Arxiu d'etiquetes: RAven

Evolution for beginners 2: coevolution

After the success of Evolution for beginners, today we’ll continue  knowing the basics of biological evolution. Why  exist insects that seem orchids and vice versa? Why gazelles and cheetahs are almost equally fast? Why your dog understands you? In other words, what is coevolution?


We know that it is inevitable that living beings establish symbiotic relationships between them. Some depend on others to survive, and at the same time, on elements of their environtment as water, light or air. These mutual pressures between species make that evolve together, and as one evolve as a species, in turn it forces the other to evolve. Let’s see some examples:


The most known process of coevolution is pollination. It was actually the first co-evolutionary study (1859) by Darwin, although he didn’t use that term. The first to use the word coevolution were Ehrlich and Raven (1964).

Insects existed long before the appearance of flowering plants, but their success was due to the discovery that nectar is a good reserve of energy. In turn, the plants found in the insects another way more effectively to carry pollen to another flower. Pollination by the wind (anemophily) requires more production of pollen and a good dose of luck to at least fertilize some flowers of the same species. Many plants have developed flowers that trap insects until they are covered with pollen and then set them free. These insects have hairs in their body to enable this process. In turn some animals have developed long appendages (beaks of hummingbirds, butterflies’ proboscis…) to access the nectar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Darwin’s moth (Xantophan morganii praedicta). Photo by Minden Pictures/Superstock

It is the famous case of the Darwin’s moth (Xanthopan morganii praedicta) of which we have already talked about. Charles Darwin, studying orchid Christmas (Angraecum sesquipedale) saw that the nectar was 29 cm inside the flower. He sensed that there should exist an animal with a proboscis of this size. Eleven years later, Alfred Russell Wallace reported him that the Morgan’s sphinxs had proboscis over 20 cm long, and a time later they were found in the same area where Darwin had studied that species of orchid (Madagascar). In honor of both it was added “praedicta” to the scientific name.

There are also bee orchids that mimic female insects to ensure their pollination. To learn more about these orchids and the Christmas one, do not miss this post by Adriel.

Anoura fistulata, murcielago, bat
The bat Anoura fistulata and its long tongue. Photo by Nathan Muchhala

But many plants not only depend on insects, also some birds (like humming birds) and mammals (such as bats) are essential to pollination. The record for the longest mammal tongue in the world is for a bat from Ecuador (Anoura fistulata); its tongue measures 8 cm (150% of the length of its body). It is the only who pollinates one plant called Centropogon nigricans, despite the existence of other species of bats in the same habitat of the plant. This raises the question of whether evolution is well defined, and occurs between pairs of species or it is diffuse due to the interaction of multiple species.


The cheetah (Acinonyx jubatus) is the fastest vertebrate on land (up to 115 km/h). Thomson’s gazelle (Eudorcas thomsonii), the second (up to 80 km/h). Cheetahs have to be fast enough to catch a gazelle (but not all, at risk of disappearing themselves) and gazelles fast enough to escape almost once and reproduce. The fastest gaelles survive, so nature selects in turn faster cheetahs, which are who eat to survive. The pressure from predators is an important factor that determines the survival of a population and what strategies should follow the population to survive. Also, the predators will find solutions to possible new ways of life of their prey to succeed.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi
Cheetah hunting a Thomson’s gazelle in Kenya. Photo by Federico Veronesi

The same applies to other predator-prey relationships, parasite-host relationships, plants-herbivores, improving their speed or other survival strategies like poison, spikes…


Our relationship with dogs since prehistoric times, it is also a case of coevolution. This allows, for example, to create bonds with just looking at them. If you want more information, we invite you to read this post where we talk about the issue of the evolution of dogs and humans in depth.

Another example is the relationship we have established with the bacteria in our digestive system, essential for our survival. Or with pathogens: they have co-evolved with our antibiotics, so using them indiscriminately has favored these species of bacteria to develop resistance to antibiotics.


Coevolution is one of the main processes responsible for the great biodiversity of the Earth. According to Thompson, is responsible for the millions of species that exist instead of thousands.

