Arxiu d'etiquetes: protección

¿Blanco nuclear, moreno paleta o gamba?

Para mucha gente verano es sinónimo de playa y ponerse moreno. Cuando hacemos el cambio de armario y toca vestirse con pantalones cortos, el blanco nuclear de nuestras piernas, escondido durante todo el invierno nos deslumbra. Hay gente que prefiere utilizar las cabinas de bronceado UVA unos meses antes, u otros toman el sol sin protección para coger un poco de color. ¿Qué consecuencias puede tener esto? A continuación os hablo de la piel y el efecto de la radiación sobre ella.

CONOZCAMOS NUESTRA PIEL

La piel es el órgano más grande de nuestro cuerpo, tiene una extensión de entre 1,5 y 2mde superficie y un peso alrededor de 3,5-5kg. Sus funciones son:

  • Protección: protege los órganos internos de traumatismos y evita la pérdida de agua y electrolitos  desde el interior.
  • Termorregulación: a través de los vasos sanguíneos se aumenta o se reduce la temperatura de la piel. Cuando hace mucha calor el sudor refresca la superficie cutánea.
  • Sensibilidad: la percepción del tacto, la presión, la temperatura, el dolor y el picor se hace a través de la piel.
  • Secreción: la piel protege el cuerpo de la deshidratación.
  • Excreción: a través de la piel eliminamos unos 350ml diarios de agua, que tenemos que recuperar hidratándonos. En ciertas enfermedades se puede llegar a eliminar gran cantidad de proteínas y azufre.

La piel tiene dos células básicas: los queratinocitos (80%) y los melanocitos (10%). La melanina, que da el moreno,  se encuentra dentro de los melanocitos y se acumula en unas bolsas (melanosomas). Cuando no toca la luz se queda en estratos profundos, mientras que cuando toca el sol va subiendo por los queratinocitos (Figura 1).

melanocitos
Figura 1. Melanina (flechas) subiendo hacia los queratinocitos (Fuente: Salud del Siglo XXI)

El bronceado es la síntesis de nueva melanina. No todas las personas producen la misma cantidad de melanina. Todos tenemos el mismo número de melanocitos, pero la diferencia está en el número de melanosomas.

Nuestra piel está formada por 3 capas que son, ordenadas de superior a inferior, la epidermis, la dermis y la hipodermis (Figura 2).

capes pell
Figura 2. Capas de la piel: A) epidermis, B) dermis y C) hipodermis (Fuente: MedlinePlus)

El proceso del bronceado pasa en la epidermis, que es la capa superior de la piel. La epidermis tiene 0,2mm de grosor y se subdivide en 4 o 5 capas, dependiendo de la parte del cuerpo. Por ejemplo, las palmas de las manos y las plantas de los pies están formados por 5 capas, donde la capa extra da más resistencia. El grosor de la piel en estas zonas es de 1-2mm, en cambio, en otras zonas, como en los párpados, es inferior (0,004mm). En las capas más internas o profundas las células son más jóvenes y activas, y al largo de su ciclo van ascendiendo hacia la zona más externa o superficial, convirtiéndose en células muertas, sin nucli y formadas básicamente por queratina (piel muerta).

Por debajo, hay la dermis que da elasticidad a la piel, donde se encuentras los nervios y los vasos sanguíneos y es donde crecen los pelos y las uñas. Finalmente, la hipodermis está debajo de todo y es donde hay las glándulas.

LA RADIACIÓN SOBRE NUESTRA PIEL

El sol emite una radiación con longitudes de onda que van desde 0,1 a 17.000nm. Pero a la Tierra sólo llegan las radiaciones entre 280 y 3.000nm (las otras se quedan en la capa de ozono).

La radiación que afecta a los organismos vivos engloba el espectro de 280-800nm (rayos UVB, UVA, luz visible y una parte de infrarrojo) (Figura 3).

e
Figura 3. Espectro electromagnético ( Fuente: J. E. Martin Cordero. Agentes Físicos Terapéuticos (2009))

No toda la radiación penetra de la misma forma en nuestra piel. En la Tabla 1 se observa el nivel de penetración:

Tabla 1. Penetración según la diferente radiación.

