Arxiu d'etiquetes: radiación

¿Blanco nuclear, moreno paleta o gamba?

Para mucha gente verano es sinónimo de playa y ponerse moreno. Cuando hacemos el cambio de armario y toca vestirse con pantalones cortos, el blanco nuclear de nuestras piernas, escondido durante todo el invierno nos deslumbra. Hay gente que prefiere utilizar las cabinas de bronceado UVA unos meses antes, u otros toman el sol sin protección para coger un poco de color. ¿Qué consecuencias puede tener esto? A continuación os hablo de la piel y el efecto de la radiación sobre ella.

CONOZCAMOS NUESTRA PIEL

La piel es el órgano más grande de nuestro cuerpo, tiene una extensión de entre 1,5 y 2mde superficie y un peso alrededor de 3,5-5kg. Sus funciones son:

  • Protección: protege los órganos internos de traumatismos y evita la pérdida de agua y electrolitos  desde el interior.
  • Termorregulación: a través de los vasos sanguíneos se aumenta o se reduce la temperatura de la piel. Cuando hace mucha calor el sudor refresca la superficie cutánea.
  • Sensibilidad: la percepción del tacto, la presión, la temperatura, el dolor y el picor se hace a través de la piel.
  • Secreción: la piel protege el cuerpo de la deshidratación.
  • Excreción: a través de la piel eliminamos unos 350ml diarios de agua, que tenemos que recuperar hidratándonos. En ciertas enfermedades se puede llegar a eliminar gran cantidad de proteínas y azufre.

La piel tiene dos células básicas: los queratinocitos (80%) y los melanocitos (10%). La melanina, que da el moreno,  se encuentra dentro de los melanocitos y se acumula en unas bolsas (melanosomas). Cuando no toca la luz se queda en estratos profundos, mientras que cuando toca el sol va subiendo por los queratinocitos (Figura 1).

melanocitos
Figura 1. Melanina (flechas) subiendo hacia los queratinocitos (Fuente: Salud del Siglo XXI)

El bronceado es la síntesis de nueva melanina. No todas las personas producen la misma cantidad de melanina. Todos tenemos el mismo número de melanocitos, pero la diferencia está en el número de melanosomas.

Nuestra piel está formada por 3 capas que son, ordenadas de superior a inferior, la epidermis, la dermis y la hipodermis (Figura 2).

capes pell
Figura 2. Capas de la piel: A) epidermis, B) dermis y C) hipodermis (Fuente: MedlinePlus)

El proceso del bronceado pasa en la epidermis, que es la capa superior de la piel. La epidermis tiene 0,2mm de grosor y se subdivide en 4 o 5 capas, dependiendo de la parte del cuerpo. Por ejemplo, las palmas de las manos y las plantas de los pies están formados por 5 capas, donde la capa extra da más resistencia. El grosor de la piel en estas zonas es de 1-2mm, en cambio, en otras zonas, como en los párpados, es inferior (0,004mm). En las capas más internas o profundas las células son más jóvenes y activas, y al largo de su ciclo van ascendiendo hacia la zona más externa o superficial, convirtiéndose en células muertas, sin nucli y formadas básicamente por queratina (piel muerta).

Por debajo, hay la dermis que da elasticidad a la piel, donde se encuentras los nervios y los vasos sanguíneos y es donde crecen los pelos y las uñas. Finalmente, la hipodermis está debajo de todo y es donde hay las glándulas.

LA RADIACIÓN SOBRE NUESTRA PIEL

El sol emite una radiación con longitudes de onda que van desde 0,1 a 17.000nm. Pero a la Tierra sólo llegan las radiaciones entre 280 y 3.000nm (las otras se quedan en la capa de ozono).

La radiación que afecta a los organismos vivos engloba el espectro de 280-800nm (rayos UVB, UVA, luz visible y una parte de infrarrojo) (Figura 3).

e
Figura 3. Espectro electromagnético ( Fuente: J. E. Martin Cordero. Agentes Físicos Terapéuticos (2009))

No toda la radiación penetra de la misma forma en nuestra piel. En la Tabla 1 se observa el nivel de penetración:

Tabla 1. Penetración según la diferente radiación.

