Arxiu d'etiquetes: resina

Conociendo los fósiles y su edad

¡ATENCIÓN! 

ESTE ARTÍCULO ESTÁ ANTICUADO.

LEE LA VERSIÓN ACTUAL Y MEJORADA AQUÍ.

En All You Need Is Biology a menudo hacemos referencia a los fósiles para explicar el pasado de los seres vivos. ¿Pero qué es exactamente un fósil y cómo se forma? ¿Para qué sirven los fósiles? ¿Te has preguntado alguna vez cómo lo hace la ciencia para saber la edad de un fósil? Sigue leyendo para descubrirlo!

¿QUÉ ES UN FÓSIL?

Si piensas en un fósil, seguramente lo primero que te viene a la cabeza es un hueso de dinosaurio o una concha petrificada que te encontraste en el bosque, pero un fósil es mucho más. Los fósiles son restos (completos o parciales) de seres vivos que han vivido en el pasado (miles, millones de años)  o rastros de su actividad que quedan conservados (generalmente en rocas sedimentarias). Así pues, existen diferentes tipos de fósiles:

  • Petrificados y permineralizados: son los que corresponden a la definición clásica de fósil en el que las partes orgánicas o huecos son sustituidas por minerales (ver apartado siguiente). Su formación puede dejar moldes internos o externos (por ejemplo, de conchas) en el que el material original puede desaparecer. La madera fosilizada de esta manera se conoce como xilópalo.

    cangrejo herradura, fósil, cosmocaixa, mireia querol rovira
    Fósil petrificado de cangrejo herradura y sus pisadas. CosmoCaixa. Foto: Mireia Querol Rovira
  • Icnofósiles: restos de la actividad de un ser vivo que quedan registradas en la roca y dan información sobre el comportamiento de las especies. Pueden ser modificaciones del entorno (nidos y otras construcciones), huellas (icnitas), deposiciones (coprolitos -excrementos-, huevos…) y otras marcas como arañazos, dentelladas…
    Cosmocaixa, huevos, dinosaurio, nido, mireia querol rovira
    Huevos de dinosaurio (nido). CosmoCaixa. Foto: Mireia Querol Rovira

    coprolitos, cosmocaixa, excrementos fósiles, mireia querol rovira
    Coprolitos, CosmoCaixa. Foto: Mireia Querol Rovira
  • Ámbar: se trata de resina fósil de más de 20 millones de antigüedad. Antes pasa por un estado intermedio que se llama copal (menos de 20 millones de años). La resina, antes de pasar a ámbar, puede atrapar insectos, arácnidos, polen… en este caso se consideraría un doble fósil.

    ámbra, ambre, cosmocaixa, mireia querol rovira
    Pieza de ámbar a la lupa con insectos en su interior, CosmoCaixa. Foto: Mireia Querol Rovira
  • Fósiles químicos: son los combustibles fósiles, como el petróleo y el carbón, que se formaron por la acumulación de materia orgánica a altas presiones y temperaturas junto con la acción de bacterias anaerobias (que no utilizan oxigeno para su metabolismo).
  • Subfósil: cuando el proceso de fosilización no se completa (por haber pasado poco tiempo, o las condiciones para que se diera la fosilización no fueron propicias) los restos se conocen como subfósiles. No tienen más de 11.000 años de antigüedad. Es el caso de nuestros antepasados más recientes (Edad de los Metales).
Ötzi, un subfósil. Es la momia natural más antigua de Europa. Vivió durante el Calcolítico (Edad de Cobre) y murió hace 5.300 años. Foto: Wikimedia Commons
Ötzi, un subfósil. Es la momia natural más antigua de Europa. Vivió durante el Calcolítico (Edad de Cobre) y murió hace 5.300 años. Foto: Wikimedia Commons
  • Fósil viviente: nombre que se da a seres vivos actuales muy parecidos a organismos ya extintos. El caso más famoso es el del celacanto, que se creía extinguido desde hacía 65 millones de años hasta que fue redescubierto en 1938, pero hay otros ejemplos como los nautilos.

    ammonites, nautilus, cosmocaixa, fósil, mireia querol rovira
    Comparación entre la concha de un nautilus actual (izquierda) y un ammonite de millones de años de antigüedad (derecha). CosmoCaixa. Foto :Mireia Querol Rovira
  • Pseudofósiles: son formaciones en las rocas que parecen restos de seres vivos, pero en realidad se han formado por procesos geológicos. El caso más conocido son las dendritas de pirolusita, que parecen vegetales.