Tipo Longitud de onda Nivel de penetración
Ultraviolada UVC 100-280nm No llega
UVB 280-315nm Epidermis
UVA 315-400nm Dermis
Luz visible LV 400-700nm Dermis
Infrarroja IR >700nm Hipodermis

Es importante saber que una exposición prolongada, sin tomar precauciones, no sólo puede producir cáncer de piel, sino que también puede tener otros efectos. La radiación UVB es la causa más frecuente de quemada solar, eritema o enrojecimiento. También es la causa más frecuente de cáncer cutáneo. En cambio, la radiación UVA raramente causa quemaduras, pero es la responsable de la mayoría de las fotosensibilizaciones (aumento anormal de la sensibilidad de la piel a la radiación UV) y puede ser carcinogénica, en presencia de ciertas sustancias que potencian su efecto. Además, produce envejecimiento de la piel (Figura 4).

En las cabinas de bronceado el 30% de la radiación es UV. Mayoritariamente es radiación UVA, pero también hay radiación UVB (aunque en menor porcentaje). El porcentaje restante es radiación infrarroja y luz visible.

609443626
Figura 4. Efectos de la radiación UVA (envejecimiento) y UVB (quemaduras) (Fuente: Antirughe.info)

La cantidad de irradiación es mayor cuanto más cerca se encuentre la Tierra del Sol (zona del Ecuador, entre los trópicos de Cáncer y de Capricornio; o entre las 12 y 16 horas). Esta irradiación puede dañar nuestro ADN, produciendo roturas en la cadena del ADN que puede causar mutaciones.

Los rayos UV pasan fácilmente a través de las nubes y el vapor de agua, pero son parcialmente absorbidos por la polución atmosférica. Pero se ha visto que en zonas donde hay agujeros en la capa de ozono la incidencia de cáncer de piel es superior. Esto es debido porque los daños provocados en la capa de ozono permiten el paso de mayor cantidad de rayos UVB. Aquí la importancia de no dañar la capa de ozono, ya que nos protege de estos rayos.

PROTEJAMOS NUESTRA PIEL

Dado que la luz puede ser reflejada por varias sustancias, hay que tener en cuenta que, a los rayos directos del sol, se pueden sumar los que llegan tangencialmente un día brillante y que son reflejados por la arena, agua, suelo, gel, nieve…

Las dosis de radiación son acumulativas y pueden sumarse a los efectos de la radiación ionizante (rayos X). La presencia de cánceres cutáneos puede observarse muchos años después de una quemadura aguda. Esto se ha observado en marineros americanos que estuvieron en el Pacífico durante la Segunda Guerra Mundial, y que estuvieron expuestos durante meses o años a la radiación solar de alta intensidad. Estos marineros han desarrollado al largo de los años diferentes tipos de cáncer de piel.

Por esta razón es muy importante tomar las medidas de protección solar correctas: utilizar fotoprotectores, evitar largos ratos al sol, sobre todo en horas de máxima intensidad solar; e hidratarse a menudo.

REFERENCIAS

MireiaRamos-castella

 

 

 

Plantas hiperacumuladoras de metales pesados

Durante millones de años la evolución ha llevado a las plantas a desarrollar diferentes estrategias para defenderse de los enemigos naturales, dando pie a una lucha de armamento evolutiva en la cual la supervivencia de unos y otros depende de la habilidad de hacer frente a las adaptaciones de los otros. Y es en este escenario donde la acumulación de metales pesados en altos niveles en planta juega un papel muy importante.

