Arxiu d'etiquetes: pulmons

Com respirar sense pulmons, a l’estil lissamfibi

Tot i que la majoria de vertebrats terrestres depenem dels pulmons per realitzar l’intercanvi de gasos, els lissamfibis presenten a més respiració cutània, respiren a través de la pell. Tot i que això pot semblar un desavantatge, ja que han de mantindre la pell relativament humida, en aquesta entrada veurem els avantatges que els confereix la respiració cutània i com en alguns grups, aquesta ha substituït completament la respiració pulmonar.

RESPIRAR AIGUA O AIRE

Els vertebrats terrestres utilitzem els pulmons per a realitzar l’intercanvi de gasos. Tot i que els nostres avantpassats aquàtics respiraven mitjançant brànquies, aquestes no serveixen en el medi terrestre, ja que la gravetat faria que es colapséssin i perdessin la seva estructura. Els pulmons, com que es troben a l’interior del cos, poden mantindre la seva estructura en un ambient amb força més gravetat. Tant les brànquies com els pulmons presenten estructures molt ramificades per augmentar la superfície de difusió i així, afavorir l’intercanvi de gasos (a major superfície, més intercanvi).

Giant_Mudskipper_(Periophthalmodon_schlosseri)_(15184970133)Espècimen de saltador del fang gegant (Periophthalmodon schlosseri), un peix del sud-est asiàtic que pot sortir de l’aigua gràcies en part, a la respiració cutània. Foto de Bernard Dupont.

Tanmateix, entre els vertebrats existeix una tercera forma d’intercanvi de gasos. Tot i que no està tant extesa com les brànquies o els pulmons, la respiració cutània la trobem en varis grups d’animals, com els peixos pulmonats i alguns rèptils marins (tortugues i serps marines). Tanmateix, els lissamfibis són el grup que ha dut l’especialització en la respiració cutània a l’extrem.

COM RESPIREN ELS LISSAMFIBIS?

Els lissamfibis actuals són el grup de tetràpodes que presenten major diversitat d’estratègies respiratòries. A part de la respiració cutània present en totes les espècies, la majoria de lissamfibis neixen en un estat larvari aquàtic amb brànquies i després de la metamorfosi, desenvolupen pulmons per a respirar a terra ferma.

Les larves dels urodels i els àpodes presenten brànquies externes filamentoses i molt ramificades que els permeten respirar sota l’aigua. Aquestes han d’estar en moviment constant per a que hi hagi intercanvi de gasos. Algunes espècies de salamandres neotèniques mantenen les brànquies durant l’edat adulta. En canvi, els capgrossos dels anurs presenten brànquies internes cobertes per sacs branquials.

Salamander_larva_closeupRetrat d’una larva de salamandra en la que s’aprecien les brànquies ramificades i filamentoses. Foto de Brian Gratwicke.

La majoria de lissamfibis terrestres presenten un parell de pulmons simples amb poques ramificacions i grans alveols. Aquests tenen una baixa taxa de difusió de gasos comparats amb els pulmons dels amniotes. A més, mentres que els amniotes ventilem els pulmons mitjançant l’expansió de la caixa torácica i el diafragma, els lissamfibis han de forçar l’aire als pulmons mitjançant un sistema de bomba bucal.

Four_stroke_buccal_pumpingEsquema del sistema de respiració pulmonar dels lissamfibis. En el sistema de bomba bucal, la cavitat bucal s’omple d’aire i després s’eleva el terra de la boca per forçar l’aire cap als pulmons. Imatge de Mokele.

A més de la respiració branquial o pulmonar, els lissamfibis oxigenen la sang per respiració cutània. La pell dels lissamfibis és molt prima i està molt capil·laritzada (tenen una gran quantiat de vasos sanguinis). Això fa que aquesta tingui una gran capacitat de difusió de molècules gasoses, permetent-los la respiració cutània mitjançant un sistema contracorrent.

600px-ExchangerflowEsquema modificat d’un sistema d’intercanvi contracorrent. En aquest, la sang desoxigenada (amb CO2) circula en direcció contrària a l’aire (carregat d’O2) i entre els dos fluids es dóna un intercanvi de gasos en un intent d’igualar la concentració dels dos gasos. Imatge modificada de Joe.

