiendo el contenido celular de otros organismos microscópicos como bacterias, algas, rotíferos, nematodos… Algunos son depredadores y pueden ingerir microorganismos enteros.

Su aparato digestivo es básicamente la boca, una faringe con potentes músculos para hacer los movimientos de succión que se abre directamente al intestino y el ano. Algunas especies sólo defecan cuando mudan.

Detalle de la boca de un tardígrado. Foto de
Detalle de la boca de un tardígrado. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye Of Science/Science Photo Library

ANATOMÍA INTERNA

No poseen aparato circulatorio ni respiratorio: el intercambio de gases se hace directamente por la superficie del cuerpo. Están cubiertos por una cutícula rígida que puede ser de distintos colores y que van mudando a medida que crecen. Con cada muda, pierden los estiletes bucales, que serán segregados de nuevo. Son organismos eutélicos: para crecer solamente aumentan el tamaño de sus células, no su número, que permanece constante a lo largo de su vida

REPRODUCCIÓN

Los tardígrados en general tienen sexos separados (son dioicos) y se reproducen por huevos (son ovíparos), pero también hay especies hermafroditas y partenogénenéticas (las hembras se reproducen sin ser fecundadas por ningún macho). La fecundación es externa y su desarrollo es directo, es decir, no presentan fases larvarias.

tardigrade egg, ou tardigrad
Huevo de tardígrado. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye of Science/Science Photo Library

LOS RÉCORDS DE LOS TARDÍGRADOS

Los tardígrados son animales increíblemente resistentes que han superado las siguientes condiciones:

  • Deshidratación: pueden sobrevivir durante 30 años en condiciones de laboratorio sin una sola gota de agua. Hay fuentes que aseguran que resisten hasta 120 años o que se han encontrado en hielos de 2000 años de antigüedad y han podido revivir, aunque probablemente sean exageraciones.
  • Temperaturas extremas: si hierves un tardígrado, sobrevive. Si lo sometes a temperaturas de casi el cero absoluto (-273ºC), sobrevive. Su rango de supervivencia va de -270ºC a 150ºC.
  • Presión extrema: son capaces de soportar desde el vacío hasta  6.000 atmósferas, es decir, 6 veces la presión que hay en el punto más profundo de la Tierra, la Fosa de las Marianas (11.000 metros de profundidad).
  • Radiación extrema: los tardígrados pueden soportar bombardeos de radiación en una dosis 1000 veces superior a la letal para un humano.
  • Sustancias tóxicas: si se les sumerge en éter o alcohol puro, sobreviven.
  • Espacio exterior: los tardígrados son los únicos animales que han sobrevivido al espacio exterior sin protección alguna. En 2007 la ESA (Agencia Espacial Europea), dentro del proyecto TARDIS (Tardigrades In Space) expuso tardígrados (Richtersius coronifer y Milnesium tardigradum) durante 12 días en la superficie de la nave Foton-M3 y sobrevivieron al viaje espacial. En 2011 la NASA hizo lo propio colocándolos en el exterior del transbordador espacial Endeavour y se corroboraron los resultados. Sobrevivieron al vacío, a los rayos cósmicos y a una radiación ultravioleta 1000 veces superior a la de la superficie terrestre. El proyecto Biokis (2011)  de la Agencia Espacial Italiana (ASI) estudió el impacto de estos viajes a nivel molecular.

¿CÓMO LO HACEN?

Los tardígrados son capaces de resistir estas condiciones tan extremas porque entran en estado de criptobiosis cuando las condiciones son desfavorables. Es un estado extremo de anabiosis (disminución del metabolismo). Según las condiciones que tienen que soportar, la criptobiosis se clasifica en:

  • Anhidrobiosis: en caso de deshidratación del medio, entran en “estado de tonel” ya que adoptan forma de barril para reducir su superficie y se envuelven en una capa de cera para evitar la pérdida del agua por transpiración. Para evitar la muerte de las células, sintetizan trehalosa, un azúcar que sustituye al agua de su cuerpo y mantiene intacta la estructura de las membranas celulares. Reducen el contenido de agua de su cuerpo hasta sólo un 1% y seguidamente detienen su metabolismo casi por completo (0,01% por debajo de lo normal).

    Tardígrado deshidratado. Foto de Photo Science Library
    Tardígrado deshidratado. Foto de Photo Science Library
  • Criobiosis: en caso de someterse a bajas temperaturas, el agua de casi cualquier ser vivo cristaliza, rompe la estructura de las células y el ser vivo muere. Pero los tardígrados utilizan proteínas que congelan bruscamente el agua de las células en forma de pequeños cristales, con lo que logran evitar su rotura.
  • Osmobiosis: se da en caso de aumento de la concentración salina del medio.
  • Anoxibiosis: en caso de falta de oxígeno, entran en un estado de inactividad en el que dejan su cuerpo totalmente estirado, por lo que necesitan agua para mantenerse turgentes.