 INTRODUCCIÓN

Según Boyd (2012), la defensa de las plantas puede considerarse bajo distintos puntos de vista:

  • mecánica: espinas, coberturas, etc.
  • química: diferentes compuestos inorgánicos y orgánicos.
  • visual: cripsis y mimetismo.
  • comportamiento: relacionado con modificaciones en la fenología.
  • y asociativa: simbiosis con otros organismos, como es el caso del género Cecropia que establece simbiosis con las hormigas del género Azteca, las cuales protegen a estas plantas – para saber más: Plantas y animales también pueden vivir en matrimonio– .
espinas-karyn-christner-flickr
Defensa mecánica con espinas (Autor: Karyn Christner, Flickr, CC).

 

Se ha visto que la defensa química es ubicua, y por lo tanto, muchas interacciones entre organismos se explican bajo este punto de vista. Además, algunas plantas contienen grandes cantidades de ciertos elementos químicos, frecuentemente metales o componentes metálicos, que juegan un papel de defensa relevante, son las llamadas plantas hiperacumuladoras.

Plantas hiperacumuladoras  y sus características principales

Estas plantas pertenecen a diferentes familias, por lo tanto la hiperacumulación es una adquisición independiente que ha surgido varias veces durante la evolución, pero que en todos los casos genera la habilidad de crecer en suelos metalíferos y acumular extraordinarias cantidades  de metales pesados en órganos aéreos, a diferencia de los niveles encontrados en la mayoría de especies. Se sabe que las concentraciones de estos elementos químicos pueden ser entre 100 – 1000 veces mayores que las presentes en especies no hiperacumuladoras.

Generalmente, la química describe los metales pesados como aquellos metales de transición con una masa atómica superior a 20 y una densidad relativa cercana a 5. Pero, des del punto de vista biológico, los metales pesados son aquellos metales o metaloides que pueden ser tóxicos en bajas concentraciones. Aun así, las plantas hiperacumuladoras consiguen ser tolerantes, es decir, hiperacumulan estos metales pesados sin sufrir efectos fitotóxicos (toxicidad expresada en la planta).

En este sentido, hay tres características principales que describen las plantas hiperacumuladoras:

  • Fuerte aumento de la tasa de absorción de metales pesados.
  • Raíces que realizan la translocación más rápidamente.
  • Gran habilidad por detoxificar y acumular metales pesados en hojas.

Por lo tanto, las plantas hiperacumuladoras están bien preparadas para la asimilación, translocación a hojas y acumulación de grandes cantidades de metales pesados en vacuolas o en paredes celulares. En parte, esto es debido a una sobreexpresión constitutiva de genes que codifican para transportadores de membrana

Los valores límite que permiten diferenciar una planta hiperacumuladora de una que no lo es, están relacionados con la fitotoxicidad específica de cada metal pesado. Según este criterio, las plantas hiperacumuladoras son plantas que cuando crecen en suelos naturales acumulan en las partes aéreas (en gramos de peso seco):

  • > 10 mg·g-1 (1%) de Mn o Zn,
  • > 1 mg·g-1 (0,1%) de As, Co, Cr, Cu, Ni, Pb, Sb, Se o Ti
  • Ó > 0,1 mg·g-1 (0,01%) de Cd.
minuartia-verna-cu-candiru-flickr
Minuartia verna, hiperacumuladora de cobre (Autor: Candiru, Flickr, CC).

LA APARICIÓN DE PLANTAS HIPERACUMULADORAS Y SUS IMPLICACIONES

Hasta el momento se ha planteado diferentes hipótesis para explicar porque ciertas plantas han llegado a ser hiperacumuladoras de metales pesados:

  • Tolerancia y disposición de metales.
  • Resistencia a la sequía.
  • Interferencia con otras plantas vecinas
  • Defensa contra los enemigos naturales.

La hipótesis que recibe más soporte  es la denominada “Elemental defence” (defensa por elementos), que indica que ciertos metales pesados podrían tener un rol defensivo en la planta contra los enemigos a naturales, tales como los herbívoros y los patógenos. Estos organismos al consumir la planta presentarían efectos tóxicos, lo cual los llevaría a la muerte o bien a reducir el consumo de esta planta en un futuro. Aun así, aunque los metales pesados pueden actuar a través de su toxicidad, esto no garantiza que la planta no sea dañada o atacada antes que el enemigo natural sea afectado por estos. Por ellos sigue siendo necesario una defensa más efectiva que permita evitar el ataque.