La pell dels lissamfibis difereix de la dels amniotes en que no presenta escates, plomes o pèl. Això fa que la pell dels lissamfibis sigui molt permeable tant pels gasos com per l’aigua (cosa que els converteix en grans bioindicadors dels ambients on viuen, ja que la seva pell absorbeix molts tipus de substàncies solubles). Per això els lissamfibis han de mantenir la pell relativament humida per a que l’intercanvi es pugui dur a terme.

KammolchmaennchenMascle de tritó crestat (Triturus cristatus) en la fase nupcial. Les amples crestes de la cua incrementen la superfície de pell augmentant la difusió de gasos. Foto de Rainer Theuer.

Els lissamfibis viuen constantment en un delicat equilibri en el que la pell s’ha de mantindre suficientment humida per a permetre l’intercanvi de gasos, però no tant permeable com per a que perdin aigua, es deshidratin i morin. Això ho aconsegueixen vivint en ambients humits, o bé creant capes de pell humida externes per a crear un ambient aquós al seu voltant.

Bombay_caecilianFoto d’una cecília de Bombai (Ichthyophis bombayensis) un lissamfibi que viu en fangars i altres hàbitats humits. Foto de Uajith.

Molts lissamfibis presenten una gran quantitat de pell, cosa que augmenta la superfície respiratòria. Alguns exemples són, les papil·les vasculars de la granota peluda (Trichobatrachus robustus), els plecs de pell de les granotes del gènere Telmatobius o les amples aletes caudals de molts tritons.

TrichobatrachusGreenDibuix de la granota peluda (Trichobatrachus robustus) on es veuen les papil·les que li dónen el nom. Imatge extreta de Proceedings of the Zoological Society of London (1901).

Tot i que la majoria de granotes obtenen gran part de l’oxigen pels pulmons durant l’estiu, durant les èpoques més fredes (quan el seu metabolisme es ralenteix) moltes espècies hivernen al fons de llacs glaçats, realitzant l’intercanvi de gasos exclusivament per via cutània.

6887057816_d68fccf4f4_oMolts lissamfibis de zones subàrtiques hivernen sota l’aigua, utilitzant la pell per extreure oxigen de l’aigua i expulsar diòxid de carboni de la sang. Foto de Ano Lobb.

Els urodels adults presenten molta més diversitat d’estratègies respiratòries i a més, hi trobem un dels únics grups de vertebrats terrestres que no presenten cap rastre de pulmons.

VIURE SENSE PULMONS

Dintre del subordre dels salamandroideus hi trobem la familia Plethodontidae. Aquests animals són coneguts popularment com a salamandres apulmonades ja que, com el seu nom indica, no tenen pulmons i depenen exclusivament de la pell per a realitzar l’intercanvi de gasos.

Kaldari_Batrachoseps_attenuatus_02Salamandra esvelta de Califòrnia (Batrachoseps attenuatus) fotografiada per Kaldari. Aquesta és un perfecte exemple dels cossos allargats i prims dels pletodòntids, que els facilita la difusió de gasos.

Aquests urodels es troben distribuïts principalment per les Amèriques, amb algunes espècies a l’illa de Sardenya i a la Península de Corea. El més sorprenent és que els pletodòntids, com la majoria de salamandroideus, són animals principalment terrestres i no presenten fase larvària aquàtica. Tot i que algunes espècies presenten brànquies durant l’estat embrionàri, aquests les perden abans de néixer i els pulmons mai s’arriben a desenvolupar.

Northern_red_salamander_(Pseudotriton_ruber)Foto de salamandra vermella (Pseudotriton ruber) un pletodòntid endèmic de la costa atlántica dels Estats Units. Foto de Leif Van Laar.

Es creu que aquesta familia va evolucionar en rius d’alta muntanya amb fortes corrents. La presència de pulmons els hauria fet flotar massa, cosa que els hagués dificultat el moviment en aquests hàbitats. Les aigües fredes dels rius alpins són riques en oxigen, fent que la respiració cutània fós suficient per aquests petits animals.

Vídeo de Verticalground100 on se’ns mostren algunes espècies de pletodòntids.