    pritolusita, dendritas pirolusita, cosmocaixa, mireia querol rovira
    Infiltraciones de pirolusita en piedra calcárea. CosmoCaixa. Foto: Mireia Querol

Lógicamente los fósiles se hicieron más comunes a partir de la aparición de partes duras (conchas, dientes, huesos…), hace 543 millones de años (Explosión del Cámbrico). El registro fósil anterior a ese período es muy escaso. Los fósiles más antiguos que se conocen son los estromatolitos, rocas formadas por la precipitación de carbonato cálcico debido a la actividad de bacterias fotosintéticas que aún existen en la actualidad.

La ciencia que estudia los fósiles es la Paleontología.

stromatolite, estromatòli, estromatolito, mireia querol rovira, fossil, fósil
Estromatolito de 2.800 millones de años de antigüedad, Australian Museum. Foto: Mireia Querol Rovira

¿CÓMO SE FORMA UN FÓSIL?

La fosilización se puede dar de cinco maneras distintas:

  • Petrificación: es la sustitución de la materia orgánica por sustancias minerales de los restos de un ser vivo enterrado. Se obtiene una copia exacta del organismo en piedra. El primer paso de la petrificación es la permineralización (los poros del organismo están rellenos de mineral pero el tejido orgánico está inalterado. Es la fosilización más común que sufren los huesos).
  • Gelificación: el organismo queda incrustado en el hielo y no sufre apenas transformaciones.
  • Compresión: el organismo muerto queda sobre una capa blanda del suelo, como el lodo, y queda cubierto por capas de sedimentos.
  • Inclusión: los organismos quedan atrapados en ámbar o petróleo.
  • Impresión: los organismos dejan impresiones en el barro y se conserva la marca hasta que el barro se endurece.

    Procesos de fosilización y fósiles resultantes. Autor desconocido
    Procesos de fosilización y fósiles resultantes. Autor desconocido

UTILIDAD DE LOS FÓSILES

  • Los fósiles nos dan información de cómo eran los seres vivos en el pasado, resultando una evidencia de la evolución biológica y una ayuda para establecer los linajes de los seres vivos actuales.
  • Permiten analizar fenómenos cíclicos como cambios climáticos, dinámicas atmósfera-océano e incluso las perturbaciones orbitales de los planetas.
  • Los que son exclusivos de una determinada época permiten datar con bastante exactitud las rocas en las que se encuentran (fósiles guía).
  • Dan información de procesos geológicos como el movimiento de los continentes, presencia de antiguos océanos, cadenas montañosas…
  • Los fósiles químicos son nuestra principal fuente de energía actual.
  • Dan información sobre el clima del pasado, por ejemplo, estudiando los anillos de crecimiento de los troncos fósiles o las deposiciones de materia orgánica en las varvas glaciales.

    mireia querol rovira, tronco fósil, xilópalo, AMNH
    Troncos fósiles donde se observan anillos de crecimiento. American Museum of Natural History. Foto: Mireia Querol Rovira

DATACIÓN DE LOS FÓSILES

Para conocer la edad de los fósiles existen métodos indirectos (datación relativa) y directos (datación absoluta). Como no hay ningún método perfecto y la precisión disminuye con la antigüedad, los yacimientos se suelen datar con más de una técnica.

DATACIÓN RELATIVA

Los fósiles se datan según el contexto en el que han sido encontrados, si están asociados a otros fósiles (fósiles guía) u objetos de los que se conoce la edad y según el estrato en el que se encuentran.

En geología, los estratos son los distintos niveles de rocas que se ordenan según su profundidad: según la estratigrafía, los más antiguos son los que se encuentran a mayor profundidad, mientras que los más modernos son los más superficiales, ya que los sedimentos no han tenido tanto tiempo para depositarse en el sustrato. Lógicamente si hay movimientos de tierras y alteraciones geológicas la datación sería incorrecta si sólo existiera este método.

estratigrafía
Esquema de las eras geológicas y estratos con sus correspondientes fósiles. Fuente

DATACIÓN ABSOLUTA

Son más precisas y se basan en las características físicas de la materia.