Por otro lado, de acuerdo con una hipótesis más moderna, “Joint effects” (efectos conjuntos), los metales pesados podrían actuar juntamente con otros compuestos orgánicos de defensa dando lugar a una mayor defensa global. Las ventajas de los elementos inorgánicos, donde se incluyen los metales pesados, es que no son sintetizados por la planta, se absorben del suelo directamente y por lo tanto no hay tanto consumo energético invertido en la defensa, y además no pueden ser biodegradados. Aun así, algunos enemigos naturales pueden llegar a quelar los metales pesados gracias a quelatos (sustancias que se unen a estos metales pesados para reducir su toxicidad) o acumularlos en órganos donde se reduciría su actividad. Esta nueva hipótesis justificaría la presencia simultánea de distintos metales pesados y compuestos orgánicos de defensa en la misma planta, con la finalidad de conseguir una defensa mayor que afecte a más enemigos naturales, los cuales se esperaría no fuesen capaces de tolerar los distintos elementos tóxicos.

SONY DSC
Thlaspi caerulescens, hiperacumuladora de zinc (Autor: Randi Hausken, Flickr, CC).

Por otro lado, se ha visto que ciertos herbívoros tienen habilidades para evitar el consumo de plantas con altos niveles de metales pesados, realizando lo que se denomina “taste for metals” (“degustación de metales”). Aunque se sabe que esto sucede, no es del todo conocido el mecanismo exacto de todo este proceso de alerta y evitación.

solanum-nigrum-cd-john-tann-flickr
Solanum nigrum, hiperacumuladora de cadmio (Autor: John Tann, Flickr, CC).

Además, aunque las concentraciones de metales pesados que asumen estas plantas son elevadas, algunos  herbívoros logran sobrepasar esta defensa siendo tolerantes, es decir, su dieta les permite ingerir elevadas dosis de metales y por tanto alimentarse de la planta. Esto lleva a pensar que ciertos herbívoros podrían convertirse en especialistas en el consumo de estas plantas, y que, por tanto, este tipo de defensa quedaría reducido a organismos con dietas variadas, los denominados generalistas. Esto ha resultado no ser del todo cierto, ya que algunas veces los herbívoros generalistas presentan una preferencia y tolerancia superior por las plantas hiperacumuladoras que los organismos especialistas.

Por todos estos motivos se puede decir que la evolución continua jugando un papel importante en esta lucha de armamento.

Difusió-castellà

 REFERENCIAS

  • Boyd, R., Davis, M.A., Wall, M.A. & Balkwill K. (2002). Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12, p. 91–97.
  • Boyd, R. (2007). The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant soil 293, p. 153-176.
  • Boyd, R. (2012). Elemental Defenses of Plants by Metals. Nature Education Knowledge 3 (10), p. 57.
  • Laskowski, R. & Hopkin, S.P. (1996). Effect of Zn, Cu, Pb and Cd on Fitness in Snails (Helix aspersa). Ecotoxicology and environmentak safety 34, p. 59-69.
  • Marschner, P. (2012). Mineral Nutrition of Higher Plants (3). Chennai: Academic Press.
  • Noret, N., Meerts, P., Tolrà, R., Poschenrieder, C., Barceló, J. & Escarre, J. (2005). Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytologist 165, p. 763-772.
  • Prasad, A.K.V.S.K. & Saradhi P.P. (1994).Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39, p. 45-47.
  • Rascio, N. & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Science 180 (2),p. 169-181.
  • Shiojiri, K., Takabayashi, J., Yano, S. & Takafuji, A. (2000) Herbivore-species-specific interactions between crucifer plants and parasitic wasps (Hymenoptera: Braconidae) that are mediated by infochemicals present in areas damaged by herbivores. Applied Entomology and Zoology 35, p. 519–524.
  • Solanki, R. & Dhankhar, R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66 (2), p. 195-204.
  • Verbruggen, N., Hermans, C. & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181 (4), p. 759–776.
  • Wenzel, W.W. & Jockwer F. (1999). Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental pollution 104, p. 145-155.