Una pell fina i vascularitzada (facilita la difusió) i l’evolució de cossos llargs i prims (facilita el transport d’O2 per tot el cos) va fer que els pulmons resultéssin inútils pels pletodòntids. Actualment les salamandres apulmonades són la família d’urodels més nombrosa, i representen més de la meitat de la biomassa animal en molts ecosistemes nord-americans. A més, són més actius que la majoria de lissamfibis, amb sistemes nerviosos i sensorials molt desenvolupats, sent depredadors voraços d’artròpodes i altres invertebrats.

3679651745_d678454a1b_oSalamandra zig-zag de Ozark (Plethodon angusticlavius) una curiosa salamandra apulmonada típica de l’estat de Missouri. Imatge de Marshal Hedin.

Com veieu la respiració cutània dels lissamfibis els permet fer coses que pocs tetràpodes poden fer. Passar tot un hivern submergits i viure a terra ferma sense pulmons són gestes increïbles reservades a un petit grup d’animals. Potser els lissamfibis encara depenen dels medi aquàtic per a sobreviure, però com hem vist, poca cosa tenen de lents i primitius, ja que presenten algunes de les adaptacions fisiològiques més impressionants del regne animal.

REFERÈNCIES

S’han utilitzat les següents fonts per a l’elaboració d’aquesta entrada:

Difusió-català

Com respiren els peixos?

El més probable és que sàpigues que la majoria de peixos que habiten al planeta Terra respiren gràcies a les brànquies. No obstant, no és l’únic sistema de respiració que hi ha en els peixos. En aquest article farem un repàs sobre els diferents tipus d’aparells respiratoris que presenten els peixos. 

INTRODUCCIÓ

L’aparell respiratori dels peixos ha d’estar adaptat a dues limitacions importants per a la vida dels animals aquàtics. Per una banda, la quantitat d’oxigen dissolt en l’aigua és molt més petit que en l’aire: a una temperatura de 23ºC, l’aire presenta 210 ml d’oxigen per cada litre d’aigua, mentre que per l’aigua dolça és de 6,6 ml/l i en la salada és de 5,3 ml/l. Per altra banda, l’aigua és molt més densa i viscosa que l’aire. Tot això explicarà les adaptacions en la respiració en aquest grup d’animals.

RESPIRACIÓ PER BRÀNQUIES

La cavitat bucal dels peixos teleostis (peixos ossis moderns) es comunica amb l’exterior a través de la boca i de les fenedures branquials, unes obertures laterals presents en la faringe en les quals es desenvolupen les brànquies. Gràcies a l’opercle, una estructura sòlida situada a cada costat del cap, les brànquies queden protegides.

L’estructura de les brànquies és complexa. A partir dels arcs branquials, unes estructures corbades que passen a través de les fenedures branquials a cada costat del cap, es desenvolupen dues fileres de filaments branquials, disposats entre ells formant una V. D’aquests filaments parteixen un conjunt de plegaments anomenats lamel·les secundàries, disposades perpendicularment al filament. A cada costat del filament trobem entre 10 i 40 lamel·les per mm. Així doncs, és en aquestes laminilles secundàries on té lloc l’intercanvi de gasos, ja que estan formades per una paret molt prima de teixit i estan molt ben vascularitzades.

Estructura del sistema branquial dels peixos (Foto: Biologia cuaderno).
Estructura del sistema branquial dels peixos (Foto: Biología cuaderno).

Així doncs, l’aigua que entra per la boca carregada amb oxigen, passa a través de les brànquies i surt per l’opercle; mentre que la sang circula en sentit contrari a través de les lamel·les per atrapar el màxim d’oxigen.

Les larves de molts peixos presenten brànquies externes a cada costat del cap. En la resta de fases, les brànquies es tornen internes. Els peixos amb respiració branquial són les mixines, les llampreses, els elasmobranquis i els peixos ossis.

Les mixines són peixos amb respiració branquial (Foto: Natureduca).
Les mixines són peixos amb respiració branquial (Foto: Natureduca).

RESPIRACIÓ AMB PULMONS

Es coneixen unes 400 espècies de peixos ossis, la majoria d’aigua dolça, que poden utilitzar l’aire per a respirar. La majoria, però conserva les brànquies i utilitza els dos sistemes per a respirar. Els peixos amb els dos mecanismes tendeixen a utilitzar més l’aire que l’aigua en certes ocasions:

  • Quan el nivell d’oxigen de l’aigua disminueix.
  • Quan augmenta la temperatura, ja que a més temperatura incrementen les necessitats d’oxigen.