DATACIÓN RADIOMÉTRICA

Se basan en la velocidad de desintegración de isótopos radioactivos presentes en rocas y fósiles. Los isótopos son átomos del mismo elemento pero con distinta cantidad de neutrones en su  núcleo. Los isótopos radioactivos son inestables, por lo que se transforman en otros más estables a una velocidad conocida por los científicos emitiendo radiación. Comparando la cantidad de isótopos inestables con los estables en una muestra, la ciencia puede estimar el tiempo que ha transcurrido desde que se formó el fósil o roca.

carbono 14
Esquema del ciclo del Carbono 14. Fuente
  • Radiocarbono (Carbono-14): en organismos vivos, la relación entre el C12 y el C14 es constante, pero cuando mueren, esta relación cambia ya que el C14 deja de incorporarse en el cuerpo y el que queda se descompone radioactivamente en un periodo de semidesintegración de 5730 años. Conociendo la diferencia entre el C12 y C14 de la muestra, podremos datar cuando murió el organismo. El límite máximo de datación por este método son 60.000 años, por lo tanto sólo se aplica a fósiles recientes.
  • Berilio 10-Aluminio 26: tiene la misma aplicación que el C14, pero tiene un período de semidesintegración muchísimo mayor, por lo que permite dataciones de 10 millones de años, e incluso de hasta 15 millones de años.
  • Potasio-Argón (40K/40Ar):  se utiliza para datar rocas y cenizas de origen volcánico de más de 10.000 años . Es el método que se utilizó para datar las huellas de Laetoli, el primer rastro de bipedismo de nuestro linaje dejado por Australopitecus afarensis.
  • Series del Uranio (Uranio-Torio): se utilizan diversas técnicas mediante los isótopos del uranio. Se utilizan en materiales de carbonato de calcio, (como corales) y depósitos minerales en cuevas (espeleotemas).
  • Calcio 41: permite datar restos óseos en un intervalo de tiempo entre 50.000 y 1.000.000 de años.

DATACIÓN POR PALEOMAGNETISMO

El polo norte magnético ha ido cambiando a lo largo de la historia de la Tierra, y se conocen sus coordenadas geográficas en distintas épocas geológicas.

Algunos minerales tienen propiedades magnéticas y se dirigen hacia el polo norte magnético cuando están en suspensión acuosa, por ejemplo en las arcillas. Pero si se depositan en el suelo, quedan fijados hacia la posición que tenía el polo norte magnético en ese momento. Si observamos hacia qué coordenadas están orientados esos minerales en el yacimiento lo podemos asociar con una época determinada.

Deposición de partículas magnéticas orientadas hacia el polo norte magnético. Fuente: Understanding Earth, Press and Seiver, W.H. Freeman and Co.
Deposición de partículas magnéticas orientadas hacia el polo norte magnético. Fuente: Understanding Earth, Press and Seiver, W.H. Freeman and Co.

Esta datación se utiliza en restos dipositados sobre fondos arcillosos y como el polo norte magnético ha estado varias veces en las mismas coordenadas geográficas, se obtiene más de una fecha de datación. Según el contexto del yacimiento, se podrán descartar algunas de estas fechas hasta llegar a una definitiva.

DATACIÓN POR TERMOLUMINISCENCIA Y LUMINISCENCIA ÓPTICA SIMULADA

Ciertos minerales (cuarzo, feldespato, calcita…) acumulan modificaciones en su estructura cristalina debidas a la desintegración radiactiva del entorno. Estas modificaciones son acumulativas, continuas y dependientes del tiempo de exposición a la radiación. Cuando se somete al mineral a estímulos externos, emite luz debido a estas modificaciones. Esta luminiscencia es muy débil y distinta según se le aplique calor (TL), luz visible (OSL) o infrarrojos (IRSL).

Termoluminiscencia de la fluorita. Foto: Mauswiesel
Termoluminiscencia de la fluorita. Foto: Mauswiesel

Sólo se pueden datar muestras que hayan estado protegidas de la luz solar o calor a más de 500ºC, ya que entonces se reinicia “el reloj” al liberarse la energía de manera natural.

RESONANCIA PARAMAGNÉTICA ELECTRÓNICA (ESR)

La ESR (electro spin resonance) consiste en someter la muestra a radiación y medir la energía absorbida por la muestra en función de la cantidad de radiación a la que ha estado sometida durante su historia. Es un método complejo del que puedes obtener más información aquí.

