Arxiu d'etiquetes: pterygota

¿Por qué los insectos realizan la metamorfosis?

La mayoría de insectos sufren un proceso de transformación a lo largo de su desarrollo con el fin de alcanzar la fase adulta o imaginal (p.e. las mariposas). Este proceso recibe el nombre de metamorfosis, aunque su naturaleza dista bastante de la metamorfosis que realizan los anfibios. Ahora bien, ¿te has preguntado alguna vez el porqué de esta transformación? ¿Cuál es el sentido y el origen de la metamorfosis en los insectos?

Aprende sobre los distintos tipos de metamorfosis, así como sobre el origen y razón de ser de estas transformaciones, a lo largo de este artículo.

¿Qué es la metamorfosis?

Metamorfosis de macaón (Papilio machaon) (Imagen de Jens Stolt).

La metamorfosis es un proceso biológico mediante el cual los organismos se desarrollan desde su nacimiento hasta la etapa adulta, pasando por más o menos estadios juveniles, por medio de grandes transformaciones y/o remodelaciones corporales (tanto fisiológicas como estructurales).

Existen muchos grupos de animales que se desarrollan mediante este proceso, aunque la mayoría de éstos no comparten el origen ni la naturaleza de sus transformaciones. Así, mientras que en los anfibios la metamorfosis tiene lugar mediante la remodelación de tejidos ya existentes en el cuerpo del juvenil, en los insectos tiene lugar una ruptura de los tejidos larvales y la aparición de grupos de células totalmente nuevas.

La ecdisis o muda

Para entender el proceso de metamorfosis en los insectos, primero hay que hablar sobre la muda. ¿Qué es la muda y por qué es tan importante para los insectos y los artrópodos en general?

Todos los animales regeneran de alguna forma sus tejidos más superficiales, aquellos en contacto con el medio y que los protegen de las agresiones externas. Los mamíferos recambiamos periódicamente las células epidérmicas; muchos reptiles mudan con frecuencia su piel; pero, ¿y los artrópodos?

Los artrópodos, grupo en el que se enmarcan los hexápodos (el cual incluye a los insectos), están recubiertos externamente por un exoesqueleto más o menos endurecido. A diferencia de las capas externas de otros animales, el exoesqueleto no se desprende progresivamente, y su falta de elasticidad limita el crecimiento del organismo. De esta manera, a medida que crecen éste se convierte en una barrera que limita su tamaño, por lo que deben romperlo y deshacerse de él para seguir creciendo. Este proceso de muda a saltos se conoce con el nombre de ecdisis, y es propio de los ecdisozoos (artrópodos y nematodos).

¡Echa un vistazo a este vídeo de una cícada (cigarra o chicharra) mudando!:

¿Se metamorfosean todos los hexápodos?

La respuesta es NO, aunque es necesario profundizar algo más.

Todos los hexápodos mudan para poder crecer, pero no todos experimentan cambios radicales para alcanzar la adultez, momento en el que podrán reproducirse. Así pues, podríamos dividir a los hexápodos en dos grandes grupos:

HEXÁPODOS AMETÁBOLOS (sin metamorfosis)

Grupo que incluye a los tradicionalmente conocidos como Apterygota o hexápodos sin alas (hexápodos no insectos -proturos, dipluros y colémbolos- e insectos ápteros como los Zygentoma o clásicamente conocidos como Thysanura –p.e. pececillos de plata o lepismas-) y a los Pterygota o insectos con alas que han perdido las alas secundariamente.

Individuo de Ctenolepisma lineata (Zygentoma) (Wikimedia Commons).

Dado que no tienen alas, las fases juveniles de los hexápodos ametábolos apenas distan anatómicamente de la fase adulta (dado que todas las fases del ciclo vital son ápteras). Así pues, el desarrollo juvenil es más sencillo y su anatomía no sufre grandes cambios para adquirir la constitución del adulto; es decir, no hay metamorfosis. Este desarrollo también recibe el nombre de desarrollo directo.

metamorfosis3
Desarrollo directo o ametábolo (Imagen extraída de asturnatura.com)

Los hexápodos ametábolos pueden mudar decenas de veces a lo largo de su desarrollo (hasta 50 mudas en los pececillos de plata o lepismas), incluso una vez alcanzada la madurez sexual.

INSECTOS QUE REALIZAN LA METAMORFOSIS

Todos los insectos con alas o Pterygota (menos aquellos que las pierden secundariamente).

Ejemplar de Sympetrum flaveolum (Imagen de André Karwath)

A diferencia de los anteriores, las fases juveniles sí se diferencian físicamente de la fase adulta, por lo que tras sucesivas mudas de crecimiento sufren una última muda o transformación que da lugar al adulto alado totalmente maduro, capaz de reproducirse. Una vez alcanzada la adultez, estos insectos no vuelven a mudar.

Tipos de metamorfosis en los insectos

Así pues, únicamente los insectos Pterygota sufren un proceso de metamorfosis propiamente dicho, gracias a la cual adquieren las alas además de alcanzar la madurez sexual. Ahora bien, no todos estos insectos se transforman de la misma forma.

Existen, esencialmente, dos tipos de metamorfosis: la hemimetábola (sencilla o incompleta) y la holometábola (compleja o completa). ¿Cuáles son sus diferencias?

Metamorfosis hemimetábola

En la metamorfosis sencilla, incompleta o hemimetábola, los insectos jóvenes pasan por varias mudas sucesivas hasta alcanzar la etapa adulta (o imaginal) sin que ello suponga pasar por un estadio de inactividad (pupa) y sin dejar nunca de alimentarse.

Nada más nacer, la cría recibe el nombre de ninfa, la cual guarda cierto parecido con el adulto pero sin presentar aún alas ni órganos sexuales. Normalmente, las fases ninfales y el adulto no comparten alimento ni hábitat, es decir, ocupan nichos ecológicos totalmente distintos; de hecho, en muchas ocasiones las ninfas son acuáticas y, tras alcanzar la madurez, pasan a vivir en tierra firme (p.e. efímeras).

Haft
__Ejemplar adulto de la especie de efímera Ephemera danica __________________(Imagen de Marcel Karssies).

En este tipo de metamorfosis, las ninfas pasan por varias mudas de crecimientos sucesivas gracias a las que van formándose las alas progresivamente. Finalmente, la ninfa realiza la última muda, tras la cual surgirá el organismo adulto capaz de reproducirse y con las alas totalmente desarrolladas.

El resumen de este proceso sería el siguiente:

heterometabolo
__Desarrollo hemimetábolo de un saltamontes _____(imagen extraída de asturnatura.com)

Estos insectos también reciben el nombre de exopterigotos (del latín exo- = “fuera” + pteron = “alas”), puesto que las alas se desarrollan en la parte exterior del cuerpo de forma progresiva y visible.

Metamorfosis holometábola

Es el caso más radical de metamorfosis en los insectos y, probablemente, el más conocido por todos. Uno de los ejemplos más típicos es el de los lepidópteros (mariposas y polillas), pero también son holometábolos los coleópteros (escarabajos), los himenópteros (abejas, avispas y hormigas) y los dípteros (moscas y mosquitos).

En la metamorfosis compleja, completa u holometábola, los insectos eclosionan en forma de larva, una fase muy prematura del organismo en desarrollo que dista mucho morfológicamente de la fase adulta y que, como en el caso anterior, no comparte hábitat ni alimento con los adultos. Estas larvas crecen, como las ninfas en la metamorfosis hemimetábola, mediante mudas sucesivas hasta que alcanzan el tamaño suficiente para sobrellevar el proceso de metamorfosis propiamente dicho, momento en el que llevan a cabo su última muda.

Larva escarabeiforme (coleóptero) (“Curl grub” by Toby Hudson – Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons).