Els peixos amb un sistema més avançat són les sis espècies de peixos pulmonats (dipnous). Els seus pulmons presenten un conjunt de crestes i envans semblants a les parets dels pulmons de moltes amfibis. El peix pulmonat australià (Neoceratodus) pot respirar tant amb brànquies com a través d’un pulmó. Les espècies africanes (Protopterus) i la sud-americana (Lepidosiren) respiren a través de pulmons bilobulats i les brànquies són molt senzilles. Aquests peixos necessiten respirar aire obligatòriament, doncs en cas contrari moren.

Peixos pulmonats: Peix pulmonat australià (Neoceratodus forsteri), africà (Protepterus annectens) i sud-americà (Lepidosiren paradoxa) (Foto: Encyclopaedia Britannica).
Peixos pulmonats: Peix pulmonat australià (Neoceratodus forsteri), africà (Protepterus annectens), sud-americà (Lepidosiren paradoxa) i peix del Devonià (Dipterus) (Foto: Encyclopaedia Britannica).

ALTRES SISTEMES DE RESPIRACIÓ EN PEIXOS

Molts peixos tenen la capacitat de respirar a través de la pell, especialment quan neixen ja que són tant petits que no tenen els òrgans especialitzats desenvolupats. Així, a mesura que va creixent l’animal, va desenvolupant les brànquies o altres sistemes ja que la difusió a través de la pell es torna insuficient. De tota manera, la pell pot ser responsable del 20% o més de l’intercanvi de gasos en alguns peixos adults. Altres ho poden fer a través del recobriment de la boca, la faringe, l’esòfag, l’intestí o el recte, com és el cas de Hoplosternum.

El peix Hoplosternum té la capacitat de respirar a través del tub digestiu (Foto: Free Pet Wallpapers).
El peix Hoplosternum té la capacitat de respirar a través del tub digestiu (Foto: Free Pet Wallpapers).

Algunes espècies han desenvolupat unes cavitats per sobre de les brànquies, les cambres suprabranquials, les quals poden omplir amb aire. En altres es forma un òrgan laberíntic o bé un òrgan arborescent, desenvolupats a partir d’un arc branquial molt vascularitzat i que actua com si fos un pulmó. És el cas del peix gat i del peix Electrophorus.

Alguns peixos que respiren aire no tenen adaptacions anatòmiques concretes. Un exemple és l’anguila americana (Anguilla rostrata), la qual cobreix el 60% de les seves necessitats d’oxigen a través de la pell i el 40% restant empassant aire per la boca quan aquesta surt de l’aigua.

REFERÈNCIES

  • Apunts de l’assignatura Cordats de la Llicenciatura en Biologia (Universitat de Barcelona).
  • Hickman, Roberts, Larson, l’Anson & Eisenhour (2006). Principios integrales de Zoología. Ed. McGraw Hill (13 ed)
  • Hill, Wyse & Anderson (2006). Fisiología animal. Ed. Medica Panamericana

Difusió-català

L’evolució del amfibis: la conquesta de la terra

Els amfibis foren el primer grup de vertebrats que va desenvolupar potes i que va aconseguir sortir de l’aigua per a conquistar la terra. Tot i que generalment són considerats per la majoria com animals simples i primitius, els amfibis mostren una alta diversitat de estratègies de supervivència que els ha permès ocupar gran part dels hàbitats terrestres i d’aigua dolça. En aquesta entrada explicarem alguns aspectes relacionats amb la seva evolució, tot explicant com van sortir de l’aigua els nostres avantpassats.

ORÍGEN DELS AMFIBIS

Els amfibis actuals, juntament amb els rèptils, els ocells i els mamífers es troben dins de la superclasse Tetrapoda (“quatre potes”), el grup de vertebrats que va abandonar el mar per conquistar el medi terrestre. Aquests primers tetràpodes eren amfibis i van evolucionar fa uns 395 milions d’anys durant el Devonià a partir de peixos d’aletes lobulades, els anomenats sarcopterigis (classe Sarcopterygii, “aletes carnoses”) entre els quals trobem el celacant i els peixos pulmonats actuals.

6227540478_88c4b03cd2_o
Espècimen de celacant(Latimeria chalumnae) un peix sarcopterigi, foto de smerikal.