The interactions that have been developed with coevolution are important for the conservation of species. In cases where evolution has been very close between two species, if one become extint will lead to the extinction of the other almost certainly. Humans constantly alter ecosystems and therefore biodiversity and evolution of species. Just declining one species, we are affecting many more. This is the case of the sea otter (Enhydra lutris), which feeds on sea urchins.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Sea otter (Enhydra lutris) eating sea urchins. Photo by Vancouver Aquarium

Being hunted for their fur, urchins increased number, devastated entire populations of algae (consumer of CO2, one of the responsible of global warming), seals who found refuge in the algae nonexistent now were more hunted by killer whales… the sea otter is therefore a key species for the balance of this ecosystem and the planet, as it has evolved along with urchins and algae.

Coevolutive relations between flowers and animals depend on the pollination of thousands of species, including many of agricultural interest, so we must not lose sight of the seriousness of the issue of the disappearance of a large number of bees and other insects in recent years. A complex case of coevolution that directly affects us is the reproduction of fig.


As we have seen, coevolution is the evolutionary change through natural selection between two or more species that interact reciprocally.

It is needed:

  • Specificity: the evolution of each feature of a species is due  to selective pressures of the feature of the other species.
  • Reciprocity: features evolve together.
  • Simultaneity: features evolve simultaneously.



Evolució per a principiants 2: la coevolució

Després de l’èxit d’Evolució per a principiants, seguim amb un article per seguir coneixent aspectes bàsics de l’evolució biològica. Per què hi ha insectes que semblen orquídies i viceversa? Per què gaseles i guepards són gairebé igual de ràpids? Per què el teu gos t’entén? En altres paraules, què és la coevolució?


Ja sabem que és inevitable que els éssers vius estableixen relacions de simbiosi entre ells. Uns depenen d’altres per sobreviure, i alhora, de l’accés a elements del seu entorn com aigua, llum o aire. Aquestes pressions mútues entre espècies fan que evolucionin conjuntament i segons evolucioni una espècie, obligarà al seu torn a l’altra a evolucionar. Vegem alguns exemples:


El procés més conegut de coevolució el trobem en la pol·linització. Va ser de fet el primer estudi coevolutiu (1859), a càrrec de Darwin, encara que ell no utilitzés aquest terme. Els primers en utilitar-lo van ser Ehrlich i Raven (1964).

Els insectes ja existien molt abans de l’aparició de plantes amb flor, però el seu èxit es va deure al descobriment que el pol·len és una bona reserva d’energia. Al seu torn, les plantes troben en els insectes una manera més eficaç de transportar el pol·len cap a una altra flor. La pol·linització gràcies al vent (anemofilia) requereix més producció de pol·len i una bona dosi d’atzar perquè almenys algunes flors de la mateixa espècie siguin fecundades. Moltes plantes han desenvolupat flors que atrapen als insectes fins que estan coberts de pol·len i els deixen escapar. Aquests insectes presenten pèls en el seu cos per permetre aquest procés. Al seu torn alguns animals han desenvolupat llargs apèndixs (becs dels colibrís, espiritrompes de certes papallones…) per accedir al nèctar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Arna de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock

És famós el cas de l’arna de Darwin (Xanthopan morganii praedicta) de la qual ja hem parlat en una ocasió. Charles Darwin, estudiant l’orquídia de Nadal (Angraecum sesquipedale), va observar que el nèctar de la flor es trobava a 29 cm de l’exterior. Va intuir que hauria d’existir un animal amb una espiritrompa d’aquesta mida. Onze anys després, el mateix Alfred Russell Wallace el va informar que havia esfinxs de Morgan amb trompes de més de 20 cm i un temps més tard es van trobar a la mateixa zona on Darwin havia estudiat aquesta espècie d’orquídia (Madagascar). En honor de tots dos es va afegir el “praedicta” al nom científic.

També existeixen les anomenades orquídies abelleres, que imiten femelles d’insectes per assegurar la seva pol·linització. Si vols saber més sobre aquestes orquídies i la de Nadal, no et perdis aquest article de l’Adriel.