En el caso de las exposiciones  a las radiaciones, que destruirían el ADN, se ha observado que los tardígrados son capaces de reparar el material genético dañado.

Estas técnicas ya han sido imitadas en campos como la medicina, conservando órganos de ratas para posteriormente “revivirlos” y pueden abrir otras vías de conservación de tejidos vivos y trasplantes. También abren nuevos campos en la exploración espacial de vida extraterrestre (astrobiología) e incluso en la exploración humana del espacio para resistir largos viajes interplanetarios, en ideas por el momento, más cercanas a la ciencia ficción que a la realidad.

¿SON EXTRATERRESTRES?

El escaso registro fósil, su parentesco evolutivo poco claro y su gran resistencia, provocaron hipótesis que especulaban con la posibilidad que los tardígrados hayan venido del espacio exterior.  No se trata de una idea descabellada, aunque altamente improbable. La panspermia es la hipótesis por la cual la vida, o mejor dicho, las moléculas orgánicas complejas, no se originaron en la Tierra, sino que llegaron gracias a meteoritos durante los inicios del Sistema Solar. De hecho, se han encontrado meteoritos con aminoácidos (moléculas indispensables para la vida) en su composición, por lo que la panspermia es una hipótesis que no se puede descartar todavía.

Foto de Eye Of Science/Photolife Library
Foto de Eye Of Science/Photolife Library

Pero no es el caso de los tardígrados: su ADN es igual al del resto de seres vivos terrestres y los últimos estudios filogenéticos los emparentan con los onicóforos (animales parecidos a gusanos), asquelmintos y artrópodos. Lo fascinante es que es el animal con más ADN ajeno: hasta el 16% de su genoma pertenece a hongos, bacterias o arqueas, obtenidos por un proceso llamado transferencia genética horizontal. La presencia de genes ajenos en otras especies animales no suele ser más del 1%. ¿Será esto lo que le ha permitido desarrollar esta gran resistencia?

¿QUIERES BUSCAR TARDÍGRADOS POR TI MISMO Y OBSERVARLOS EN ACCIÓN?

Al ser tan comunes y habitar potencialmente casi cualquier lugar, si dispones de un microscopio, por sencillo que sea, puedes buscar y ver tardígrados vivos con tus propios ojos:

    • Coge un trozo de musgo de una roca o muro, mejor si está un poco seco.
    • Déjalo secar al sol y límpialo de tierra y otros restos grandes.
    • Ponlo al revés en un recipiente transparente (como una placa de Petri), empápalo con agua y déjalo reposar unas horas.
    • Retira el musgo y busca los tardígrados en el agua del recipiente (ponlo en un fondo negro para ver más fácilmente). Si hay suerte, con una lupa podrás verlos moverse.
    • Cógelos con una pipeta o cuentagotas, colócalos en el portaobjetos y a ¡disfrutar! Podrías ver cosas parecidas a ésta:

Mireia Querol Rovira

REFERENCIAS

Tardígrads: Animals amb superpoders

Els óssos més petits del món tenen capacitats dignes de superherois. En realitat, no són óssos pròpiament dits: els óssos d’aigua en realitat són els tardígrads. Són animals invertebrats pràcticament indestructibles: sobreviuen dècades sense aigua ni aliment, a temperatures extremes i fins i tot han sobreviscut a l’espai exterior. Coneix l’animal que sembla arribat d’un altre planeta i aprèn a observar-lo a casa teva si disposes d’un microscopi.

QUÈ ES UN TARDÍGRAD?

Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes
Ós d’aigua (Macrobiotus sapiens) a sobre de molsa. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM): Foto de Nicole Ottawa & Oliver Meckes

Els tardígrads o óssos d’aigua, són un grup d’invertebrats de 0,05-1,5 mm que viuen preferiblement en llocs humits. Són especialment abundants en la pel·lícula d’humitat que recobreix molses i falgueres, encara que no falten espècies oceàniques i d’aigua dolça, per la qual cosa podem considerar que viuen arreu del món. Fins i tot a escassos metres de tu, entre rajola i rajola. En un gram de molsa s’han arribat a trobar fins a 22.000 exemplars. S’han trobat a l’Antàrtida a sota de capes de 5 metres de gel, en deserts càlids, en fonts termals, en muntanyes de 6.000 metres d’altura i a profunditats oceàniques abissals. Es tracta doncs d’animals extremòfils. Es calcula que existeixen més de 1.000 espècies.