Aquest grup de peixos es caracteritza per les seves aletes, que enlloc d’estar formades per radis com en la majoria de peixos ossis, tenen una base òssia que va permetre la posterior evolució de les extremitats dels primers amfibis. Dins dels sarcopterigis, els parents més propers dels tetràpodes són els osteolepiformes (ordre Osteolepiformes) un grup de peixos tetrapodomorfs que es van extingir fa uns 299 milions d’anys.

Eusthenopteron_BWReconstrucció de Eusthenopteron, un osteolepiforme extingit, per Nobu Tamura.

ADAPTACIONS A LA VIDA TERRESTRE

La conquesta de la terra no es va fer d’un dia per l’altre; va ser possible gràcies a la combinació de múltiples adaptacions. Algunes de les característiques més importants que permeteren als primers amfibis sortir de l’aigua són:

  • Evolució dels pulmons, els quals són homòlegs a la bufeta gasosa que permet als peixos controlar la seva flotabilitat. Els pulmons van aparèixer com un mètode addicional de captar oxigen de l’aire. De fet, actualment existeix una família de sarcopterigis que presenten pulmons per a captar oxigen de l’aire, ja que viuen en aigües molt pobres en oxigen.
    • Lungs_of_Protopterus_dolloiDissecció de Protopterus dolloi un peix sarcopterigi amb pulmons.
  • Desenvolupament de les coanes, o narius interns. Mentre que els peixos presenten dos parells de narius externs per on circula l’aigua mentre neden, els avantpassats dels tetràpodes només presentaven un nariu extern a cada cantó de la cara que comunicava amb un parell de narius interns, les coanes, que comunicaven amb la cavitat bucal. Això els permetia captar aire a través dels narius mitjançant la ventilació pulmonar i així ensumar fora de l’aigua.
  • Aparició de l’extremitat tipus quiridi. El quiridi és la característica fonamental dels tetràpodes. Aquesta extremitat es caracteritza per presentar tres parts diferenciades: l’estilopodi (un os, l’húmer o el fèmur), el zeugopodi (dos ossos, el radi o la tíbia, i el cúbit o el peroné) i l’autopodi (varis ossos, dits, mans i peus). Mentre que l’estilopodi i el zeugopodi deriven de les aletes dels sarcopterigis, l’autopodi és una estructura nova exclusiva dels tetràpodes.
Quiridio
Dibuix simplificat de l'estrucutra del quiridi, per Francisco Collantes.

En resum, els parents dels peixos osteolepiformes van desenvolupar les característiques típiques dels tetràpodes abans de sortir de l’aigua, ja que segurament vivien en aigües salobres, poc profundes, escasses en oxigen i que s’assecaven amb facilitat.

ELS PRIMERS AMFIBIS

És probable que l’espècie coneguda com a Tiktaalik sigui el més semblant al punt entremig entre els osteolepiformes i els amfibis. Els primers amfibis dels quals es té constància eren labirintodonts, que vol dir que les capes de dentina i esmalt de les seves dents formaven una estructura amb forma de laberint.

Labyrinthodon_MivartSecció transversal d'una dent labirintodonta, de "On the Genesis of Species", per St. George Mivart.

Existiren quatre grans grups d’amfibis primitius, els quals es caracteritzaven per: un grup que inclou als primers animals que van sortir de l’aigua, un segon grup que conté als avantpassats dels amniotes (rèptils, aus i mamífers) i dos grups més, ambdós candidats a ser els ancestres dels amfibis moderns.

Ordre Ichthyostegalia

Els ictiostègals són els primers tetràpodes que podien sortir fora de l’aigua. Van aparèixer a finals del Devonià i eren animals grans amb caps grossos i amples, potes curtes i estil de vida aquàtic o semi aquàtic (a terra devien ser bastant maldestres). Es desplaçaven utilitzant sobretot la seva musculosa cua amb radis semblant a la d’un peix.

5212816060_da1a11e94e_oFòssil y reconstrucció de Tiktaalik. Foto de Linden Tea.

De forma similar als amfibis actuals, presentaven una línea lateral (òrgan sensorial que permet als peixos detectar vibracions i moviments a l’aigua) i podien respirar a través de la pell (perdent les escates cosmoïdees dels seus avantpassats). A més, ponien els ous a l’aigua, dels quals naixien capgrossos que posteriorment, patien una metamorfosi per a convertir-se en adults com els amfibis actuals. Posteriorment els ictiostègals van donar lloc a la resta de grups de amfibis.

ichthyostega(1)Esquelets de Ichthyostega i Acanthostega, dos ictiostègals típics.