Anoura fistulata, murcielago, bat
El ratpenat Anoura fistulata i la seva llarga llengua. Foto de Nathan Muchhala

Però moltes plantes no només depenen dels insectes, també algunes aus (com els colibrís) i mamífers (com ratpenats) són imprescindibles per a la seva fecundació. El rècord de mamífer amb la llengua més llarga del món i segon vertebrat (per darrere del camaleó) se l’emporta un ratpenat de l’Equador (Anoura fistulata); seva llengua mesura 8 cm (el 150% de la longitud del seu cos). És l’únic que pol·linitza una planta anomenada Centropogon nigricans, malgrat l’existència d’altres espècies de ratpenats en el mateix hàbitat de la planta. Això planteja la pregunta sobre si l’evolució està ben definida i es dóna entre parells d’espècies o per contra és difusa i es deu a la interacció de múltiples espècies.


El guepard (Acinonyx jubatus) és el vertebrat més ràpid sobre la terra (fins a 115 km/h). La gasela de Thomson (Eudorcas thomsonii), el segon (fins a 80 km/h). Els guepards han de ser prou ràpids per capturar alguna gasela (però no totes, a risc de desaparèixer ells mateixos) i les gaseles prou ràpides per escapar alguna vegada i reproduir-se. Sobreviuen les més ràpides, així que al seu torn la naturalesa selecciona els guepards més ràpids, que són els que sobreviuen al poder menjar. La pressió dels depredadors és un factor important que determina la supervivència d’una població i quines estratègies ha de seguir la població per sobreviure. Així mateix, els depredadors hauran de trobar solucions a les possibles noves formes de vida de les seves preses per tenir èxit.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi

Guepard perseguint una gasela de Thomson a Kenya. Foto de Federico Veronesi

El mateix succeeix amb altres relacions depredador-presa, paràsit-hoste o herbívors-plantes, ja sigui amb el desenvolupament de la velocitat o altres estratègies de supervivència com verins, punxes…


La nostra relació amb els gossos, que data de temps prehistòrics, també és un cas de coevolució. Això ens permet, per exemple, crear llaços afectius amb només mirar-los. Si vols ampliar la informació, et convidem a llegir aquest article passat on vam tractar el tema de l’evolució de gossos i humans en profunditat.

Un altre exemple és la relació que hem establert amb els bacteris del nostre sistema digestiu, indispensables per a la nostra supervivència. O també amb els patògens: han coevolucionat amb els nostres antibiòtics, de manera que en usar-los indiscriminadament, s’ha afavorit la resistència d’aquestes espècies de bacteris als antibiòtics.


La coevolució és un dels principals processos responsables de la gran biodiversitat de la Terra. Segons Thompson, és la responsable que hi hagi milions d’espècies en lloc de milers.

Les interaccions que s’han desenvolupat amb la coevolució són importants per a la conservació de les espècies. En els casos on l’evolució ha estat molt estreta entre dues espècies, l’extinció d’una portarà a l’altra gairebé amb seguretat també a l’extinció. Els humans alterem constantment els ecosistemes i per tant, la biodiversitat i evolució de les espècies. Amb només la disminució d’una espècie, afectem moltes més. És el cas de la llúdriga marina (Enhydra lutris), que s’alimenta d’eriçons.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Llúdriga marina (Enhydra lutris) menjant eriçons. Foto de Vancouver Aquarium

En ser caçada per la seva pell, el segle passat els eriçons van augmentar de nombre, van arrasar poblacions senceres d’algues (consumidores de CO2, un dels responsables de l’escalfament global), les foques que trobaven refugi en les algues ara inexistents, eren més caçades per les orques… la llúdriga és doncs una espècie clau per a l’equilibri d’aquest ecosistema i del planeta, ja que ha evolucionat conjuntament amb els eriçons i algues.