Tras la última fase larvaria, la larva entra normalmente en un estadio de inactividad, en el cual deja de alimentarse y permanece inmóvil; esta fase recibe el nombre de estadio pupal (formando la pupa, o crisálida en el caso de las mariposas). En ocasiones, al término de esta fase los organismos ya empiezan a parecerse bastante al adulto debido a las reorganizaciones estructurales que tienen lugar a nivel anatómico y a la aparición de nuevos órganos y tejidos.

Cetoine_global
Pupa de Cetonia aurata (coleóptero) (“Cetoine global” by Didier Descouens – Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons)

Una vez finalizado el proceso de transformación, el organismo se reactiva y adquiere definitivamente su forma adulta sexualmente madura y unas alas plenamente formadas.

En resumen, el esquema de este proceso sería el siguiente:

metamorfosis
Desarrollo holometábolo de un lepidóptero (Imagen extraída de ___________________________astrunatura.com)

Así como en los hemimetábolos la aparición de las alas es un proceso apreciable a lo largo del desarrollo, en los holometábolos éstas se forman en el interior del cuerpo y empiezan a ser visibles generalmente al final de la fase pupal. Es por esto que reciben también el nombre de endopterigotos (del latín endo- = “dentro” + pteron = “alas”).

Origen y función de la metamorfosis en los insectos

Origen: el registro fósil

Los insectos son, como ya comentamos en artículos anteriores, uno de los animales con mayor éxito evolutivo. Entre un 40%-60% de todas especies de insectos son holometábolas (metamorfosis completa), por lo que deducimos que la holometabolía es un fenómeno que ha sido seleccionado positivamente; de hecho, los registros fósiles sugieren que la holometabolía surgió únicamente una vez, por lo que todos los insectos holometábolos procederían del mismo ancestro.

Según estos datos, los insectos sin alas o Apterygota primitivos y los primeros insectos con alas eran ametábolos; posteriormente, durante el Carbonífero y el Pérmico (300MA) todos los insectos con alas o Pterygota ya presentaban un inicio de hemimetabolía (metamorfosis parcial); por último, los primeros insectos considerados holometábolos aparecerían durante el Pérmico (280MA).

¿Cuál podría ser la razón de esta selección positiva?

Si recordáis, en apartados anteriores hablábamos sobre las distintas fuentes de alimentación y hábitat de las fases juveniles y de los adultos; el hecho que en distintas fases de un mismo ciclo vital se exploten recursos distintos evitaría la competición intraespecífica (competición por los recursos entre organismos de una misma especie). Este hecho supondría una ventaja enorme para estos organismos, motivo por el cual el desarrollo holometábolo, que se caracteriza por la sucesión de fases muy diferenciadas, podría haber tenido mayor éxito que el desarrollo hemimetábolo y, obviamente, que el ametábolo o directo.

Así pues, podemos decir que el sentido funcional principal de la metamorfosis sería minimizar la competencia intraespecífica por los recursos. Pero aún hay más: cuanto más especializadas sean las distintas fases de un insecto, mayor será la probabilidad de explotar más y mejor los recursos. En las formas parásitas, por ejemplo, las diferencias entre las distintas fases suelen ser grandes, pues las condiciones difíciles a las que se enfrentan (p.e. condiciones internas del cuerpo del hospedador) requieren de una gran especialización en cada momento.

Sin título
Larva y adulto de Danaus plexippus (mariposa monarca) (fuentes: imagen de la larva por Victor Korniyenko, Creative Commons; imagen del adulto de dominio público).

.        .        .

Así pues, igual que la aparición de las alas promovió la expansión y diversificación de los insectos por todo el globo, la metamorfosis podría haber actuado como motor diversificador al aumentar la capacidad para explotar más y mejor los recursos.

REFERENCIAS

Imagen de portada de Steve Greer Photography.

Difusió-castellà

Per què els insectes fan la metamorfosi?

La majoria d’insectes experimenten un procés de transformació al llarg del seu desenvolupament amb el fi d’assolir la fase adulta o imaginal (p.e. les papallones). Aquest procés rep el nom de metamorfosi, encara que el seu origen es diferencia força de la metamorfosi que duen a terme els amfibis. Ara bé: t’has preguntat algun cop el perquè d’aquesta transformació? Quin és el sentit i l’origen de la metamorfosi dels insectes?

Aprèn sobre els diferents tipus de metamorfosi, el seu origen i funció al llarg d’aquest article.

Què és la metamorfosi?

Metamorfosi de papallona rei o macaó (Papilio machaon) (Imatge de Jens Stolt).

La metamorfosi és un procés biològic mitjançant el qual els organismes es desenvolupen des del moment del seu naixement fins a l’adultesa, passant per més o menys estadis juvenils, per mitjà de grans transformacions i/o remodelacions corporals (tant fisiològiques com estructurals).

Hi ha molts grups d’animals que es desenvolupen mitjançant aquest procés, encara que la majoria no comparteix l’origen ni la natura de les seves transformacions. Així doncs, mentre que la metamorfosi dels amfibis té lloc gràcies a la remodelació de teixits ja existents al cos del juvenil, als insectes aquesta té lloc per mitjà de la ruptura dels teixits larvals i per l’aparició de grups de cèl·lules totalment noves.

L’ècdisi o muda

Per entendre millor el procés de metamorfosi dels insectes, primer hem de parlar sobre la muda: què és la muda i per què és tan important pels insectes i pels artròpodes en general?

Tots els animals regeneren d’alguna forma els seus teixits més superficials, és a dir, aquells que es troben en contacte amb el medi i que els protegeixen de les agressions externes. Els mamífers recanviem periòdicament les cèl·lules epidèrmiques; molts rèptils muden la pell amb freqüència; però, i els artròpodes?

Els artròpodes, grup que inclou els hexàpodes (el qual, al seu torn, inclou els insectes), estan recoberts externament d’un exosquelet més o menys endurit. A diferència de les capes externes d’altres animals, l’exosquelet no es desprèn progressivament, i la seva manca d’elasticitat limita el creixement de l’organisme. D’aquesta manera, a mesura que creixen aquest element esdevé una barrera que limita la seva mida, motiu pel qual han d’esquinçar-lo i desfer-se’n per continuar creixent. Aquest procés de muda a salts rep el nom d’ècdisi, i és propi dels ecdisozous (artròpodes i nematodes).

Fes un cop d’ull a aquest vídeo d’una cícada mudant!:

Tots els hexàpodes fan la metamorfosi?

La resposta és NO, tot i que cal aprofundir més en aquesta idea.

Tots els hexàpodes muden per poder créixer, però no tots experimenten canvis radicals per assolir l’adultesa, moment en què podran reproduir-se. Així doncs, podríem dividir els hexàpodes en dos grans grups:

HEXÀPODES AMETÀBOLS (sense metamorfosi)

Grup que inclou als tradicionalment coneguts com a Apterygota o hexàpodes sense ales (hexàpodes no insectes –proturs, diplurs i col·lèmbols- i insectes àpters com els Zygentoma o clàssicament coneguts com a Thysanura –p.e. peixets de plata o lepismes-) i als Pterygota o insectes alats que han perdut les ales secundàriament.

Individu de Ctenolepisma lineata (Zygentoma) (Wikimedia Commons)

Atès que no tenen ales, les fases juvenils dels hexàpodes ametàbols quasi no es diferencien anatòmicament de la fase adulta (donat que totes les fases del cicle vital són àpteres). Així doncs, el desenvolupament juvenil és més simple i la seva anatomia no pateix grans canvis per assolir la constitució de l’adult; és a dir, no hi ha metamorfosi. Aquest desenvolupament també rep el nom de desenvolupament directe.

metamorfosis3
Desenvolupament directe o ametàbol (Imatge extreta de asturnatura.com)

Els hexàpodes ametàbols poden mudar desenes de cops al llarg del seu creixement (fins a 50 mudes en els peixets de plata), inclús un cop assolida la maduresa sexual.