Tipo Longitud de onda Nivel de penetración
Ultraviolada UVC 100-280nm No llega
UVB 280-315nm Epidermis
UVA 315-400nm Dermis
Luz visible LV 400-700nm Dermis
Infrarroja IR >700nm Hipodermis

Es importante saber que una exposición prolongada, sin tomar precauciones, no sólo puede producir cáncer de piel, sino que también puede tener otros efectos. La radiación UVB es la causa más frecuente de quemada solar, eritema o enrojecimiento. También es la causa más frecuente de cáncer cutáneo. En cambio, la radiación UVA raramente causa quemaduras, pero es la responsable de la mayoría de las fotosensibilizaciones (aumento anormal de la sensibilidad de la piel a la radiación UV) y puede ser carcinogénica, en presencia de ciertas sustancias que potencian su efecto. Además, produce envejecimiento de la piel (Figura 4).

En las cabinas de bronceado el 30% de la radiación es UV. Mayoritariamente es radiación UVA, pero también hay radiación UVB (aunque en menor porcentaje). El porcentaje restante es radiación infrarroja y luz visible.

609443626
Figura 4. Efectos de la radiación UVA (envejecimiento) y UVB (quemaduras) (Fuente: Antirughe.info)

La cantidad de irradiación es mayor cuanto más cerca se encuentre la Tierra del Sol (zona del Ecuador, entre los trópicos de Cáncer y de Capricornio; o entre las 12 y 16 horas). Esta irradiación puede dañar nuestro ADN, produciendo roturas en la cadena del ADN que puede causar mutaciones.

Los rayos UV pasan fácilmente a través de las nubes y el vapor de agua, pero son parcialmente absorbidos por la polución atmosférica. Pero se ha visto que en zonas donde hay agujeros en la capa de ozono la incidencia de cáncer de piel es superior. Esto es debido porque los daños provocados en la capa de ozono permiten el paso de mayor cantidad de rayos UVB. Aquí la importancia de no dañar la capa de ozono, ya que nos protege de estos rayos.

PROTEJAMOS NUESTRA PIEL

Dado que la luz puede ser reflejada por varias sustancias, hay que tener en cuenta que, a los rayos directos del sol, se pueden sumar los que llegan tangencialmente un día brillante y que son reflejados por la arena, agua, suelo, gel, nieve…

Las dosis de radiación son acumulativas y pueden sumarse a los efectos de la radiación ionizante (rayos X). La presencia de cánceres cutáneos puede observarse muchos años después de una quemadura aguda. Esto se ha observado en marineros americanos que estuvieron en el Pacífico durante la Segunda Guerra Mundial, y que estuvieron expuestos durante meses o años a la radiación solar de alta intensidad. Estos marineros han desarrollado al largo de los años diferentes tipos de cáncer de piel.

Por esta razón es muy importante tomar las medidas de protección solar correctas: utilizar fotoprotectores, evitar largos ratos al sol, sobre todo en horas de máxima intensidad solar; e hidratarse a menudo.

REFERENCIAS

MireiaRamos-castella

 

 

 

Tardígrados: Animales con superpoderes

Los osos más pequeños del mundo tienen capacidades dignas de superhéroes. En realidad, no son osos propiamente dichos: los osos de agua en realidad son los tardígrados. Son animales invertebrados prácticamente indestructibles: sobreviven décadas sin agua ni alimento, a temperaturas extremas e incluso han sobrevivido al espacio exterior. Conoce al animal que parece llegado de otro planeta y aprende a observarlo en tu casa si dispones de un microscopio.

¿QUÉ ES UN TARDÍGRADO?

Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes
Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes

Los tardígrados u osos de agua, son un grupo de invertebrados de 0,05-1,5 mm que viven preferiblemente en lugares húmedos. Son especialmente abundantes en la película de humedad que recubre musgos y helechos, aunque no faltan especies oceánicas y de agua dulce, por lo que podemos considerar que viven en cualquier parte del mundo. Incluso a escasos metros de ti, en el hueco entre baldosa y baldosa. En un gramo de musgo se han llegado a encontrar hasta 22.000 ejemplares. Se han encontrado en la Antártida bajo capas de 5 metros de hielo, en desiertos cálidos, en fuentes termales, en montañas de 6.000 metros de altura y a profundidades oceánicas abisales. Se trata pues de animales extremófilos. Se calcula que existen más de 1.000 especies.

MORFOLOGÍA

Su nombre popular hace referencia a su aspecto y el científico a la lentitud de sus movimientos. Tienen el cuerpo dividido en 5 segmentos: el cefálico, donde tienen la boca en forma de trompa (probóscide) con dos estiletes internos y en ocasiones ojos simples  (omatidios) y pelos sensoriales,  y los 4 restantes con un par de patas por segmento. Cada pata posee unas garras para anclarse al terreno.