De les relacions coevolutives entre flors i animals depèn la pol·linització de milers d’espècies, entre elles moltes d’interès agrícola, de manera que no cal perdre de vista la gravetat de l’assumpte de la desaparició d’un gran nombre d’abelles i altres insectes en els últims anys. Un complex cas de coevolució que ens afectaria directament és la reproducció de la figuera.


Com hem vist, la coevolució és el canvi evolutiu entre dues o més espècies que interactuen, de manera recíproca i gràcies a la selecció natural.

Perquè hi hagi coevolució s’ha de complir:

  • Especificitat: l’evolució de cada caràcter d’una espècie es deu a pressions selectives del caràcter de l’altra espècie.
  • Reciprocitat: els caràcters evolucionen de manera conjunta.
  • Simultaneïtat: els caràcters evolucionen al mateix temps.


mireia querol rovira

Evolución para principiantes 2: la coevolución

Después del éxito de Evolución para principiantes, seguimos con un artículo para seguir conociendo aspectos básicos de la evolución biológica. ¿Por qué hay insectos que parecen orquídeas y viceversa? ¿Por qué gacelas y guepardos son casi igual de rápidos? ¿Por qué tu perro te entiende? En otras palabras, ¿qué es la coevolución?


Ya sabemos que es inevitable que los seres vivos establezcan relaciones de simbiosis entre ellos. Unos dependen de otros para sobrevivir, y a la vez, del acceso a elementos de su entorno como agua, luz o aire. Estas presiones mutuas entre especies hacen que evolucionen conjuntamente y según evolucione una especie, obligará a su vez a la otra a evolucionar. Veamos algunos ejemplos:


El proceso más conocido de coevolución lo encontramos en la polinización. Fue de hecho el primer estudio coevolutivo (1859), a cargo de Darwin, aunque él no utilizara este término.  Los primeros en acuñarlo fueron Ehrlich y Raven (1964).

Los insectos ya existían mucho antes de la aparición de plantas con flor, pero su éxito se debió al descubrimiento de que el polen es una buena reserva de energía. A su vez, las plantas encuentran en los insectos una manera más eficaz de transportar al polen hacia otra flor. La polinización gracias al viento (anemofilia) requiere más producción de polen y una buena dosis de azar para que al menos algunas flores de la misma especie sean fecundadas. Muchas plantas han desarrollado flores que atrapan a los insectos hasta que están cubiertos de polen y los dejan escapar. Estos insectos presentan pelos en su cuerpo para permitir este proceso. A su vez algunos animales han desarrollado largos apéndices (picos de los colibríes, espiritrompas de ciertas mariposas…)  para acceder al néctar.

Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock
Polilla de Darwin (Xantophan morganii praedicta). Foto de Minden Pictures/Superstock

Es famoso el caso de la polilla de Darwin (Xanthopan morganii praedicta) del que ya hemos hablado en una ocasión. Charles Darwin, estudiando la orquídea de Navidad (Angraecum sesquipedale), observó que el néctar de la flor se encontraba a 29 cm del exterior. Intuyó que debería existir un animal con una espiritrompa de ese tamaño. Once años después, el mismo Alfred Russell Wallace le informó que había esfinges de Morgan con trompas de más de 20 cm y un tiempo más tarde se encontró en la misma zona donde Darwin había estudiado esa especie de orquídea (Madagascar). En honor de ambos se añadió el “praedicta” al nombre científico.

También existen las llamadas orquídeas abejeras, que imitan a hembras de insectos para asegurarse su polinización. Si deseas saber más sobre estas orquídeas y la de Navidad, no te pierdas este artículo de Adriel.

Anoura fistulata, murcielago, bat
El murciélago Anoura fistulata y su larga lengua. Foto de Nathan Muchhala

Pero muchas plantas no sólo dependen de los insectos, también algunas aves (como los colibríes) y mamíferos (como murciélagos) son imprescindibles para su fecundación. El récord de mamífero con la lengua más larga del mundo y segundo vertebrado (por detrás del camaleón) se lo lleva un murciélago de Ecuador (Anoura fistulata); su lengua mide 8 cm (el 150% de la longitud de su cuerpo). Es el único que poliniza una planta llamada Centropogon nigricans, a pesar de la existencia de otras especies de murciélagos en el mismo hábitat de la planta. Esto plantea la pregunta si la evolución está bien definida y se da entre pares de especies o por contra es difusa y se debe a la interacción de múltiples especies.