INSECTES QUE FAN LA METAMORFOSI

Tots els insectes amb ales o Pterygota (excepte aquells que les perden secundàriament).

Exemplar de Sympetrum flaveolum (Imatge de André Karwath)

A diferència dels anteriors, les fases juvenils sí es diferencien físicament de la fase adulta, i després de diverses mudes de creixement successives experimenten una darrera muda o transformació que dóna lloc a l’adult alat totalment madur, capaç de reproduir-se. Un cop assolida la maduresa, aquests insectes no tornen a mudar.

Tipus de metamorfosi en els insectes

Així doncs, únicament els insectes Pterygota pateixen un procés de metamorfosi pròpiament dit, gràcies al qual adquireixen les ales a més d’assolir la maduresa sexual. Ara bé, no tots aquests insectes es transformen de la mateixa forma.

Existeixen, essencialment, dos tipus de metamorfosi: l’hemimetàbola (simple o incompleta) i l’holometàbola (complexa o completa). Quines són les seves diferències?

Metamorfosi hemimetàbola

En la metamorfosi simple, incompleta o hemimetàbola, els juvenils passen per diverses mudes successives fins assolir l’etapa adulta o imaginal sense que això suposi passar per un estadi d’inactivitat (pupa) i sense deixar mai d’alimentar-se.

En el moment de néixer, la cria ja rep el nom de nimfa, la qual s’assembla força a l’adult però sense presentar encara ales ni òrgans sexuals. Normalment, les fases nimfals i l’adult no comparteixen aliment ni hàbitat, és a dir, ocupen nínxols ecològics totalment diferents; de fet, en moltes ocasions les nimfes són aquàtiques i, un cop assolida la maduresa, passen a viure a terra ferma (p.e. efímeres).

Haft
__Exemplar adult de l’espècie d’efímera Ephemera danica __________________(Imatge de Marcel Karssies).

En aquest tipus de metamorfosi, les nimfes duen a terme diverses mudes de creixement gràcies a les quals es van formant les ales progressivament. Finalment, la nimfa realitza la darrera muda, després de la qual sorgeix l’organisme adult capaç de reproduir-se i amb les ales plenament formades.

El resum d’aquest procés seria el següent:

 

heterometabolo
Desenvolupament hemimetàbol d’un saltamartí (imatge extreta de asturnatura.com)

Aquests insectes reben el nom d’exopterigots (del llatí exo-: “fora” + pteron = “ales”), ja que les ales es desenvolupen a la part exterior del cos de forma progressiva i visible.

Metamorfosi holometàbola

És el tipus més radical de metamorfosi en els insectes i, probablement, el més conegut per tots nosaltres. Un dels exemples més típics és el dels lepidòpters (papallones i arnes), però també són holometàbols els coleòpters (escarabats), els himenòpters (abelles, vespes i formigues) i els dípters (mosques i mosquits).

En el procés de metamorfosi complexa, completa o holometàbola, els insectes neixen en forma de larva, una fase prematura de l’organisme en desenvolupament que s’allunya molt morfològicament i fisiològica de la fase adulta i que, com en el cas anterior, no comparteix hàbitat ni aliment amb els adults. Aquestes larves creixen, com les nimfes de la metamorfosi hemimetàbola, mitjançant mudes successives fins a assolir la mida suficient per fer la metamorfosi pròpiament dita, moment en què duen a terme la seva darrera muda.

Larva escarabeiforme (coleòpter) (“Curl grub” by Toby Hudson – Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons).

En tenir lloc la darrera fase larvària, aquesta entra normalment en un estadi d’inactivitat, durant el qual deixa d’alimentar-se i roman immòbil; aquesta fase rep el nom d’estadi pupal (en el qual es forma la pupa, o crisàlide en el cas de les papallones). De vegades, en finalitzar aquesta fase els organismes ja comencen a assemblar-se força més a l’adult degut a les reorganitzacions estructurals que tenen lloc a nivell anatòmic i a l’aparició de nous òrgans i teixits.

Cetoine_global
Pupa de Cetonia aurata (coleòpter) (“Cetoine global” by Didier Descouens – Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons)

Un cop finalitzat el procés de transformació, l’organisme es reactiva i adquireix definitivament la seva forma adulta sexualment madura i unes ales plenament formades.

En resum, l’esquema d’aquest procés seria el següent:

metamorfosis
Desenvolupament holometàbol d’un lepidòpter (Imatge extreta _________________________de astrunatura.com)

Així com en els hemimetàbols l’aparició de les ales és un procés apreciable al llarg de tot el seu desenvolupament, en els holometàbols aquestes es formen a l’interior del cos i comencen a ésser visibles generalment al final de la fase de pupa. És per això que també reben el nom d’endopterigots (del llatí endo-= “dins” + pteron = “ales”).

Origen i funció de la metamorfosi en els insectes

Origen: el registre fòssil

Els insectes són, com ja vam comentar en articles anteriors, uns dels animals amb més èxit evolutiu. Entre un 40% i un 60% de totes les espècies d’insectes són holometàboles (metamorfosi completa), de manera que podem deduir que la holometabòlia és un fenomen que ha estat seleccionat positivament; de fet, els registres suggereixen que la holometabòlia sorgí únicament un cop, de manera que tots els insectes holometàbols provindrien del mateix ancestre.

Segons aquestes dades, els insectes sense ales o Apterygota primitius i els primers insectes alats eren ametàbols; posteriorment, durant el Carbonífer i el Pèrmic (300MA) tots els insectes amb ales o Pterygota ja presentaven un inici d’hemimetabòlia (metamorfosi parcial); per últim, els primers insectes considerats holometàbols aparegueren segurament durant el Pèrmic (280MA).

Quina podria ser la raó d’aquesta selecció positiva?

Si us enrecordeu, en apartat anteriors parlàvem sobre les diferents fonts d’alimentació i hàbitat de les fases juvenils i dels adults; el fet que en diferents fases d’un mateix cicle vital s’explotin recursos diferents evitaria la competició intraespecífica (competició pels recursos entre organismes d’una mateixa espècie). Aquest fet suposaria un avantatge enorme per tots aquests organismes, motiu pel qual el desenvolupament holometàbol, que es caracteritza per la successió de fases molt diferenciades, podria haver gaudit de major èxit que el desenvolupament hemimetàbol i, òbviament, que l’ametàbol o directe.

Així doncs, podem dir que el sentit funcional principal de la metamorfosi seria minimitzar la competència intraespecífica pels recursos. Però encara n’hi ha més: com més especialitzades siguin les diferents fases d’un insecte, major serà la probabilitat d’explotar més i millor els recursos. A les formes paràsites, per exemple, les diferències entre les diferents fases tendeixen a ser grans, doncs les difícils condicions a les que s’enfronten (p.e. condicions internes del cos de l’hostatger) requereixen d’una gran especialització en cada moment.

Sin título
Larva i adult de Danaus plexippus (papallona monarca) (fonts: imatge de la larva per Victor Korniyenko, Creative Commons; imatge de l’adult de domini públic).

.       .        .

Per tant, així com l’aparició de les ales va promoure l’expansió i diversificació dels insectes arreu del món, la metamorfosi podria haver actuat com a motor diversificador, atès que augmenta la capacitat per explotar més i millor els recursos.

REFERÈNCIES

Imatge de portada de Steve Greer Photography.

Difusió-català

Why do insects metamorphose?