Las plantas y el cambio climático

Desde hace unos cuantos años hemos oído hablar del cambio climático. Hoy en día ya es una evidencia y también una preocupación. No solo nos afecta a nosotros, a los humanos, sino también a toda la vida. Se ha hablado bastante del calentamiento global, pero quizá no se haya hecho tanta transmisión de lo que sucede con la vegetación. Son muchas cosas las que se ven afectadas por el cambio climático y la vegetación también es una de ellas. Además, los cambios producidos en esta también nos afectan a nosotros. Pero, ¿cuáles son estos cambios?, ¿cómo los puede regular la vegetación? Y, ¿cómo podemos ayudar a mitigarlos a través de esta?

CAMBIOS EN LA VEGETACIÓN

Distribución de los biomas

En general, debido al cambio climático se espera un incremento de las precipitaciones en algunas partes del planeta, mientras que en otras se espera un descenso. También se denota un incremento global de la temperatura. Esto conlleva a un desplazamiento en la localización de los biomas, las grandes unidades de vegetación (por ejemplo: selvas, bosques tropicales, tundras, etc.).

biomes
Triangulo de los biomas según altitud, latitud y humedad (Imagen de Peter Halasaz).

Por otro lado, existe una tendencia al aumento de la distribución de especies en los rangos septentrionales (altas latitudes) y un detrimento en regiones meridionales (baja latitud). Esto conlleva graves problemas asociados; el cambio en la distribución de las especies afecta a su conservación y a su diversidad genética. En consecuencia, las poblaciones situadas en los márgenes meridionales, que han estado consideradas muy importantes para la conservación a largo plazo de la diversidad genética y por su potencial evolutivo, se ven en peligro por esta perdida. Y, en cambio, los rangos septentrionales se verían afectados por la llegada de otras especies competidoras que podrían desplazar a las ya presentes, siendo pues invasoras.

Distribución de las especies

Dentro del escenario del cambio climático, las especies tienen una cierta capacidad para reajustar su distribución y para adaptarse a este.

Pero, ¿qué tipo de especies podrían estar respondiendo más rápidamente a este cambio? Se deduce que aquellas con un ciclo de vida más rápido y una capacidad de dispersión mayor serán las que muestren mayor adaptación y respondan mejor. Esto podría conllevar a una pérdida de las plantas con ritmos más lentos.

Galactites tomentosa
La cardota (Galactites tomentosa) una planta de ciclo rápido y con gran dispersión (Imagen de Ghislain118).

Un factor que facilita el reajuste en la distribución es la presencia de corredores naturales: estos son partes del territorio geográfico que permiten la conectividad y desplazamiento de especies de un lado a otro. Son importantes para evitar que estas queden aisladas y puedan desplazarse hacia nuevas regiones.

Otro factor es el gradiente altitudinal, el cual proporciona muchos refugios para las especies, facilita la presencia de corredores y permite la redistribución de las especies en altitud. Por lo tanto, en aquellos territorios dónde haya mayor rango altitudinal se verá favorecida la conservación.

En resumen, la capacidad de las especies para hacer frente al cambio climático depende de las características propias de la especie y de las del territorio. Y, por el contrario, la vulnerabilidad de las especies al cambio climático se produce cuando la velocidad que estas presentan para poder desplazar su distribución o adaptarse es menor a la velocidad del cambio climático.

A nivel interno

El cambio climático también afecta a la planta como organismo, ya que le produce cambios en su metabolismo y en su fenología (ritmos periódicos o estacionales de la planta).