Vista ventral de un tardígrado donde seobservan los cinco segmentos del cuerpo. Foto de Eye Of Science/Photo LIbrary
Vista ventral de un tardígrado donde se observan los cinco segmentos del cuerpo. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye Of Science/Science Photo Library
Tardigrade. Coloured scanning electron micrograph (SEM) of a freshwater tardigrade or water bear (Echiniscus sp.). Tardigrades, are tiny invertebrates that live in coastal waters and freshwater habitats, as well as semi-aquatic terrestrial habitats like damp moss. They require water to obtain oxygen by gas exchange. In dry conditions, they can enter a cryptobiotic tun (or barrel) state of dessication to survive. Tardigrades feed on plant and animal cells and are found throughout the world, from the tropics to the cold polar waters.
Tardígrado (Echiniscus sp.) en el que se le pueden observar las garras. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye Of Science/Science Photo Library

Observa en este vídeo de Craig Smith los movimientos del tardígrado con más detalle:

ALIMENTACIÓN

Gracias a los estiletes de su boca, perforan los vegetales de los que se alimentan y succionan los productos de la fotosíntesis, pero también pueden alimentarse absorbiendo el contenido celular de otros organismos microscópicos como bacterias, algas, rotíferos, nematodos… Algunos son depredadores y pueden ingerir microorganismos enteros.

Su aparato digestivo es básicamente la boca, una faringe con potentes músculos para hacer los movimientos de succión que se abre directamente al intestino y el ano. Algunas especies sólo defecan cuando mudan.

Detalle de la boca de un tardígrado. Foto de
Detalle de la boca de un tardígrado. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye Of Science/Science Photo Library

ANATOMÍA INTERNA

No poseen aparato circulatorio ni respiratorio: el intercambio de gases se hace directamente por la superficie del cuerpo. Están cubiertos por una cutícula rígida que puede ser de distintos colores y que van mudando a medida que crecen. Con cada muda, pierden los estiletes bucales, que serán segregados de nuevo. Son organismos eutélicos: para crecer solamente aumentan el tamaño de sus células, no su número, que permanece constante a lo largo de su vida

REPRODUCCIÓN

Los tardígrados en general tienen sexos separados (son dioicos) y se reproducen por huevos (son ovíparos), pero también hay especies hermafroditas y partenogénenéticas (las hembras se reproducen sin ser fecundadas por ningún macho). La fecundación es externa y su desarrollo es directo, es decir, no presentan fases larvarias.

tardigrade egg, ou tardigrad
Huevo de tardígrado. Imagen coloreada de microscopio electrónico de barrido (SEM). Foto de Eye of Science/Science Photo Library

LOS RÉCORDS DE LOS TARDÍGRADOS

Los tardígrados son animales increíblemente resistentes que han superado las siguientes condiciones:

  • Deshidratación: pueden sobrevivir durante 30 años en condiciones de laboratorio sin una sola gota de agua. Hay fuentes que aseguran que resisten hasta 120 años o que se han encontrado en hielos de 2000 años de antigüedad y han podido revivir, aunque probablemente sean exageraciones.
  • Temperaturas extremas: si hierves un tardígrado, sobrevive. Si lo sometes a temperaturas de casi el cero absoluto (-273ºC), sobrevive. Su rango de supervivencia va de -270ºC a 150ºC.
  • Presión extrema: son capaces de soportar desde el vacío hasta  6.000 atmósferas, es decir, 6 veces la presión que hay en el punto más profundo de la Tierra, la Fosa de las Marianas (11.000 metros de profundidad).
  • Radiación extrema: los tardígrados pueden soportar bombardeos de radiación en una dosis 1000 veces superior a la letal para un humano.
  • Sustancias tóxicas: si se les sumerge en éter o alcohol puro, sobreviven.
  • Espacio exterior: los tardígrados son los únicos animales que han sobrevivido al espacio exterior sin protección alguna. En 2007 la ESA (Agencia Espacial Europea), dentro del proyecto TARDIS (Tardigrades In Space) expuso tardígrados (Richtersius coronifer y Milnesium tardigradum) durante 12 días en la superficie de la nave Foton-M3 y sobrevivieron al viaje espacial. En 2011 la NASA hizo lo propio colocándolos en el exterior del transbordador espacial Endeavour y se corroboraron los resultados. Sobrevivieron al vacío, a los rayos cósmicos y a una radiación ultravioleta 1000 veces superior a la de la superficie terrestre. El proyecto Biokis (2011)  de la Agencia Espacial Italiana (ASI) estudió el impacto de estos viajes a nivel molecular.