Most of insects undergo some kind of transformation process during their life cycle in order to reach adulthood -also known as imago phase- (e.g. butterflies). This process is named metamorphosis, although its essence is far from that of metamorphosis performed by amphibians. But, have you not ever wondered why they do this transformation? Which are the sense and the origin of the metamorphosis of insects?

Learn more about the different types of metamorphosis, the origin and sense of these transformations through this article.

Metamorphosis: what is that?

Metamorphosis of the Old World swallowtail (Papilio machaon) (Picture by Jens Stolt).

Metamorphosis is a biological process by which animals develop after birth involving huge transformations and/or anatomical restructurations (both physiological and anatomical) until reaching adulthood.

There are different groups of animals that develop by this process, however most of them don’t share the origin nor the nature of these transformations. Thus, while amphibian metamorphosis takes place by reorganization of youth preexistent organs, in insects it takes place a breaking of tissues and also the appearance of totally new cell clusters.

Ecdysis or molting

First of all, we must talk about molt in order to comprehend the metamorphosis of insects. What means molting? And why is it an essential process for insects and arthropods as a whole?

Every single animal regenerates its external tissues in some way, i.e., those tissues that are in contact with the environment and that protect the organism from external pressures. E.g. mammals regenerate their epidermal tissues periodically; a lot of reptiles shed off their skin frequently; but, what’s about arthropods?

Arthropods, which include the hexapods (group in which we can find all insects), are externally covered by a more or less hard exoskeleton. In contrast with other external animal tissues, the exoskeleton doesn’t detach progressively, and its lack of elasticity restricts the organism growth. So, this element becomes a barrier that limits their size while growing, and is for this that they have to break it and leave it away in order to keep on growing. This kind of molting is known as ecdysis, which is typical of ecdysozoa (arthropods and nematoda).

Take a look at this video of a cicada molting!:

Do all hexapods metamorphose?

The answer is NO. However, it’s necessary to go deeper into the explanation.

All hexapods molt in order to grow, but not all them undergo radical changes to reach adulthood (when they become able to breed). Thus, we can split hexapods into two main groups:

AMETABOLOUS HEXAPODS (No metamorphosis)

This group includes those hexapods traditionally known as Apterygota or wingless hexapods (Non insect hexapods –proturans, diplurans and colembolas- and wingless insects as Zygentoma or also known as Thysanura –e.g. silverfishes or Lepisma-) and Pterygota or winged insects that have suffered a secondary loss of their wings.

Specimen of Ctenolepisma lineata (Zygentoma) (Wikimedia Commons).

Since they have no wings at any moment of their life cycle, the youth phases of this kind of hexapods almost have no differences from the adult ones. Thus, the youth development is simple and they don’t undergo huge changes to acquire the adult physique; that is, there is no metamorphosis at any point of their life cycle. This kind of development is also known as direct development.

metamorfosis3
Direct development or ametabolous development (Picture from asturnatura.com).

Ametabolous hexapods can molt tens of times throughout their development (e.g. 50 times in silverfishes, more or less), even when they become sexually mature.

INSECTS THAT METAMORPHOSE

This group includes Pterygota insects or winged insects (except for the ones that have secondarily lost their wings).

Specimen of Sympetrum flaveolum (Picture by André Karwath)

In contrast of the ones which have been explained above, the youth phases of metamorphic insects are very different from the adult ones; so, after several successive molts they undergo their last change, through which it emerges a winged adult able to breed. After reaching this phase, these insects become unable to molt again.

Types of metamorphosis in insects

So, only Pterygota insects undergo a truly metamorphosis, thanks to which they become winged insects and also reach sexual maturity. But not all these insects perform the same kind of change.

There exist two main types of metamorphosis: the hemimetabolous one (simple or incomplete) and the holometabolous one (complex or complete). Which are their differences?

Hemimetabolous metamorphosis

In the simple, incomplete or hemimetabolous metamorphosis, young insects go through several successive molts until reaching adulthood (or imaginal) stage without going through a stage of inactivity (pupa) and/or stop feeding.

Just after hatching, we referred the newborn as a nymph, which resembles a little to the adult ones (but still not having wings nor sexual organs). Usually, nymphal phases and the adult ones don’t share feed sources nor habitat, so they occupy different ecological niches; in fact, most nymphs have aquatic habits and they go to live on land after reaching maturity (e.g. mayflies).

Haft
Adult specimen of the species of mayfly Ephemera danica (Imagen de Marcel Karssies).

In this kind of metamorphosis, nymphs go through some successive molts thanks to which wings are gradually formed and their organism becomes bigger. Finally, nymphs perform their last molt, after which the adult emerges: a winged organism that is able to breed.

Take a look to this scheme that sums up this process:

heterometabolo
______Hemimetabolous development of a _______grasshopper (imagen extraída de ________________asturnatura.com)

These insects are also called Exopterygota (from Latin exo- = “outside” + pteron = “wings”), because in these organisms the wings are progressively and visibly formed at the outside part of their body.

Holometabolous metamorphosis

In general terms, it’s considered the most radical metamorphosis in insects and also probably the most well known transformation by all of us. The most famous example is the one performed by lepidopterans (butterflies and moths); but there are also more insects that are holometabolous, such as coleopterans (beetles), hymenopterans (bees, wasps and ants) and dipterans (flies and mosquitoes).

In the complex, complete or holometabolous metamorphosis, insects are born as larvae, that is, a premature stage that doesn’t resemble anatomically nor physiologically to the adult. In addition, they don’t share feed sources nor habitat, as it is the case of hemimetabolous organisms. As in hemimetabolous insects, these larvae go through successive molts until reaching the size enough to undergo the metamorphosis, when they perform their last molt.

Beetle larva (“Curl grub” by Toby Hudson – Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons).

After their last larval stage, larvae enter in a stage of inactivity, moment they stop feeding and remain motionless. This stage is known as pupal stage (when they become a pupa or a chrysalis in butterflies). Usually, larvae begin to resemble to the adults at the end of this stage due to the anatomical modifications that take place and also to the appearance of new organs and tissues.

Cetoine_global
Pupal stage of Cetonia aurata (Coleoptera) (“Cetoine global” by Didier Descouens – Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons)

Once the transformation process ends, the organisms leave that motionless state and acquire their adult form that has wings and is totally mature.

In summary, the scheme of this process could be:

metamorfosis
Holometabolous development of a lepidopteran (Picture from _________________________astrunatura.com)

In contrast with hemimetabolous insects, the appearance of wings in holometabolous organisms takes place inside their body and become visible only at the end of the pupal stage. For this reason, they are also known as Endopterygota (from Latin endo-= “inside” + pteron=”wings”).

Origin and function of insect metamorphosis

Origin: the fossil record

Insects are, as we discussed in previous articles, one of the animals with greater evolutionary success. Between 40%-60% of all insect species are holometabolous (complete metamorphosis), because of what we deduce that holometabolous metamorphosis was positively selected during the evolution of this group. In fact, fossil records suggest that this kind of metamorphosis appeared only once, so all holometabolous insects derive from the same ancestor.

According to these data, wingless insects or ancient Apterygota and early winged insects were ametabolous. Then, all winged insects started to develop some kind of hemimetabolous metamorphosis during the Carboniferous and the Permian (300 Ma). Finally, the first insects considered as holometabolous appeared during the Permian period (280 Ma).

What could be the reason of this positively selection?

In the latest paragraphs, we talked about the different feeding sources and habitats of both youth and adult. The fact that different life stages of the same animal exploit different resources could prevent the intraespecífic competition (i.e. competition for resources between organisms of the same species). This fact would mean a great advantage for these organisms, so that holometabolous development, which is characterized for being divided in very different stages, could have been more successful than the hemimetabolous or the ametabolous.