Uno de los efectos que empujan a este cambio climático es el incremento de la concentración de dióxido de carbono (CO2) en la atmosfera. Esto podría producir un fenómeno de fertilización de la vegetación. Con el aumento de CO2 en la atmosfera se incrementa también la captación de este por las plantas, aumentando así la fotosíntesis y permitiendo una mayor asimilación. Esto, pero, no son todo ventajas, porque para ello se produce una pérdida de agua importante, debido a que los estomas (estructuras que permiten el intercambio de gases y la transpiración) permanecen largo tiempo abiertos para incorporar este CO2. Por lo tanto, hay efectos contrapuestos y la fertilización dependerá de la planta en sí, como también del clima de ese lugar. Muchos estudios han demostrado que diversas plantas reaccionan diferente a este incremento del CO2, ya que el compuesto afecta a varios procesos fisiológicos y por lo tanto las respuestas no son únicas. Por lo tanto, nos encontramos con un factor que altera el metabolismo de las plantas y que no se puede predecir cómo serán sus efectos sobre ellas. Además, este efecto fertilizante está limitado por la cantidad de nutrientes presentes y sin ellos la producción se frena.

fotosíntesi
Proceso de fotosíntesis (Imagen de At09kg).

Por otro lado, no debemos olvidar que el cambio climático también altera el régimen estacional (las estaciones del año) y que esto afecta al ritmo de la vegetación, a su fenología. Esto puede tener repercusiones incluso a escala global; por ejemplo, podría producir un desajuste en la producción de plantas cultivadas para la alimentación.

PLANTAS COMO REGULADORAS DEL CLIMA

Aunque no se puede hablar de las plantas como reguladoras del clima global, está claro que hay una relación entre el clima y la vegetación. Sin embargo, esta relación es un tanto complicada porque la vegetación tiene tanto efectos de enfriamiento como de calentamiento del clima.

La vegetación disminuye el albedo; los colores oscuros absorben más la radiación solar y por lo tanto se refleja menos luz solar hacía el exterior. Además, al ser organismos de superficie rugosa se aumenta la absorción. En consecuencia, cuanta más vegetación, la temperatura local (calor transferido) aumenta más.

Pero, por otro lado, al aumentar la vegetación hay más evapotranspiración (conjunto de la evaporación de agua de una superficie y la transpiración a través de la plantas). De manera que el calor se gasta en pasar el agua líquida a gaseosa, lo que conlleva a un enfriamiento. Además, la evapotranspiración también ayuda aumentar las precipitaciones locales.

Biophysical effects of landcover
Efectos biofísicos de diferentes usos del suelo y su acción sobre el clima local. (Imagen de Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Por lo tanto es un efecto ambiguo y en determinados ambientes pesa más el efecto de enfriamiento, mientras que en otros tiene más relevancia el de calentamiento.

MITIGACIÓN

Hoy en día hay varias propuestas para reducir el cambio climático, pero ¿cómo pueden ayudar las plantas?

Las comunidades vegetales pueden actuar como sumideros, reservas de carbono, ya que a través de la asimilación de COayudan a compensar las emisiones. Un manejo adecuado de los ecosistemas agrarios y los bosques puede ayudar a la captación y almacenamiento del carbono. Por otro lado, si se lograra reducir la deforestación y aumentar la protección de hábitats naturales y bosques, se reducirían las emisiones y se estimularía este efecto sumidero. Aun así, existe el riesgo de que estos sumideros puedan convertirse en fuentes de emisión; por ejemplo, debido a incendios.

Finalmente, presentar los biocombustibles: estos, a diferencia de los combustibles fósiles (como el petróleo), son recursos renovables, ya que se trata de cultivos de plantas destinados al uso como combustibles. Aunque no logran retirar CO2 de la atmosfera ni reducen emisiones de carbono, evitan el incremento de este en la atmosfera. Por este motivo no llegaría a ser una medida del todo mitigadora, pero mantienen el balance de emisión y captación neutro. El problema es que pueden generar efectos colaterales a nivel social y ambiental, como el incremento de precios de otros cultivos o la deforestación para instaurar estos cultivos, cosa que no debería suceder.