El guepardo (Acinonyx jubatus) es el vertebrado más rápido sobre la tierra (hasta 115 km/h).  La gacela de Thomson (Eudorcas thomsonii), el segundo (hasta 80 km/h). Los guepardos tienen que ser lo suficientemente rápidos para capturar alguna gacela (pero no todas, a riesgo de desaparecer ellos mismos) y las gacelas suficientemente rápidas para escapar alguna vez y reproducirse. Sobreviven las más veloces, así que a su vez la naturaleza selecciona los guepardos más rápidos, que son los que sobreviven al poder comer. La presión de los depredadores es un factor importante que determina la supervivencia de una población y qué estrategias deberá seguir la población para sobrevivir. Así mismo, los depredadores deberán encontrar soluciones a las posibles nuevas formas de vida de sus presas para tener éxito.

Guepardo persiguiendo una gacela. Foto de Federico Veronesi
Guepardo persiguiendo una gacela de Thomson en Kenya. Foto de Federico Veronesi

Lo mismo sucede con otras relaciones depredador-presa, parásito-hospedador o herbívoros-plantas, ya sea con el desarrollo de la velocidad u otras estrategias de supervivencia como venenos, pinchos…


Nuestra relación con los perros, que data de tiempos prehistóricos, también es un caso de coevolución. Esto nos permite, por ejemplo, crear lazos afectivos con sólo mirarlos. Si quieres ampliar la información, de invitamos a leer este artículo pasado donde tratamos el tema de la evolución de perros y humanos en profundidad.

Otro ejemplo es la relación que hemos establecido con las bacterias de nuestro sistema digestivo, indispensables para nuestra supervivencia. O también con las patógenas: han coevolucionado con nuestros antibióticos, por lo que al usarlos indiscriminadamente, se ha favorecido la resistencia de estas especies de bacterias a los antibióticos.


La coevolución es uno de los principales procesos responsables de la gran biodiversidad de la Tierra. Segun Thompson, es la responsable que existan millones de especies en lugar de miles.

Las interacciones que se han desarrollado con la coevolución son importantes para la conservación de las especies. En los casos donde la evolución ha sido muy estrecha entre dos especies, la extinción de una llevará a la otra casi con seguridad también a la extinción. Los humanos alteramos constantemente los ecosistemas y por lo tanto, la biodiversidad y evolución de las especies. Con sólo la disminución de una especie, afectamos muchas más. Es el caso de la nutria marina, que se alimenta de erizos.

Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium
Nutria marina (Enhydra lutris) comiendo erizos. Foto de Vancouver Aquarium

Al ser cazada por su piel, el siglo pasado los erizos aumentaron de número, arrasaron poblaciones enteras de algas (consumidoras de CO2, uno de los responsables del calentamiento global), las focas que encontraban refugio en las algas ahora inexistentes, eran más cazadas por las orcas… la nutria es pues una especie clave para el equilibrio de ese ecosistema y del planeta, ya que ha evolucionado conjuntamente con los erizos y algas.

De las relaciones coevolutivas entre flores y animales depende la polinización de miles de especies, entre ellas muchas de interés agrícola, por lo que no hay que perder de vista la gravedad del asunto de la desaparición de un gran número de abejas y otros insectos en los últimos años. Un complejo caso de coevolución que nos afectaría directamente es la reproducción de la higuera.


Como hemos visto, la coevolución es el cambio evolutivo entre dos o más especies que interactúan, de manera recíproca y gracias a la selección natural.

Para que haya coevolución se debe cumplir:

  • Especificidad: la evolución de cada carácter de una especie se debe a presiones selectivas del carácter de la otra especie.
  • Reciprocidad: los caracteres evolucionan de manera conjunta.
  • Simultaneidad: los caracteres evolucionan al mismo tiempo.


Mireia Querol Rovira