Thus, we can say the main functional sense of metamorphosis could be to minimize the intraespecífic competition for resources. But there is still more: the more specialized are the different stages of an insect, the greater would be the chance to exploit more and better the resources. E.g. in parasitic forms, the differences between different stages tend to be huge, because the difficult situations they have to face require a specific specialization in each moment of the life cycle.

Sin título
Larva and adult of Danaus plexippus (monarch butterfly) (sources: larva picture by Victor Korniyenko, Creative Commons; adult picture of public domain).

.        .         .

So, likewise the appearance of wings promoted the expansion and diversification of insects worldwide, the metamorphosis could have acted as a diversifying engine by increasing the capacity to exploit more and better resources.

REFERENCES

Main picture by Steve Greer Photography.

Difusió-anglès

Flying made insects more diverse

The appearance of insect wings represented an adaptive improvement in the evolutionary history of these organisms, since they allowed them to spread and diversify across all kind of habitats. It is precisely for these events that wings are very diverse organs which have undergone a lot of changes.

In the following article, I will talk about the appearance of wings as elements that have ensured the diversification of insects, and also about the evolution of these organs and about their subsequent changes.

Introduction

Insects form the most diverse and successful group among the current fauna, and they’re also the unique invertebrates capable to fly. Even though they almost haven’t change since their appearance during the Devonian era (395-345Ma), the appearance of wings and of the ability to fly (alongside with other events that took place at the same time) allowed them to diversify rapidly.

Línea-geológica
Timeline of geological eras. Hexapoda and also insects appeared during the Devonian era (Picture from buglady.org).

Nowadays, there are almost 1 million of species of insects identified, and it’s known that there are lots of them waiting to be identified.

When winged insects appeared?

As you probably know, not all insects worldwide have wings: there are apterous insects (that is, insects without wings), which form the Apterygota group, and winged insects or Pterygota (is interesting to say that some organisms of this group have lost their wings later).

The most ancient winged insect is probably Delitzchala bitterfeldensis, an organism from the Palaeodictyoptera group dated from early Carboniferous in Germany (50Ma after the appearance of insects during the Devonian era, more or less).

Approximated representation of a Palaeodictyoptera. In contrast with current insects, these ones had three pair of wings instead of only one or two (the first one was probably a couple of little lobes located near the head) (Picture from Zoological excursions on Lake Baikal).

However, the fossil remains of the most ancient insect known nowadays, Rhyniognatha hirsti (dated from the early Devonian in Scotland, which was found in the “Rhynie Chert” sedimentary deposit), which has no wings, reveal that this insect shares some traits with winged insects (Pterygota). According to this, the origin of insect wings could be more ancient (probably from the Devonian or even more ancient).

We are still far from knowing the exact moment when the appearance of winged insects took place. But, despite of this, we can affirm that the ability to fly allowed them to reach new habitats, looking for more and better food and also run away from predators more easily. These events have provided a huge evolutionary advantage to insects and allowed them to diversify.

How did wings appeared?

Discrepancies toward the origin and evolution of insect wings is not limited only to “when ” , but also “how”: How did they appeared? Which structures from ancient insects have been modified to become wings?

There exist 4 hypothesis that try to explain the way wings were formed from different ancient organs: branchial hypothesis, stigmatic hypothesis, parapodial hypothesis and paranotal hypothesis.

First of all, and in order to understand all these hypothesis way better, we need to know the basis of corporal structure of insects. Let’s see the body scheme of a cricket (Orhoptera order):

Body scheme of a generic insect. There are 3 principal segments: 1) Head, where central nervous system and feeding functions are located, 2) Thorax, which has a locomotor function (here we can find all the appendices, including wings in winged insects); it’s divided in three parts: prothorax, mesothorax and metathorax; 3) Abdomen, in this segment we can usually find all the visceral organs. Moreover, we can also find the spiraculi located at both soft sides of its body, that is, holes that connect with the tracheal system and through where the exchange of gases takes place (Picture from Asturnatura).

 

Representation of the tracheal or respiratory system of an insect. This system is branched into the organism (Picture by M. Readey, Creative Commons).

 

So now, which are these hypothesis?

1) Branchial hypothesis 

According to this hypothesis, ancient Pterygota insects were aquatic organisms that were derived from terrestrial insects that got adapted to live underwater. Those ancestors breathed, as current insects, through spiracles connected to a net of internal pipes or tracheas. During the adaptation process to aquatic environment, these insects developed branchial or gill sheets on those spiracles in order to breathe underwater. Then, when they migrated back from aquatic to terrestrial environment, these sheets lost their ancient function and became a kind of wings.

According to recent data, it’s considered one of the most plausible hypothesis.

2) Stigmatic hypothesis

In the thoracic region, that is, where legs and wings born, the respiratory spiracles tend to be closed. According to this hypothesis, wings could be tracheal pipes expeled to the outside of the body in the thoracic region.

3) Parapodial hypothesis

This is a very simple hypothesis: it tells us that wings were formed by modified legs.

4) Paranotal hypothesis

A few years ago it was considered the most  plausible hypothesis, but now it competes with the brancial hypothesis. This is the most accepted hypothesis about the origin of insect’s wings. According to this hypothesis, wings were formed by the expansions of the tegumentary membrane located at both sides of the body, that is, the space located between the dorsal and the ventral surface of the body.

The expansions are known as “paranotes” (these structures gave the name to the paranotal hypothesis).

Ancient vs modern: Paleoptera and Neoptera

Nowadays, mostly of insects presents only one or two pairs of wings located, respectively, in the mesothorax and in the metathorax (middle and posterior segments), and not three pairs, as ancient insects usually had.

The way the two pairs of wings are articulated with the thorax, together with their position, allow us to differentiate two main groups of winged insects or Pterygota: Paleoptera and Neoptera.

Paleoptera

Generally, the Paleoptera insects can’t fold up the wings over the abdomen (this is an ancient condition). Moreover, the two pairs of wings are similar both in size and function, and also in the disposition of the veins that travel under their surface. Inside this group we find organisms from the Ephemeroptera order (for more information, take a look to my article about bioindicators), from Odonata order and also from the Palaeodictyoptera group, now extinguished.

An specimen of Odonata with its four wings unfolded because it has no way to fold up them over the abdomen (Picture by Ana_Cotta on Flickr, Creative Commons).

Neoptera

This group contain the rest of winged insects. Contrary to the ones explained above, Neoptera insects possess articulations that allow them to fold up the wings over the abdomen. Moreover, their wings are not always equal , and they can develop another functions (and new ones as well).

The wings of many groups of Neoptera insects have undergone a lot of secondary modifications, which allowed flying insects to diversify even more. Next, I will talk you about these secondary modifications.

An specimen of Diptera with its wings folded over its abdomen thanks to their articulations (Picture by Sander van der Wel on Flickr, Creative Commons).

Secondary modification of Neoptera’s wings

Generally, one of the two pairs of wings assumes the flying function (the ‘main wings’) while the other pair subordinates to the main one. This subordination can be expressed in two ways: 1) without external modifications (the subordinated pair of wings is limited to assist the main pair during the flight), 2) with secondary modifications, so the modified wings assume a new function.

Some Neoptera insects have undergone drastic modifications in one of the two pairs of wings. Let’s see some examples:

COLEOPTERA (beetles): the forewings, known as elytra, are a very hard structures that protect the rest of the body when they’re folded up. In this case, the hind wings are the main ones, so they assume the function of flying.

An specimen of a longhorn coleopter taking off. In this picture we can appreciate the forewings transformed into elytrum and the hind ones assuming the flying function (Picture by Matthew Fang on Flickr, Creative Commons).