 REFERENCIAS

Mireia Querol Rovira

Coneixent els fòssils i la seva edat

ATENCIÓ! AQUEST ARTICLE ESTÀ OBSOLET.

LLEGEIX LA VERSIÓ ACTUAL I MILLORADA AQUÍ

A All You Need Is Biology sovint fem referència als fòssils per explicar el passat dels éssers vius. Però què és exactament un fòssil i com es forma? Per a què serveixen els fòssils? T’has preguntat mai com ho fa la ciència per saber l’edat d’un fòssil? Segueix llegint per descobrir-ho!

QUÈ ÉS UN FÒSSIL?

Si penses en un fòssil, segurament el primer que et ve al cap és un os de dinosaure o una petxina petrificada que et vas trobar al bosc, però un fòssil és molt més. Els fòssils són restes (completes o parcials) d’éssers vius que van viure en el passat (milers, milions d’anys) o rastres de la seva activitat que queden conservats (generalment en roques sedimentàries). Així doncs, existeixen diferents tipus de fòssils:

  • Petrificats i permineralitzats: són els que corresponen a la definició clàssica de fòssil en què les parts orgàniques o buides són substituïdes per minerals (veure apartat següent). La seva formació pot deixar motlles interns o externs (per exemple, de petxines) en el qual el material original pot desaparèixer. La fusta fossilitzada d’aquesta manera es coneix com a  xilòpal.

    cangrejo herradura, fósil, cosmocaixa, mireia querol rovira
    Fòssil petrificat de cranc ferradura i les seves petjades, CosmoCaixa. Foto: Mireia Querol Rovira
  • Icnofòssils: restes de l’activitat d’un ésser viu que queden registrades en la roca i donen informació sobre el comportament de les espècies. Poden ser modificacions de l’entorn (nius i altres construccions), empremtes (icnites), deposicions (copròlits excrements-, ous…) i altres marques com esgarrapades, mossegades…
    Cosmocaixa, huevos, dinosaurio, nido, mireia querol rovira
    Ous de dinosaure (niu). CosmoCaixa. foto: Mireia Querol Rovira

    coprolitos, cosmocaixa, excrementos fósiles, mireia querol rovira
    Copròlits, CosmoCaixa. foto: Mireia Querol Rovira
  • Ambre: resina fòssil de més de 20 milions d’antiguitat. Abans passa per un estat intermedi que s’anomena copal (menys de 20 milions d’anys). La resina, abans de passar a ambre, pot atrapar insectes, aràcnids, pol·len… en aquest cas es consideraria un doble fòssil.

    Pieza de ámbar a la lupa con insectos en su interior. CosmoCaixa. Foto: Mireia Querol Rovira
    Peça d’ambre a la lupa amb insectes al seu interior, CosmoCaixa. Foto: Mireia Querol Rovira
  • Fòssils químics: són els combustibles fòssils, com el petroli i el carbó, que es van formar per l’acumulació de matèria orgànica a altes pressions i temperatures juntament amb l’acció de bacteris anaerobis (que no utilitzen oxigen per al seu metabolisme).
  • Subfòssil: quan el procés de fossilització no s’ha completat (per haver passat poc temps, o les condicions perquè es donés la fossilització no van ser propícies) les restes es coneixen com subfòssils. No tenen més de 11.000 anys d’antiguitat. És el cas dels nostres avantpassats més recents (Edat dels Metalls).
Ötzi, un subfòssil. És la mòmia natural més antiga d’Europa. Va viure durant el Calcolític (Edat de Coure) i va morir fa 5.300 anys. Foto: Wikimedia Commons
    • Fòssil vivent: nom que es dóna a éssers vius actuals molt semblants a organismes ja extingits. El cas més famós és el del celacant, que es creia extingit des de feia 65 milions d’anys fins que va ser redescobert el 1938, però hi ha altres exemples com els nàutils.

      ammonites, nautilus, cosmocaixa, fósil, mireia querol rovira
      Comparació entre la closca d’un nautilus actual (esquerra) i un ammonit de milions d’anys d’antiguitat (dreta). CosmoCaixa. Foto :Mireia Querol Rovira
    • Pseudofòssils: són formacions a les roques que semblen restes d’éssers vius, però en realitat s’han format per processos geològics. El cas més conegut són les dendrites de pirolusita, que semblen vegetals.

