Arxiu d'etiquetes: radiation

White, brown or red?

For many people summer is synonymous of beach and tan. But there are people who are not tan during winter. Some people prefer to use UVA tanning booths a few months before, and others take the sun without protection to catch some colour. What consequences can this have? Then I will talk about the skin and the effect of radiation on it.

OUR SKIN

The skin is the largest organ of our body, has an area between 1.5 and 2m2 of surface and a weight around 3.5-5kg. Their functions are:

  • Protection: protects the internal organs from trauma and prevents the loss of water and electrolytes from the inside.
  • Thermoregulation: the blood vessels increase or decrease the temperature of the skin. When it is very hot the sweat refreshes the skin surface.
  • Sensitivity: the perception of touch, pressure, temperature, pain and itching is done through the skin.
  • Secretion: the skin protects the body from dehydration.
  • Excretion: through the skin we eliminate about 350ml per day of water, which we have to recover by moisturizing. In certain diseases you can get rid of a lot of protein and sulfur.

The skin has two basic cells: keratinocytes (80%) and melanocytes (10%). The melanin, which gives the tan, is found inside the melanocytes and accumulates in some bags (melanosomes). When it does not touch the light it remains in deep strata, whereas when it touches the sun goes up by the keratinocytes (Figure 1).

melanocitos
Figure 1. Melanin (arrows) rising towards the keratinocytes (Source: Salud del Siglo XXI)

Tan is the synthesis of new melanin. Not all people produce the same amount of melanin. We all have the same number of melanocytes, but the difference is in the number of melanosomes.

Our skin is formed by 3 layers that are, ordered from superior to inferior, epidermis, dermis and hypodermis (Figure 2).

capes pell
Figure 2. Skin layers: A) epidermis, B) dermis and C) hypodermis (Source: MedlinePlus)

The tanning process passes into epidermis, which is the top layer of the skin. Epidermis is 0.2mm thick and subdivided into 4 or 5 layers, depending on the body part. For example, the palms of the hands and soles of the feet are formed by 5 layers, where the extra layer gives more resistance. The thickness of the skin in these areas is 1-2mm, in contrast, in other areas, as in the eyelids, is lower (0.004mm). In the inner or deep layers, the cells are younger and more active, and along the cycle, they ascend to the outer or superficial area, becoming dead cells, without nucli and formed basically by keratin (dead skin).

Below, there is dermis that gives elasticity to the skin, where you find the nerves and blood vessels and is where the hairs and nails grow. Finally, hypodermis is below everything and is where the glands are.

RADIATION FROM OUR SKIN

The sun emits radiation with wavelengths ranging from 0.1 to 17,000nm. But only the radiations between 280 and 3,000nm arrive to the Earth (the others remain in the ozone layer).

Radiation that affects living organisms involves spectrum of 280-800nm (UVB, UVA, visible light and a part of infrared) (Figure 3).

e
Figure 3. Electromagnetic spectrum (Source: J. E. Martin Cordero. Agentes Físicos Terapéuticos (2009))

Not all radiation penetrates in the same way on our skin. Table 1 shows the level of penetration:

Table 1. Penetration according to the different radiation.

Type

Wavelenght

Level of penetration

Ultraviolet

UVC

100-280nm

UVB

280-315nm

Epidermis

UVA

315-400nm

Dermis

Visible light

VL

400-700nm

Dermis

Infrared IR >700nm

Hypodermis

It is important to know that prolonged exposure, without taking precautions, can not only produce skin cancer, but can also have other effects. UVB radiation is the most common cause of sunburn, erythema or redness. It is also the most common cause of skin cancer. In contrast, UVA radiation rarely causes burns, but is responsible for most photosensitization (abnormal increase in skin sensitivity to UV radiation) and may be carcinogenic in the presence of certain substances that enhance its effect. In addition, it causes aging of the skin (Figure 4).

In tanning booths 30% of the radiation is UV. Mostly it is UVA radiation, but there is also UVB radiation (albeit to a lesser extent). The remaining percentage is infrared radiation and visible light.

609443626
Figure 4. UVA (aging) and UVB radiation (burns) effects (Source: Antirughe.info)

The amount of irradiation is greater when the more near is the Earth of the Sun (zone of the Equator, between the Tropics of Cancer and Capricorn, or between 12 and 16 hours). This irradiation can damage our DNA, causing breaks in the DNA strand that can cause mutations.

UV rays easily pass through clouds and water vapor, but are partially absorbed by atmospheric pollution. It has been seen that in areas where there are holes in the ozone layer the incidence of skin cancer is higher. This is because the damage caused in the ozone layer allows the passage of more amount of UVB rays. Here the importance of not damaging the ozone layer, as it protects us from these rays.