HETEROPTERA (greenflies, cicadas, bedbugs): the forewings, known as hemelytra, aren’t completely hardened as in the case of beetles: only de proximal part is hardened, while the distal part has a membrane texture.

2628904535_09cbc0efbb
An specimen of Kleidocerys reseda (Picture by Mick Talbot on Flickr, Creative Commons).

POLINEOPTERA: in both cases that I’ve explained above, the hardening process of the forewings entails the loss of their veins; in Polineoptera insects (for example, cockroaches), the forewings are harder than the hind ones, but they retain their veins.

American-cockroach_polineoptera
An specimen of Periplaneta americana (american cockroach). Its wings are plenty of veins (Picture by Gary Alpert, Creative Commons).

DIPTERA and HIMENOPTERA (flies and mosquitoes; wasps, bees and ants): in this case, the forewings assume the flying function; on the other hand, the hind wings get reduced or modified, and sometimes they don’t appear. The hind wings of flies became equilibrium organs, the halteres.

halterios_dípteros_moscas-y-mosquitos
An specimen of crane fly (Tipulidae). The halteres (red circle) are located behind the forewings (Public domain picture).

ALTRES MODIFICACIONS: we can also talk about the changes in the shape, color, presence of filaments or scales, or even about the variations according to sex, hierarchy or geography location (for example, thats the case of ants or termites).

.              .             .

The origin and evolution of insect wings is still a fact waiting to be solved. Even so, independently of the moment and the way this event took place, is undeniable that wings have become key organs for the evolution and diversification of insects.

REFERENCES

Top picture by USGS Bee Inventory and Monitoring Lab (Creative Commons).

Difusió-anglès

Volar hizo a los insectos mucho más diversos

La aparición de las alas en los insectos supuso un gran salto adaptativo en la historia evolutiva de estos organismos, ofreciéndoles la posibilidad de dispersarse y diversificarse por todo tipo de hábitats. Es precisamente por esto que no debería extrañarnos que se trate de órganos con muchas variaciones y modificaciones.

En el siguiente artículo, os hablaré de la aparición de las alas como elementos que hicieron a los insectos mucho más diversos, la evolución de estos órganos y sus posteriores modificaciones.

Introducción

Los insectos constituyen el grupo más diverso y con mayor éxito evolutivo de la fauna actual, siendo, además, los únicos invertebrados capaces de volar. Aunque desde su aparición en el Devónico (hace aprox. 395-345MA) su estructura corporal apenas ha cambiado, la aparición de las alas y de la capacidad de volar (junto a otros fenómenos paralelos) los hizo diversificarse rápidamente.

Línea-geológica
Línea temporal de las eras geológicas. Durante el Devónico tuvo lugar la aparición de los Hexápodos y, entre éstos, los insectos (Imagen de buglady.org).

Actualmente, el número de especies de insectos identificadas asciende a más de un millón, y se estima que quedan aún muchas más por identificar.

¿Cuándo aparecieron los insectos con alas?

Como seguramente sabréis, no todos los insectos que encontramos a nuestro alrededor tienen alas: los hay ápteros (sin alas) o Apterygota, y alados o Pterygota (cabe decir que hay algunos dentro de este grupo que, secundariamente, han perdido las alas).

El insecto con alas más antiguo conocido es Delitzchala bitterfeldensis, un organismo del grupo Palaeodictyoptera datado del Carbonífero temprano en Alemania (unos 50MA posteriores a la aparición de los insectos en el Devónico).

Representación aproximada de un Palaeodictyoptera; a diferencia de los insectos actuales, éstos tenían tres pares de alas en lugar de uno o dos (el primer par serían, posiblemente, dos lóbulos de pequeño tamaño situados cerca de la cabeza) (Imagen de Zoological excursions on Lake Baikal).

Sin embargo, los restos fósiles del insecto más antiguo conocido, Rhyniognatha hirsti (del Devónico en Escocia, procedentes del yacimiento “Rhynie Chert”), el cual no presenta alas, rebelan que éste compartía algunos caracteres con los insectos alados o Pterygota, de manera que el origen de las alas podría ser más primitivo de lo que se pensaba (del Devónico, o incluso anterior).

Lejos aún de conocer el momento exacto en el que tuvo lugar la aparición de las alas en los insectos, sí podemos afirmar que la capacidad para volar les dotó de una ventaja adaptativa enorme, permitiéndoles emprender la búsqueda de nuevos hábitats, comida y huir más fácilmente de los depredadores, diversificándolos aún más.

¿Cómo aparecieron las alas?

Las discrepancias sobre el origen y evolución de las alas en los insectos no se limita únicamente al “cuándo”, sino también al “cómo”: ¿Cómo aparecieron? ¿Qué estructuras corporales de los insectos primitivos dieron lugar a las alas?

Existen, básicamente, 4 teorías que intentan describir la aparición de las alas: teoría branquial, teoría estigmática, teoría parapodial y teoría paranotal.

Antes de nada, y para entender mejor estas teorías, necesitamos conocer los segmentos básicos en los que se divide el cuerpo de un insecto. Veamos este esquema del cuerpo de un grillo (Ortóptero):

Esquema de las partes de un Ortóptero (grillo). Hay 3 segmentos principales: 1) Cabeza, centralización nerviosa e ingestión, 2) Tórax, función locomotora, de él nacen las patas y, en los grupos alados, también las alas; dividido en tres partes: protórax, mesotórax y metatórax; 3) Abdomen, donde se concentra la mayoría de órganos. Además, también vemos los espiráculos situados en los laterales blandos del cuerpo del insecto, orificios que conectan con el sistema traqueal o respiratorio y por donde se intercambian gases con el medio. (Imagen de Asturnatura).

 

599px-Generalized_Insect_Traceal_System
Representación del sistema traqueal o respiratorio de un insecto. Este sistema se ramifica en el interior del organismo (Imagen de M.Readey, Creative Commons).

 

Ahora sí, ¿cuáles són estas teorías?

1) Teoría branquial

Según esta teoría, los insectos alados o Pterygota primitivos eran acuáticos, pero procedían de insectos terrestres que se habrían adaptado a la vida en el agua. Estos antepasados respiraban, como los insectos de hoy en día, a través de espiráculos conectados a una red de tubos internos o tráqueas. En su paso al medio acuático, habrían desarrollado unas láminas branquiales en dichos espiráculos para respirar bajo el agua, las cuales, al migrar de nuevo al medio terrestre, habrían perdido su función primitiva y se habrían transformado en una especie de “alas”.

Según datos recientes, se considera una de las teorías más plausibles.

2) Teoría estigmática

En la región del tórax, es decir, de donde nacen las patas y las alas, los espiráculos respiratorios suelen estar cerrados, por lo que, según esta teoría, las alas podrían ser tráqueas expulsadas hacia el exterior a través de estos espiráculos torácicos (como si le diéramos la vuelta a un calcetín, y la abertura del calcetín equivaliese al espiráculo).

3) Teoría parapodial

Esta teoría es muy fácil de explicar: nos dice que las alas se formaron a partir de patas modificadas.

4) Teoría paranotal

Hasta hace nada era la teoría más aceptada, aunque a día de hoy compite con la teoría branquial. Según esta teoría, las alas se habrían originado por expansión de la membrana tegumentaria situada entre la parte dorsal y la ventral del cuerpo (es decir, la única línea membranosa y blanda situada en los costados del cuerpo).

Estas expansiones reciben el nombre de “paranotos” (de ahí el nombre de la teoría).

Primitivo vs moderno: Paleópteros y Neópteros

En la actualidad, la mayoría de insectos presenta únicamente uno o dos pares de alas situadas en el mesotórax y el metatórax respectivamente (segmentos medio y posterior del tórax), y no tres como sus antepasados.