¿CÓMO LO HACEN?

Los tardígrados son capaces de resistir estas condiciones tan extremas porque entran en estado de criptobiosis cuando las condiciones son desfavorables. Es un estado extremo de anabiosis (disminución del metabolismo). Según las condiciones que tienen que soportar, la criptobiosis se clasifica en:

  • Anhidrobiosis: en caso de deshidratación del medio, entran en “estado de tonel” ya que adoptan forma de barril para reducir su superficie y se envuelven en una capa de cera para evitar la pérdida del agua por transpiración. Para evitar la muerte de las células, sintetizan trehalosa, un azúcar que sustituye al agua de su cuerpo y mantiene intacta la estructura de las membranas celulares. Reducen el contenido de agua de su cuerpo hasta sólo un 1% y seguidamente detienen su metabolismo casi por completo (0,01% por debajo de lo normal).

    Tardígrado deshidratado. Foto de Photo Science Library
    Tardígrado deshidratado. Foto de Photo Science Library
  • Criobiosis: en caso de someterse a bajas temperaturas, el agua de casi cualquier ser vivo cristaliza, rompe la estructura de las células y el ser vivo muere. Pero los tardígrados utilizan proteínas que congelan bruscamente el agua de las células en forma de pequeños cristales, con lo que logran evitar su rotura.
  • Osmobiosis: se da en caso de aumento de la concentración salina del medio.
  • Anoxibiosis: en caso de falta de oxígeno, entran en un estado de inactividad en el que dejan su cuerpo totalmente estirado, por lo que necesitan agua para mantenerse turgentes.

En el caso de las exposiciones  a las radiaciones, que destruirían el ADN, se ha observado que los tardígrados son capaces de reparar el material genético dañado.

Estas técnicas ya han sido imitadas en campos como la medicina, conservando órganos de ratas para posteriormente “revivirlos” y pueden abrir otras vías de conservación de tejidos vivos y trasplantes. También abren nuevos campos en la exploración espacial de vida extraterrestre (astrobiología) e incluso en la exploración humana del espacio para resistir largos viajes interplanetarios, en ideas por el momento, más cercanas a la ciencia ficción que a la realidad.

¿SON EXTRATERRESTRES?

El escaso registro fósil, su parentesco evolutivo poco claro y su gran resistencia, provocaron hipótesis que especulaban con la posibilidad que los tardígrados hayan venido del espacio exterior.  No se trata de una idea descabellada, aunque altamente improbable. La panspermia es la hipótesis por la cual la vida, o mejor dicho, las moléculas orgánicas complejas, no se originaron en la Tierra, sino que llegaron gracias a meteoritos durante los inicios del Sistema Solar. De hecho, se han encontrado meteoritos con aminoácidos (moléculas indispensables para la vida) en su composición, por lo que la panspermia es una hipótesis que no se puede descartar todavía.

Foto de Eye Of Science/Photolife Library
Foto de Eye Of Science/Photolife Library

Pero no es el caso de los tardígrados: su ADN es igual al del resto de seres vivos terrestres y los últimos estudios filogenéticos los emparentan con los onicóforos (animales parecidos a gusanos), asquelmintos y artrópodos. Lo fascinante es que es el animal con más ADN ajeno: hasta el 16% de su genoma pertenece a hongos, bacterias o arqueas, obtenidos por un proceso llamado transferencia genética horizontal. La presencia de genes ajenos en otras especies animales no suele ser más del 1%. ¿Será esto lo que le ha permitido desarrollar esta gran resistencia?

¿QUIERES BUSCAR TARDÍGRADOS POR TI MISMO Y OBSERVARLOS EN ACCIÓN?

Al ser tan comunes y habitar potencialmente casi cualquier lugar, si dispones de un microscopio, por sencillo que sea, puedes buscar y ver tardígrados vivos con tus propios ojos:

    • Coge un trozo de musgo de una roca o muro, mejor si está un poco seco.
    • Déjalo secar al sol y límpialo de tierra y otros restos grandes.
    • Ponlo al revés en un recipiente transparente (como una placa de Petri), empápalo con agua y déjalo reposar unas horas.
    • Retira el musgo y busca los tardígrados en el agua del recipiente (ponlo en un fondo negro para ver más fácilmente). Si hay suerte, con una lupa podrás verlos moverse.
    • Cógelos con una pipeta o cuentagotas, colócalos en el portaobjetos y a ¡disfrutar! Podrías ver cosas parecidas a ésta:

Mireia Querol Rovira

REFERENCIAS