WE NEED TO PROTECT OUR SKIN

Since the light can be reflected by several substances, it is necessary to take into account that, to direct rays of the sun, can be added those that arrive tangentially on a bright day and that are reflected by sand, water, soil, gel, snow…

Radiation doses are cumulative and may add to the effects of ionizing radiation (X-rays). The presence of skin cancer can be observed many years after an acute burn. This has been observed in American sailors who were in the Pacific during World War II, and who were exposed for months or years to high intensity solar radiation. These sailors have developed over the years different types of skin cancer.

For this reason it is very important to take the correct sun protection measures: use photoprotectors, avoid long periods in the sun, especially in hours of maximum solar intensity; and moisturize often.

REFERENCES

MireiaRamos-angles

Tardigrades: animals with superpowers

The smallest bears in the world have almost superhero abilities. Actually, they are not bears: water bears is the popular name of tardigrades. They are virtually indestructible invertebrates: they can survive decades without water or food, to extreme temperatures and they have even survived into outer space. Meet the animal that seems to come from another planet and learn to observe them in your home if you have a microscope.

WHAT IS A TARDIGRADE?

Oso de agua (Macrobiotus sapiens) en musgo. Foto coloreada tomada con microscopio electrónico de barrido (SEM): Foto de Nicole Ottawa & Oliver Meckes
Water bear (Macrobiotus sapiens) in moss. Colored photo taken with a scanning electron microscope (SEM). Photo by Nicole Ottawa & Oliver Meckes

Tardigrades or water bears, are a group of invertebrates 0.05-1.5 mm long that preferably live in damp places. They are especially abundant in the film of moisture covering mosses and ferns, although there are oceanic and freshwater species, so we can consider they live anywhere in the world. Even a few meters away from you, in the gap between tile and tile. In one gram of moss they have find up to 22,000 individuals. They are found in Antarctica under layers of 5 meters of ice, in warm deserts, hot springs, in mountains 6,000 meters high and abyssal ocean depths: they are  extremophiles. It is estimated that over 1,000 species exist.

MORPHOLOGY

Its popular name refers to their appearance, and the scientific name to their slow movements. Their bodies are divided into five segments: cephalic, with its tube-shaped mouth (proboscis) with two internal stilettos and sometimes simple eyes (ommatidia) and sensory hairs, and the remaining 4 segment with a pair of legs per segment. Each leg has claws for anchoring to the ground.

Vista ventral de un tardígrado donde seobservan los cinco segmentos del cuerpo. Foto de Eye Of Science/Photo LIbrary
Bottom view of a Tardigrade where the five segments of the body are observed. Colored photo taken with a scanning electron microscope (SEM). Photo by Eye Of Science/Science Photo Library

Tardigrade. Coloured scanning electron micrograph (SEM) of a freshwater tardigrade or water bear (Echiniscus sp.). Tardigrades, are tiny invertebrates that live in coastal waters and freshwater habitats, as well as semi-aquatic terrestrial habitats like damp moss. They require water to obtain oxygen by gas exchange. In dry conditions, they can enter a cryptobiotic tun (or barrel) state of dessication to survive. Tardigrades feed on plant and animal cells and are found throughout the world, from the tropics to the cold polar waters.
Tardigrade (Echiniscus sp.) In which you can see the claws. Colored photo taken with a scanning electron microscope (SEM). Photo de Eye Of Science/Science Photo Library

Look at this video of Craig Smith to see tardigrade’s movements in more detail:

FEEDING

With its mouth stilettos, tardigrades perforate plants and absorbe the products of photosynthesis, but they can also feed absorbing the cellular content of other microscopic organisms such as bacteria, algae, rotifers, nematodes… Some are predators too and can eat whole microorganisms.

Their digestive system is basically the mouth and a pharynx with powerful muscles to make sucking motions that opens directly into the intestine and anus. Some species defecate only when they shed.

Detalle de la boca de un tardígrado. Foto de
Detail of the mouth of a tardigrade. Colored image of scanning electron microscope (SEM). Photo by Eye Of Science/Science Photo Library

INTERNAL ANATOMY

They have no circulatory or respiratory system: gas exchange is made directly by the body surface. They are covered by a rigid cuticle which can be of different colors and is shed as they grow. With each moult, they lose oral stilettos, to be segregated again. They are eutelic animals: to grow they only increase the size of their cells, not their number, that remains constant throughout life

REPRODUCTION

Tardigrades generally have separate sexes (are dioecious) and reproduce by eggs (are oviparous), but there are also hermaphrodites and parthenogenetic species (females reproduce without being fertilized by any male). Fertilization is external and development is direct: they don’t have larval stages.

tardigrade egg, ou tardigrad
Tardigrade egg. Colored image of scanning electron microscope (SEM). Photo by Eye of Science/Science Photo Library

TARDIGRADE’S RECORDS

The tardigrades are incredibly resilient animals that have survived the following conditions:

  • Dehydration: they can survive for 30 years under laboratory conditions without a single drop of water. Some sources claim that resist up to 120 years or have been found in ice 2000 years old and have been able to revive, although it is likely to be an exaggeration.
  • Extreme temperature: if you boil one tardigrade survives. If you put it to temperatures near the absolute zero (-273ºC), survives. Their survival rate ranges from -270ºC to 150ºC.
  • Extreme pressure: they are capable of supporting from vacuum to 6,000 atmospheres, ie 6 times the pressure in the deepest point on Earth, the Mariana Trench (11,000 meters deep).
  • Extreme radiation: tardigrades can withstand bombardment of radiation at a dose 1000 times the lethal to a human.
  • Toxic substances: if they are immersed in ether or pure alcohol, survive.
  • Outer space: tardigrades are the only animals that have survived into space without any protection. In 2007 the ESA (European Space Agency) within the TARDIS project (Tardigrades In Space) left tardigrades (Richtersius coronifer and Milnesium tardigradum) for 12 days on the surface of the Foton-M3 spacecraft and they survived the space travel. In 2011 NASA did the same placing them in the outside of the space shuttle Endeavour and the results were corroborated. They survived vacuum, cosmic rays and ultraviolet radiation 1,000 times higher than that of the Earth’s surface. The project Biokis (2011) of the Italian Space Agency (ASI) studied the impact of these trips at the molecular level.

HOW DO THEY DO THAT?

The tardigrades are able to withstand such extreme conditions because they enter cryptobiosis status when conditions are unfavorable. It is an extreme state of anabiosis (decreased metabolism). According to the conditions they endure, the cryptobiosis is classified as:

  • Anhydrobiosis: in case of environmental dehydration, they enter a “barrel status” because adopt barrel shaping to reduce its surface and wrap in a layer of wax to prevent water loss through transpiration. To prevent cell death they synthesize trehalose, a sugar substitute for water, so body structure and cell membranes remain intact. They reduce the water content of their body to just 1% and then stop their metabolism almost completely (0.01% below normal).

    Tardígrado deshidratado. Foto de Photo Science Library
    Tardigrade dehydrated. Photo by Photo Science Library
  • Cryobiosis: in low temperatures, the water of living beings crystallizes, it breaks the structure of cells and the living being die. Tardigrades use proteins to suddenly freeze water cells as small crystals, so they can avoid breakage.
  • Osmobiosis: it occurs in case of increase of the salt concentration of the environment.
  • Anoxybiosis: in the absence of oxygen, they enter a state of inactivity in which leave their body fully stretched, so they need water to stay perky.

Referring to exposures to radiation, which would destroy the DNA, it has been observed that tardigrades are able to repair the damaged genetic material.

These techniques have already been imitated in fields such as medicine, preserving rat hearts to “revive” them later, and open other fields of living tissue preservation and transplantation. They also open new fields in space exploration for extraterrestrial life (Astrobiology) and even in the human exploration of space to withstand long interplanetary travel, ideas for now, closer to science fiction than reality.

ARE THEY ALIENS?

The sparse fossil record, the unclear evolutionary relatedness and great resistance, led to hypothesis speculating with the possibility that tardigrades have come from outer space. It is not a crazy idea, but highly unlikely. Panspermia is the hypothesis that life, or rather, complex organic molecules, did not originate on Earth, but travelled within meteorites in the early Solar System. Indeed, amino acids (essential molecules for life) have been found in meteorites composition, so panspermia is a hypothesis that can not be ruled out yet.

Foto de Eye Of Science/Photolife Library
Photo by Eye Of Science/Photolife Library

But it is not the case of tardigrades: their DNA is the same as the rest of terrestrial life forms and recent phylogenetic studies relate them to onychophorans (worm-like animals), aschelminthes and arthropods. What is fascinating is that is the animal with more foreign DNA: up to 16% of its genome belongs to fungi, bacteria or archaea, obtained by a process called horizontal gene transfer. The presence of foreign genes in other animal species is usually not more than 1%. Could be this fact what has enabled them to develop this great resistance?

DO YOU WANT TO SEARCH TARDIGRADES BY YOURSELF AND OBSERVE THEM IN ACTION?

Being so common and potentially livIng almost anywhere, if you have a simple microscope,  you can search and view living tardigrades by yourself:

    • Grab a piece of moss of a rock or wall, it is better if it is a little dry.
    • Let it dry in the sun and clean it of dirt and other large debris.
    • Put it upside down in a transparent container (such as a petri dish),  soak it with water and wait a few hours.
    • Remove moss and look for tardigrades in the water container (put it on a black background for easier viewing). If lucky, with a magnifying glass you’ll see them moving.
    • Take them with a pipette or dropper, place them on the slide and enjoy! You could see things like this:

REFERENCES

MIREIA QUEROL ALL YOU NEED IS BIOLOGY