La forma como se articulan los dos pares de alas y su posición en el tórax nos permite diferenciar dos grandes grupos de insectos alados o Pterygota en la actualidad: Paleópteros y Neópteros.

Paleópteros

Por lo general, los paleópteros no pueden doblar las alas y replegarlas sobre el abdomen (condición primitiva), y los dos pares de alas son similares tanto en tamaño y función, como en la disposición de las venas que las recorren. Dentro de este grupo encontramos a las efémeras (de las cuales os hablé en el artículo sobre bioindicadores del mes pasado), los odonatos y los ya extintos paleodictiópteros.

Ejemplar de odonato posado con las alas (ambas iguales) desplegadas debido a su incapacidad para replegarlas sobre el abdomen (Foto de Ana_Cotta en Flickr, Creative Commons).

Neópteros

En este grupo se sitúa todo el resto de insectos con alas. A diferencia de los anteriores, los neópteros tienen “articulaciones” que les permiten plegar las alas sobre el abdomen; además, las alas no son siempre iguales y pueden asumir otras funciones diferentes al vuelo.

Las alas de muchos neópteros han sufrido modificaciones secundarias, las cuales han diversificado aún más a los insectos voladores.  A continuación, os hablaré de algunas de estas modificaciones.

Ejemplar de díptero con las alas plegadas sobre el abdomen gracias a su articulación con el tórax (Imagen de Sander van der Wel en Flickr, Creative Commons).

Modificaciones secundarias de las alas en los Neópteros

Dado que las alas han supuesto una ventaja adaptativa enorme para los insectos, no es de extrañar que se trate de elementos sujetos a muchas modificaciones.

Por lo general, uno de los dos pares de alas siempre asume la función principal del vuelo y el otro par se subordina. Esta subordinación puede expresarse de varias formas: bien sin modificaciones externas aparentes (el par subordinado se limita a asistir al par principal en la función de vuelo) o bien modificándose secundariamente para asumir una nueva función.

Algunos Neópteros han experimentado modificaciones drásticas en alguno de los dos pares de alas, asumiendo éstas nuevas funciones:

COLEÓPTEROS (escarabajos): las alas anteriores, conocidas como élitros, están muy endurecidas y protegen el resto del cuerpo cuando están plegadas. Las alas posteriores asumen la función de vuelo.

Coleóptero alzando el vuelo. Se pueden apreciar las alas anteriores convertidas en élitros (alas endurecidas) y las alas posteriores que asumen la función del vuelo (Foto de Matthew Fang en Flickr, Creative Commons).

HETERÓPTEROS (pulgones, cigarras, chinches): las alas anteriores, conocidas como hemélitros, no están completamente endurecidas como en los coleópteros: únicamente la parte superior se endurece, dejando la parte inferior de consistencia membranosa.

2628904535_09cbc0efbb
Ejemplar de Kleidocerys reseda (Foto de Mick Talbot en Flickr, Creative Commons).

POLINEÓPTEROS: En los dos casos anteriores, el endurecimiento conlleva una pérdida de la venación típica de las alas; en los polineópteros (p.ej. cucarachas), las alas anteriores son más duras que las posteriores, pero conservan su venación.

American-cockroach_polineoptera
Ejemplar de Periplaneta americana (cucaracha americana). Las alas están surcadas de venaciones (Foto de Gary Alpert, Creative Commons).

DÍPTEROS e HIMENÓPTEROS (moscas y mosquitos; avispas, abejas y hormigas): tiene lugar el proceso contrario y la función de vuelo la asumen las alas anteriores, mientras que el segundo par se reduce o, incluso, se modifica, llegando a no aparecer. En las moscas, p.ej, el segundo par ha dado lugar a los halterios o balancines, órganos de equilibrio.

halterios_dípteros_moscas-y-mosquitos
Ejemplar de tipúlido (Tipulidae). Los halterios (círculo rojo) se encuentran detrás de las alas anteriores (Foto de dominio público).

OTRAS MODIFICACIONES: También podemos hablar de variaciones en la forma, la pigmentación, aparición de pelos o escamas, o incluso de las variaciones según el sexo, la jerarquía o la geografía (p.ej, hormigas, termitas, etc.).

.              .             .

El origen y evolución de las alas es un tema aún por resolver. Mas, independientemente del momento y la forma cómo se desarrollaron a partir de organismos primitivos, es indiscutible el hecho de que se trata de órganos con un papel clave en la evolución y diversificación del conjunto.

REFERENCIAS

Foto de portada por USGS Bee Inventory and Monitoring Lab (Creative Commons).

Difusió-castellà

 

 

Volar va fer els insectes molt més diversos

L’aparició de les ales en els insectes va suposar un gran salt adaptatiu dins la història evolutiva d’aquests organismes, atès que els va oferir la possibilitat de dispersar-se i diversificar-se per tot tipus d’hàbitats. És precisament per això que no ens hauria d’estranyar que es tracti d’òrgans subjectes a moltes variacions i modificacions.

En el següent article, us parlaré sobre l’aparició de les ales com a elements que van fer els insectes molt més diversos, l’evolució d’aquests òrgans i les seves posteriors modificacions.

Introducció

Els insectes constitueixen el grup més divers i de major èxit evolutiu de la fauna actual, essent, a més a més, els únics invertebrats capaços de volar. Encara que des de la seva aparició durant el Devònic (fa aprox. 395-345MA) la seva estructura corporal quasi no ha canviat, l’aparició de les ales i de la capacitat per volar (juntament a altres fenòmens que tingueren lloc paral·lelament) els va fer diversificar-se ràpidament.

Línea-geológica
Línia temporal de les eres geològiques. Durant el Devònic va tenir lloc l’aparició dels Hexàpodes i, dins d’aquests, dels insectos (Imagen de buglady.org).

Actualment, el número d’espècies d’insectes identificades ascendeix a més d’un milió, i s’estima que encara queden moltes més per identificar.

Quan van aparèixer els insectes amb ales?

Com ja sabreu segurament, no tots els insectes que trobem al nostre voltant tenen ales: n’hi ha d’àpters (sense ales) o Apterygota, i alats o Pterygota (cal dir que hi ha alguns organismes dins d’aquest grup que han perdut les ales secundàriament).

L’insecte amb ales més antic conegut és Delitzchala bitterfeldensis, un organisme pertanyent al conjunt Palaeodictyoptera datat dels inicis del Carbonífer a Alemanya (uns 50MA posteriors a l’aparició dels insectes durant el Devònic).

Representació aproximada d’un Palaeodictyoptera; a diferència dels insectes actuals, aquests tenien tres parells d’ales enlloc d’un o dos (el primer parell es creu que eren dos petits lòbuls situats a prop del cap) (Imatge de Zoological excursions on Lake Baikal).

Ara bé, les restes fòssils de l’insecte més antic conegut, Rhyniognatha hirsti (del Devònic a Escòcia, procedents del jaciment “Rhynie Chert”), el qual no presenta ales, revelen que aquest compartia alguns trets amb els insectes alats o Pterygota. Segons això, l’origen de les ales podria ser encara més antic del que es pensava (del Devònic, o inclús més antic).

Lluny encara de conèixer el moment exacte en que tingué lloc l’aparició de les ales en els insectes, sí podem afirmar que la capacitat per volar els va oferir un avantatge evolutiu enorme, doncs els va permetre cercar nous hàbitats, més menjar i fugir més fàcilment dels seus depredadors, fet que els va diversificar encara més.

Com va aparèixer les ales?

Les discrepàncies envers l’origen i evolució de les ales en els insectes no es limita tant sols al “quan”, sinó també al “com”: Com van aparèixer? Quines estructures corporals dels insectes primitius donaren lloc a les ales?