Clade Reptiliomorpha

Els reptiliomorfs foren els avantpassats dels rèptils i van aparèixer fa uns 340 milions d’anys. Eren animals generalment grossos i pesants, que ja presentaven adaptacions més avançades a la vida a terra (ulls laterals enlloc d’estar a la part superior del crani i una pell més impermeable i semi escatosa). Tot i així els reptiliomorfs encara ponien els ous a l’aigua i tenien formes larvàries amb brànquies. No seria fins a finals del Carbonífer que els primers amniotes (animals capaços de pondre els ous a terra) s’independitzarien del medi aquàtic.

Diadectes_phaseolinusEsquelet muntat de Diadectes un gran reptiliomorf herbívor del American Museum of Natural History, foto de Ghedoghedo.

Ordre Temnospondyli

Aquest grup és un dels possibles candidats a ser l’avantpassat dels amfibis moderns. Aquest és el grup més divers d’amfibis primitius i va sobreviure fins a principis del Cretàcic, fa 120 milions d’anys. Els temnospòndils variaven molt en la forma, la mida i l’estil de vida.

Eryops1DBReconstrucció de Eryops megacephalus un gran depredador temnospòndil, per Dmitry Bogdanov.

La majoria eren depredadors, però alguns eren terrestres, alguns semi aquàtics i alguns havien tornat al medi aquós. Tanmateix, totes les espècies tenien que tornar a l’aigua durant la reproducció ja que la fecundació era externa; mentre la femella anava posant grups d’ous a l’aigua, el mascle hi deixava anar l’esperma a sobre.

Buettneria
Esquelet muntat de Koskinonodon un temnospòndil de 3 metres de llarg, del American Museum of Natural History, foto de Lawrence.

Entre els temnospòndils hi trobem alguns dels amfibis més grans coneguts, com ara Prionosuchus, amb una llargària estimada de 4,5 metres i uns 300 quilos de pes. A més, tot i que no tenien escates, la seva pell no era del tot llisa com en els amfibis actuals.

Prionosuchus_DBReconstrucció de Prionosuchus per Dmitry Bogdanov.

Es creu que aquests animals podrien ser el grup germà dels amfibis moderns, tot i que hi ha un últim grup que es creu que també podria ser-ho.

Ordre Lepospondyli

Els lepospòndils són un petit grup d’animals primitius que van aparèixer a principis del Carbonífer i varen desaparèixer a finals del Pèrmic. Tot i que no ser tant nombrosos ni tant grans com els temnospòndils, aquests amfibis presentaven una interessant diversitat de formes corporals i adaptacions.

Diplocaulus_BWReconstrucció de Diplocaulus magnicornis, el lepospòndil més gran que va existir, arribant a fer 1 metre de llarg, per Nobu Tamura.

Els primers lepospòndils s’assemblaven superficialment a petits llangardaixos, però posteriorment molts grups van patir una reducció o pèrdua de extremitats.

Pelodosotis1DBReconstrucció de Pelodosotis, un lepospòndil avançat, per Dmitry Bogdanov.

Les relacions dels lepospòndils amb la resta de tetràpodes no està molt clara. Les diferents hipòtesis van des d’autors que creuen que són un grup apart de la resta de labirintodonts, a alguns que pensen que són avantpassats dels amfibis i rèptils actuals, o fins i tot alguns que diuen que són els avantpassats només d’una part dels amfibis actuals.

LysorophusReconstrucció de Lysorophus, un lepospòndil del Pèrmic, per Smokeybjb.

Com hem pogut veure, la classificació dels amfibis primitius pot ser un assumpte molt complicat. En aquesta entrada us he intentat fer un resum dels principals grups de amfibis primitius i, en el següent, ens endinsarem en el món dels amfibis actuals, els anomenats “lissamfibis”, i veurem en més profunditat totes les controvèrsies que giren al voltant d’aquests animals tant curiosos.

REFERÈNCIES

S’han consultat les següents fonts per a elaborar els continguts d’aquesta entrada:

Difusió-català