MORFOLOGIA

El seu nom popular fa referència al seu aspecte i el científic a la lentitud dels seus moviments. Tenen el cos dividit en 5 segments: el cefàlic, on tenen la boca en forma de trompa (probòscide) amb dos estilets interns i en ocasions ulls simples (ommatidis) i pèls sensorials, i els 4 restants amb un parell de potes per segment. Cada pota té urpes per ancorar-se al terreny.

Vista ventral de un tardígrado donde seobservan los cinco segmentos del cuerpo. Foto de Eye Of Science/Photo LIbrary
Vista ventral d’un tardígrad on s’observen els cinc segments del cos. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library
Tardigrade. Coloured scanning electron micrograph (SEM) of a freshwater tardigrade or water bear (Echiniscus sp.). Tardigrades, are tiny invertebrates that live in coastal waters and freshwater habitats, as well as semi-aquatic terrestrial habitats like damp moss. They require water to obtain oxygen by gas exchange. In dry conditions, they can enter a cryptobiotic tun (or barrel) state of dessication to survive. Tardigrades feed on plant and animal cells and are found throughout the world, from the tropics to the cold polar waters.
Tardígrad (Echiniscus sp.) en el que es poden observar les urpes. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

Observa en aquest vídeo de Craig Smith els moviments dels tardígrads amb més detall:

ALIMENTACIÓ

Gràcies als estilets de la seva boca, perforen els vegetals dels quals s’alimenten i succionen els productes de la fotosíntesi, però també es poden alimentar absorbint el contingut cel·lular d’altres organismes microscòpics com bacteris, algues, rotífers, nematodes… Alguns són depredadors i poden ingerir microorganismes sencers.

El seu aparell digestiu és bàsicament la boca i una faringe amb potents músculs per fer els moviments de succió que s’obre directament a l’intestí i l’anus. Algunes espècies només defequen quan muden.

Detalle de la boca de un tardígrado. Foto de
Detall de la boca d’un tardígrao. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

ANATOMIA INTERNA

No posseeixen aparell circulatori ni respiratori: l’intercanvi de gasos es fa directament per la superfície del cos. Estan coberts per una cutícula rígida que pot ser de diferents colors i que van mudant a mesura que creixen. Amb cada muda, perden els estilets bucals, que seran segregats de nou. Són organismes eutèlics: per créixer només augmenten la mida de les seves cèl·lules, no el seu número, que roman constant al llarg de la seva vida

REPRODUCCIÓ

Els tardígrads en general tenen sexes separats (són dioics) i es reprodueixen per ous (són ovípars), però també hi ha espècies hermafrodites i partenogénenètiques (les femelles es reprodueixen sense ser fecundades per cap mascle). La fecundació és externa i el seu desenvolupament és directe, és a dir, no presenten fases larvàries.

tardigrade egg, ou tardigrad
Ou de tardígrad. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

ELS RÈCORDS DELS TARDÍGRADS

Els tardígrads són animals increïblement resistents que han superat les següents condicions:

  • Deshidratació: poden sobreviure durant 30 anys en condicions de laboratori sense una sola gota d’aigua. Hi ha fonts que asseguren que resisteixen fins a 120 anys o que s’han trobat en gels de 2000 anys d’antiguitat i han pogut reviure, tot i que probablement siguin exageracions.
  • Temperatures extremes: si bulls 1 tardígrad, sobreviu. Si el sotmets a temperatures de gairebé el zero absolut (-273ºC), sobreviu. El seu rang de supervivència va de -270ºC a 150ºC.
  • Pressió extrema: són capaços de suportar des del buit fins a 6.000 atmosferes, és a dir, 6 vegades la pressió que hi ha al punt més profund de la Terra, la Fossa de les Marianes (11.000 metres de profunditat).
  • Radiació extrema: els tardígrads poden suportar bombardejos de radiació en una dosi 1000 vegades superior a la letal per un humà.
  • Substàncies tòxiques: si se’ls submergeix en èter o alcohol pur, sobreviuen.
  • Espai exterior: els tardígrads són els únics animals que han sobreviscut a l’espai exterior sense cap protecció. El 2007 l’ESA (Agència Espacial Europea), dins del projecte TARDIS (Tardigrades In Space) va exposar tardígrads (Richtersius coronifer i Milnesium tardigradum) durant 12 dies a la superfície de la nau Foton-M3 i van sobreviure al viatge espacial. El 2011 la NASA va fer el mateix col·locant-los a l’exterior del transbordador espacial Endeavour i es van corroborar els resultats. Van sobreviure al buit, als rajos còsmics i a una radiació ultraviolada 1000 vegades superior a la de la superfície terrestre. El projecte Biokis (2011) de l’Agència Espacial Italiana (ASI) va estudiar l’impacte d’aquests viatges a nivell molecular.