      Infiltraciones de priolusita en piedra calcárea. CosmoCaixa. Foto: Mireia Querol
      Infiltracions de priolusita en lloses calcàries, CosmoCaixa. Foto: Mireia Querol

Lògicament els fòssils es van fer més comuns a partir de l’aparició de parts dures (petxines, dents, ossos…), fa 543 milions d’anys (Explosió del Cambrià). El registre fòssil anterior a aquest període és molt escàs. Els fòssils més antics que es coneixen són els estromatòlits, roques formades per la precipitació de carbonat càlcic a causa de l’activitat de bacteris fotosintètics que encara existeixen en l’actualitat.

La ciència que estudia els fòssils és la Paleontologia .

stromatolite, estromatòli, estromatolito, mireia querol rovira, fossil, fósil
Estromatòlit de 2.800 milions d’anys d’antiguitat, Australian Museum. Foto: Mireia Querol Rovira

COM ES FORMA UN FÒSSIL?

La fossilització es pot donar de cinc maneres diferents:

    • Petrificació: és la substitució de la matèria orgànica per substàncies minerals de les restes d’un ésser viu enterrat. S’obté una còpia exacta de l’organisme en pedra. El primer pas de la petrificació és la permineralització: els porus de l’organisme estan farcits de mineral però el teixit orgànic està inalterat. És la fossilització més comú que pateixen els ossos.
    • Gelificació: l’organisme queda incrustat en el gel i no pateix gairebé transformacions.
    • Compressió: l’organisme mort queda sobre una capa tova del sòl, com el fang, i queda cobert per capes de sediments.
    • Inclusió : els organismes queden atrapats en ambre o petroli.
    • Impressió: els organismes deixen impressions en el fang i es conserva la marca fins que el fang s’endureix.
Processos de fossilització i fòssils resultants. Autor desconegut

UTILITAT DELS FÒSSILS

  • Els fòssils ens donen informació de com eren els éssers vius en el passat, resultant una evidència de la evolució biològica i una ajuda per establir els llinatges dels éssers vius actuals.
  • Permeten analitzar fenòmens cíclics com canvis climàtics, dinàmiques atmosfera-oceà i fins i tot les pertorbacions orbitals dels planetes.
  • Els que són exclusius d’una determinada època permeten datar amb força exactitud les roques en què es troben (fòssils guia).
  • Donen informació de processos geològics com el moviment dels continents, presència d’antics oceans, cadenes muntanyoses…
  • Els fòssils químics són la nostra principal font d’energia actual.
  • Donen informació sobre el clima del passat, per exemple, estudiant els anells de creixement dels troncs fòssils o les deposicions de matèria orgànica en les varves glacials.

    mireia querol rovira, tronco fósil, xilópalo, AMNH
    Troncs fòssils on s’observen anells de creixement. American Museum of Natural History. Foto: Mireia Querol Rovira

DATACIÓ DELS FÒSSILS

Per conèixer l’edat dels fòssils existeixen mètodes indirectes (datació relativa) i directes (datació absoluta). Com que no hi ha cap mètode perfecte i la precisió disminueix amb l’antiguitat, els jaciments se solen datar amb més d’una tècnica.

DATACIÓ RELATIVA

Els fòssils es daten segons el context en el qual han estat trobats, si estan associats a altres fòssils (fòssils guia) o objectes dels que es coneix l’edat i segons l’estrat en el qual es troben.

En geologia, els estrats són els diferents nivells de roques que s’ordenen segons la seva profunditat: segons la estratigrafia, els més antics són els que es troben a major profunditat, mentre que els més moderns són els més superficials, ja que els sediments no han tingut tant de temps per dipositar-se al substrat. Lògicament si hi ha moviments de terres i alteracions geològiques la datació seria incorrecta si només existís aquest mètode.

Esquema de las eras geológicas y estratso con sus correspondientes fósiles. Fuente
Esquema de les eres geològiques i estrats amb els seus corresponents fòssils. Font

DATACIÓ ABSOLUTA

És més precisa i es basa en les característiques físiques de la matèria.