Existeixen, bàsicament, 4 teories que intenten descriure la manera com tingué lloc l’aparició de les ales: teoria branquial, teoria estigmàtica, teoria parapodial i teoria paranotal.

Abans de res, però, i amb la fi d’entendre millor aquestes teories, necessitem conèixer els segments bàsics en què es divideix el cos d’un insecte. Veiem aquest esquema del cos d’un grill (ordre dels ortòpters):

 

Esquema de les parts d’un ortòpter. Hi ha tres segments principals: 1) Cap, centralització nerviosa i ingestió; 2) Tòrax, funció locomotora, d’ell neixen les potes i, en els grups voladors, també les ales; es troba dividit en tres parts: protòrax, mesotòrax i metatòrax; 3) Abdomen, on es concentra la majoria dels òrgans. A més a més, també hi podem veure els espiracles situats als laterals tous del cos de l’insecte, orificis que connecten amb el sistema traqueal o respiratori i per on té lloc l’intercanvi de gasos amb el medi (Imatge de Asturnatura).

 

TRÀQUEA_català
Representació del sistema traqueal o respiratori d’un insecte. Aquest sistema es ramifica a l’interior de l’organisme (Imatge de M.Readey, Creative Commons).

 

Ara sí, quines són aquestes teories?

1) Teoria branquial

Segons aquest teoria, els insectes voladors o Pterygota primitius eren aquàtics, però procedien d’insectes terrestres que s’haurien adaptat a la vida dins l’aigua. Aquests avantpassats respiraven, com els insectes d’avui dia, a través d’espiracles connectats a una xarxa de tubs interns o tràquees. Durant el seu pas al medi aquàtic, haurien desenvolupat unes làmines branquials en aquests espiracles per respirar sota l’aigua, les quals, en el moment de migrar de nou al medi terrestre, haurien perdut la seva funció primitiva i s’haurien transformat en una mena d’ales.

Segons dades recents, es considera una de les teories més factibles.

2) Teoria estigmàtica

A la regió del tòrax, és a dir, on neixen les potes i les ales, els espiracles respiratoris tendeixen a estar tancats, motiu pel que, segons aquest teoria, les ales podrien ser tràquees expulsades cap a l’exterior a través d’aquests espiracles toràcics (ben bé com si donéssim la volta a un mitjó, i l’obertura del mitjó equivalgués a l’espiracle).

3) Teoria parapodial

Aquesta teoria és molt fàcil d’explicar: ens diu que les ales es van formar a partir de potes modificades.

4) Teoria paranotal

Fins fa poc era considerada a teoria més acceptada, però actualment competeix amb la teoria branquial. Segons aquesta, les ales s’haurien originat per expansió de la membrana tegumentària situada entre la part dorsal i la ventral del cos (és a dir, la única línia membranosa i tova situada als costats del cos).

Aquestes expansions reben el nom de “paranots” (d’aquí el nom de la teoria).

Primitiu vs modern: Paleòpters i Neòpters

Actualment, la majoria d’insectes presenta únicament un o dos parells d’ales situades al mesotòrax i al metatòrax respectivament (segments mitjà i posterior del tòrax), i no tres com els seus avantpassats.

La forma com s’articulen els dos parells d’ales i la seva posició al tòrax ens permet diferenciar dos grans grups d’insectes voladors o Pterygota a l’actualitat: Paleòpters i Neòpters.

Paleòpters

Generalment, els paleòpters no poden doblegar les ales i replegar-les sobre l’abdomen (condició primitiva); alhora, els dos parells d’ales són similars tant en mida i funció, com en la disposició de les venes que les recorren. Dins d’aquest grup trobem les efèmeres (de les quals ja us en vaig parlar a l’article sobre bioindicadors del mes passat), els odonats i els ja extints paleodictiòpters.

Exemplar d’odonat amb les ales (ambdues iguals) desplegades degut a la seva incapacitat per a replegar-les sobre l’abdomen (Foto de Ana_Cotta a Flickr, Creative Commons).

Neòpters

Dins d’aquest grup hi trobem tota la resta d’insectes amb ales. A diferència dels anteriors, els neòpters posseeixen “articulacions” que els permeten plegar les ales sobre l’abdomen; a més a més, les ales no són sempre iguals i poden desenvolupar altres funcions diferents al vol.

Les ales de molts grups de neòpters han patit modificacions secundàries, les quals han diversificat encara més els insectes voladors. A continuació, us parlaré d’algunes d’aquestes modificacions.

Exemplar de dípter amb les ales plegades sobre l’abdomen gràcies a la seva articulació amb el tòrax (Imatge de Sander van der Wel a Flickr, Creative Commons).

Modificacions secundàries de les ales dels Neòpters

Atès que les ales han suposat un avantatge adaptatiu enorme pels insectes, no ens hauria d’estranyar que es tracti d’elements subjectes a moltes modificacions.

Generalment, un dels dos parells d’ales assumeix sempre la funció principal del vol mentre que l’altre parell es subordina. Aquesta subordinació pot expressar-se de diverses formes: bé sense modificacions externes aparents (el parell subordinat es limita a assistir el parell principal durant el vol) o bé modificant-se secundàriament per assumir una nova funció.

Alguns neòpters han experimentat modificacions dràstiques en algun dels dos parells d’ales, els quals han assumit noves funcions:

COLEÒPTERS (escarabats): les ales anteriors, conegudes com a èlitres, estan molt endurides i protegeixen la resta del cos de l’insecte quan estan plegades. Les ales posteriors assumeixen la funció del vol.

Coleòpter enlairant-se. Es poden apreciar les ales anteriors transformades en èlitres (ales endurides) i les ales posteriors que assumeixen la funció del vol (Foto de Matthew Fang a Flickr, Creative Commons).

HETERÒPTERS (pugons, cigales, xinxes): les ales anteriors, conegudes com a hemèlitres, no estan completament endurides com en els coleòpters: únicament la part superior s’endureix, deixant la part inferior de consistència membranosa.

2628904535_09cbc0efbb
Exemplar de Kleidocerys reseda (Foto de Mick Talbot a Flickr, Creative Commons).

POLINEÒPTERS: en els dos casos anteriors, l’enduriment comporta una perdia de la venació típica de les ales; en els polineòpters (p.ex. paneroles), les ales anteriors són més dures que les posteriors, però conserven la seva venació.

American-cockroach_polineoptera
Exemplar de Periplaneta americana (panerola americana). Les ales estan solcades de venacions (Foto de Gary Alpert, Creative Commons).

DÍPTERS i HIMENÒPTERS (mosques i mosquits; vespes, abelles i formigues): hi té lloc el procés contrari, doncs la funció del vol l’assumeixen les ales anteriors, mentre que el segon parell es redueix o, fins i tot, es modifica, arribant a no aparèixer. A les mosques, p.ex., el segon parell ha donat lloc als halteris, uns òrgans d’equilibri.

halterios_dípteros_moscas-y-mosquitos
Exemplar de tipúlid (Tipulidae). Els halteris (cercle vermell) es situen darrere de les ales anteriors (Foto de domini públic).

ALTRES MODIFICACIONS: també podem parlar de variacions en la forma, la pigmentació, aparició de pèls o escates, o fins i tot de les variacions segons el sexe, la jerarquia o la geografia (p.ex., formigues, tèrmits, etc.).

.              .             .

L’origen i evolució de les ales és un tema que encara està pendent de resoldre. Tot i així, independentment del moment i la forma com van desenvolupar-se a partir d’organismes primitius, és indiscutible el fet que es tracta d’òrgans amb un paper clau en l’evolució i diversificació del conjunt.

REFERÈNCIES

Foto de portada per USGS Bee Inventory and Monitoring Lab (Creative Commons).

Difusió-català