800px-Canaviais_Sao_Paulo_01_2008_06
Cultivo de caña de azucar (Saccharum officinarum) en Brasil para producir biocombustible (Imagen de Mariordo).

Difusió-castellà

REFERENCIAS

 

Medidas de protección de los cetáceos en aguas estatales

Conoces qué puedes y qué no puedes hacer si navegando encuentras a un grupo de cetáceos? En esta entrada trataremos las medidas de protección de los cetáceos durante la realización de avistamientos de estos animales durante las actividades recreativas. Es importante recordarlo para asegurar la seguridad de los animales durante nuestra aproximación, estada y separación al grupo.

 

El Real Decreto 1727/2007, de 21 de diciembre, establece las medidas de protección de los cetáceos, el cual se resume a continuación.

Si navegando con nuestra embarcación tenemos la suerte de ver un grupo de cetáceos y queremos aproximarnos, lo tenemos que hacer de forma suave, a máximo 4 nudos de velocidad, por detrás y con un ángulo de 30º. Durante la observación se tiene que mantener una trayectoria paralela, sin cambiar bruscamente ni la velocidad ni la dirección.

espai2_cetacis copia

Este Real Decreto define el concepto de espacio móvil de protección de los cetáceos, que es el perímetro de un cilindro imaginario que incluye los espacios marino y aéreo de radio de 500 metros, con una altura de 500 metros en el espacio aéreo y una profundidad de 60 metros en el espacio marino, entorno al cetáceo o grupo de cetáceos. Dentro el espacio móvil de protección de los cetáceos no se puede realizar ninguna actividad que pueda matar, dañar, molestar o inquietar los animales. En concreto, no se puede:

  • Contacto físico de embarcaciones o personas con los animales.
  • Tirarles comida, bebida, basura o cualquier otra sustancia sólida o líquida que los pueda perjudicar.
  • Impedir que se muevan libremente.
  • Separar al grupo de animales.
  • Producir ruido y sonidos fuertes y estridentes para que se acerquen o se alejen.
  • En caso de que generen señales de alarma, molestia o alteración del comportamiento, se debe abandonar la zona sin molestarles.
  • Si se hiere un animal o hay un animal muerto o herido se debe avisar al Servicio Marítimo de la Guardia Civil.

Se distinguen 5 zonas, con las siguientes restricciones:

  • Zona de exclusión: entre 0 y 60 metros del animal. En esta zona está totalmente prohibido acceder, pero si aparecen de repente a menos de 60 metros, se deberá poner el motor en punto muerto, desembragar o pararlo. En el caso de ser delfines o marsopas, se puede continuar navegando con la misma dirección y velocidad. También es obligatorio apagar el sonar y la sonda.
  • Zona de permanencia restringida: de 60 a 300 metros del animal. En esta zona está totalmente prohibido entrar si hay adultos aislados con crías o crías aisladas. Pueden haber un máximo de dos embarcaciones. En el caso de estar buceando y se aproximen cetáceos, no se puede interaccionar con ellos y si tienen comportamientos asociados a vuestra presencia, os deberéis alejar de ellos.
  • Zona de aproximación: de 300 a 500 metros del animal. En esta zona también puede haber un máximo de 2 embarcaciones esperando para acceder a la zona de permanencia restringida. Si se está buceando y se aproximan cetáceos, el comportamiento deberá de ser como en el caso anterior.
  • Zona aérea: espacio aéreo hasta los 500 metros del animal y 500 metros de altura. Está prohibido acceder.
  • Zona submarina: espacio submarino hasta los 500 metros del animal y 60 metros de altura. Está prohibido acceder.

im0000268802

Por lo tanto, como queda manifiesto en esta normativa de obligatorio cumplimiento, en el caso de estar navegando y encontrar un grupo de cetáceos está totalmente prohibido tirarse en el agua para bañarse con ellos.

 

Licencia Creative Commons
Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.