DATACIÓ RADIOMÈTRICA

Es basa en la velocitat de desintegració d’isòtops radioactius presents en roques i fòssils. Els isòtops són àtoms del mateix element però amb diferent quantitat de neutrons en el seu nucli . Els isòtops radioactius són inestables, pel que es transformen en altres més estables a una velocitat coneguda pels científics emetent radiació. Comparant la quantitat d’isòtops inestables amb els estables en una mostra, la ciència pot estimar el temps que ha transcorregut des que es va formar el fòssil o roca.

carbono 14
Esquema del cicle del Carboni 14. Font
  • Radiocarboni (Carboni-14): en organismes vius, la relació entre el C12 i el C14 és constant, però quan moren, aquesta relació canvia ja que el C14 deixa de incorporar-se al cos i el que queda es descomposa radioactivament en un període de semidesintegració de 5730 anys. Coneixent la diferència entre el C12 i C14 de la mostra, podrem datar quan va morir l’organisme. El límit màxim de datació per aquest mètode són 60.000 anys, per tant només s’aplica a fòssils recents.
  • Beril·li 10-Alumini 26: té la mateixa aplicació que el C14, però té un període de semidesintegració molt més gran, de manera que permet datacions de 10 milions d’anys, i fins i tot de fins a 15 milions d’anys.
  • Potassi-Argó (40K/40Ar): s’utilitza per datar roques i cendres d’origen volcànic de més de 10.000 anys. És el mètode que es va utilitzar per datar les petjades de Laetoli , el primer rastre de bipedisme del nostre llinatge deixat per Australopithecus afarensis.
  • Sèries de l’Urani (Urani-Tori): s’utilitzen diverses tècniques mitjançant els isòtops de l’urani. S’utilitzen en materials de carbonat de calci, (com coralls) i dipòsits minerals en coves (espeleotemes ).
  • Calci 41: permet datar restes òssies en un interval de temps entre 50.000 i 1.000.000 d’anys.

DATACIÓ PER PALEOMAGNETISME

El pol nord magnètic ha anat canviant al llarg de la història de la Terra, i es coneixen les coordenades geogràfiques en diferents èpoques geològiques.

Alguns minerals tenen propietats magnètiques i es dirigeixen cap al pol nord magnètic quan estan en suspensió aquosa, per exemple en les argiles. Però si es dipositen a terra, queden fixats cap a la posició que tenia el pol nord magnètic en aquell moment. Si observem cap a quines coordenades estan orientats aquests minerals al jaciment, el podem associar amb una època determinada.

Deposición de partículas magnéticas orientadas hacia el polo norte magnético. Fuente: Understanding Earth, Press and Seiver, W.H. Freeman and Co.
Deposició de partícules magnètiques orientades cap al pol nord magnètic. Font: Understanding Earth, Press and Seiver, W.H. Freeman and Co.

Aquesta datació s’utilitza en restes dipositades sobre fons argilosos i com el pol nord magnètic ha estat diverses vegades en les mateixes coordenades geogràfiques, s’obté més d’una data de datació. Segons el context del jaciment, es podran descartar algunes d’aquestes dates fins arribar a una definitiva.

DATACIÓ PER TERMOLUMINISCÈNCIA I LUMINISCÈNCIA ÒPTICA SIMULADA

Certs minerals (quars, feldspat, calcita…) acumulen modificacions en la seva estructura cristal·lina degudes a la desintegració radioactiva de l’entorn. Aquestes modificacions són acumulatives, contínues i dependents del temps d’exposició a la radiació. Quan se sotmet al mineral a estímuls externs, emet llum a causa d’aquestes modificacions. Aquesta luminiscència és molt feble i diferent segons se li apliqui calor (TL), llum visible (OSL) o infrarojos (IRSL).

Termoluminiscencia de la fluorita. Foto: Mauswiesel
Termoluminiscència de la fluorita. Foto: Mauswiesel

Només es poden datar mostres que hagin estat protegides de la llum solar o del calor a més de 500 ºC, ja que llavors es reinicia “el rellotge” en alliberar l’energia de manera natural.

RESSONÀNCIA PARAMAGNÈTICA ELECTRÒNICA (ESR)

La ESR (electro spin ressonance) consisteix a sotmetre la mostra a radiació i mesurar l’energia absorbida per la mostra en funció de la quantitat de radiació a la qual ha estat sotmesa durant la seva història. És un mètode complex del que pots obtenir més informació aquí.

REFERÈNCIES

mireia querol rovira