COM HO FAN?

Els tardígrads són capaços de resistir aquestes condicions tan extremes perquè entren en estat de criptobiosi quan les condicions són desfavorables. És un estat extrem d’anabiosi (disminució del metabolisme). Segons les condicions que han de suportar, la criptobiosi es classifica en:

  • Anhidrobiosi: en cas de deshidratació del medi, entren en “estat de barril” ja que adopten aquesta forma per reduir la seva superfície i s’emboliquen en una capa de cera per evitar la pèrdua de l’aigua per transpiració. Per evitar la mort de les cèl·lules, sintetitzen trehalosa, un sucre que substitueix a l’aigua del seu cos i manté intacta l’estructura de les membranes cel·lulars. Redueixen el contingut d’aigua del seu cos fins a només un 1% i seguidament detenen el seu metabolisme gairebé per complet (0,01% per sota del normal).

    Tardígrado deshidratado. Foto de Photo Science Library
    Tardígrad deshidratat. Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library
  • Criobiosi: en cas de sotmetre’s a baixes temperatures, l’aigua de gairebé qualsevol ésser viu cristal·litza, trenca l’estructura de les cèl·lules i l’ésser viu mor. Però els tardígrads utilitzen proteïnes que congelen bruscament l’aigua de les cèl·lules en forma de petits cristalls, de manera que aconsegueixen evitar el seu trencament.
  • Osmobiosi: es dóna en cas d’augment de la concentració salina del medi.
  • Anoxibiosi: en cas de manca d’oxigen, entren en un estat d’inactivitat en el que deixen el seu cos totalment estirat, de manera que necessiten aigua per mantenir-se turgents.

En el cas de les exposicions a les radiacions, que destruirien l’ADN, s’ha observat que els tardígrads són capaços de reparar el material genètic malmès.

Aquestes tècniques ja han estat imitades en camps com la medicina, conservant òrgans de rates per posteriorment “reviure’ls” i poden obrir altres vies de conservació de teixits vius i trasplantaments. També obren nous camps en l’exploració espacial de vida extraterrestre (astrobiologia) i fins i tot en l’exploració humana de l’espai per resistir llargs viatges interplanetaris, en idees de moment, més properes a la ciència ficció que a la realitat.

SÓN EXTRATERRESTRES?

L’escàs registre fòssil, el seu parentiu evolutiu poc clar i la seva gran resistència, van provocar hipòtesis que especulaven amb la possibilitat que els tardígrads hagin vingut de l’espai exterior. No es tracta d’una idea sense cap ni peus, encara que altament improbable. La panspèrmia és la hipòtesi per la qual la vida, o millor dit, les molècules orgàniques complexes, no es van originar a la Terra, sinó que van arribar gràcies a meteorits durant els inicis del Sistema Solar. De fet, s’han trobat meteorits amb aminoàcids (molècules indispensables per a la vida) en la seva composició, de manera que la panspèrmia és una hipòtesi que no es pot descartar encara.

Foto de Eye Of Science/Photolife Library
Foto acolorida presa amb microscopi electrònic d’escombratge (SEM). Foto de Eye Of Science/Science Photo Library

Però no és el cas dels tardígrads: el seu ADN és igual al de la resta d’éssers vius terrestres i els últims estudis filogenètics els emparenten amb els onicòfors (animals semblants a cucs), asquelmints i artròpodes. El que és fascinant és que és l’animal amb més ADN aliè: fins al 16% del seu genoma pertany a fongs, bacteris o arquees, obtinguts per un procés anomenat transferència genètica horitzontal. La presència de gens aliens a altres espècies animals no sol ser més de l’1%. Serà això el que li ha permès desenvolupar aquesta gran resistència?

VOLS BUSCAR TARDÍGRADS TU MATEIX I OBSERVAR-LOS EN ACCIÓ?

En ser tan comuns i habitar potencialment gairebé qualsevol lloc, si disposes d’un microscopi, per senzill que sigui, pots buscar i veure tardígrads vius amb els teus propis ulls:

    • Agafa un tros de molsa d’una roca o mur, millor si està una mica sec.
    • Deixa’l assecar al sol i neteja’l de terra i altres restes grans.
    • Posa’l a l’inrevés en un recipient transparent (com una placa de Petri), mulla’l amb aigua i deixa-ho reposar unes hores.
    • Retira la molsa i busca els tardígrads a l’aigua del recipient (posa-ho en un fons negre per veure més fàcilment). Si hi ha sort, amb una lupa els podràs veure movent-se
    • Agafa’ls amb una pipeta o comptagotes, col·loca’ls en el portaobjectes i a gaudir! Podries veure coses semblants a aquesta:

Mireia Querol Rovira

REFERENCIAS