Arxiu d'etiquetes: sargantana

Genitals animals: amfibis, rèptils i mamífers

Després de la primera part sobre els genitals d’aus i peixos, tanquem capítol sobre les curiositats dels penis, vagines i altres òrgans reproductors d’amfibis, rèptils i mamífers.

GENITALS EN AMFIBIS

Com ja vam veure en l’article anterior, la cloaca és l’orifici on conflueixen els aparells digestiu, reproductor i excretor. Tots els amfibis posseeixen cloaca, així com els rèptils, aus i alguns peixos (taurons i rajades) i mamífers. Les larves dels amfibis es caracteritzen per patir una gran transformació coneguda com metamorfosi .

No et perdis l’exitós article sobre amfibis lladres d’esperma .

ANURS

De reproducció externa, l’aparellament dels anurs (amfibis sense cua, com les granotes) es produeix normalment a l’aigua. En els anurs  el mascle, de menor grandària que la femella, s’agafa a la femella fermament. Aquest abraçada es denomina amplexe. Les contraccions de la femella en expulsar els ous estimulen al mascle per ruixar-los d’esperma en el mateix moment que són expulsats. Els ous queden units per una massa gelatinosa que adquireix diferents formes segons l’espècie.

Amplexe de Litoria xanthomera. Foto: Rainforest harley

Les granotes mascle del gènere Ascaphus tenen una pseudocua que no és més que una extensió de la cloaca. Això els ajuda a evitar pèrdues d’esperma en les aigües de gran corrent on viuen, en dipositar l’esperma dins de la cloaca de la femella. Són doncs els únics anurs amb fertilització interna.

Granota amb cua (Ascaphus truei). Foto: Mokele


URODELS

Gairebé tots els urodels (amfibis amb cua, com salamandres i tritons) presenten fecundació interna. El mascle se situa davant la femella i allibera uns sacs (espermatòfors) que contenen els espermatozoides. La femella camina sobre un d’ells, el recull amb els llavis de la cloaca i els situa a l’espermateca, una cavitat on els espermatozoides esperen que els ous passin per la cloaca per anar-los fecundant. La femella posa els ous fecundats un per un enganxant-los a les plantes aquàtiques, excepte en algunes espècies de salamandra, en que la femella els reté i neixen larves vives (ovoviviparisme).

Espermatòfors de salamandra (Ambystoma sp.). Foto: Placeuvm

 

ÀPODES

Els àpodes o cecílies són amfibis sense potes amb fecundació interna, però a diferència dels anurs es produeix inseminació interna. Això és possible gràcies a un pseudo-fal·lus (phallodeum) que tenen els mascles, que s’insereixen a la cloaca de la femella durant dues o tres hores.

Phallodeum d’una cecília. Foto cedida per: Danté Fenolio

En les espècies ovípares (25%) els ous són custodiats per la mare, la resta d’espècies són ovovivípares (75%). En algunes espècies ovovivípares les cries ja neixen metamorfosades, en altres com larva. Durant la seva estada a l’interior de la mare, s’alimenten de cèl·lules de l’oviducte, que raspen amb les seves dents especials. En el cas de l’espècie ovípara Boulengerula taitana, les larves s’alimenten de la pell de la mare, el que els permet créixer 10 vegades la seva grandària en una setmana.

GENITALS EN RÈPTILS

RÈPTILS ESCAMOSOS

Els rèptils escamosos (ordre Squamata), és a dir, llangardaixos, serps i anfisbeníds (serpetes cegues) posseeixen el penis dividit en dos: és el que es coneix com hemipenis. Es manté guardat a l’interior de la cua i surt a l’exterior durant la còpula gràcies als teixits erèctils. Tot i ser doble, durant la còpula només s’introdueixen a la femella una de les parts, encara que poden fer-ho alternativament. Els extrems poden ser llisos o presentar punxes o estructures per assegurar l’adherència a la cloaca de la femella.

Sargantana vivípara (Zootoca vivipara) amb els hemipenis a la vista. Foto: Charlesjsharp

TORTUGUES

En algunes tortugues marines, la cloaca conserva la capacitat d’intercanvi gasós, en altres paraules, de respirar. L’aigua passa lentament per ella, el que permet recollir l’oxigen i portar-lo fins als pulmons.

Les tortugues mascle posseeixen un penis simple que està plegat en dos a la cloaca, dins de la cua, de manera que la cua dels mascles és més gruixuda i llarga que la de les femelles. Durant l’erecció, s’omple de fluid, es desplega i surt a l’exterior, aconseguint una mida comparativament bastant gran.

Penis de tortuga mediterrània (Testudo hermanni). Font

COCODRILS

Els cocodrils tenen un penis rígid (sempre a erecció) amagat dins del cos que surt disparat com un ressort a l’exterior en el moment de la còpula i s’amaga de nou a la mateixa velocitat. Segons aquest estudi , el teixit fibrós i col·lagen del penis permetria la no existència d’erecció i detumescencia.

En aquest vídeo es pot observar com emergeix el penis d’un aligàtor americà durant la seva disseció, en tocar el nervi pèlvic.

GENITALS EN MAMÍFERS

MAMÍFERS MONOTREMES

Els monotremes són els mamífers més primitius, amb algunes característiques reptilianes, com la posta d’ous i la presència de cloaca. Ornitorrincs i equidnes són els representants més coneguts.

El penis dels monotremes tenen 4 extremitats, encara que no totes poden funcionar simultàniament. S’usa només la meitat, és a dir, dues bifurcacions cada vegada. En el cas de l’ornitorinc només funciona la banda esquerra, ja que la femella només té funcional l’ovari esquerre.

Penis d’equidna. Font

MAMÍFERS MARSUPIALS

Els marsupials són aquells mamífers en què la cria acaba el seu desenvolupament en el marsupi, una mena de bossa que posseeixen les femelles on es troben les mames. Els més coneguts són els cangurs, coales, opòssums i l’extint llop marsupial.

Generalment les femelles tenen dues vagines, que encaixen amb els penis bifurcats dels mascles, que es retreuen dins el cos en forma de S quan estan en repòs. Els penis dels marsupials, a diferència d’alguns placentaris, no posseeixen cap os al seu interior.

Penis d’opòssum. Foto: Ellen Rathbone

En el cas dels cangurs, les femelles posseeixen tres vagines (que s’uneixen en una sola obertura a l’exterior) i dos úters. Les dues vagines laterals condueixen l’esperma cap als úters i la central és per on baixa la cria durant el part.

Sistema reproductor de les femelles marsupials. Foto: National Geographic

MAMÍFERS PLACENTARIS

OS PENIÀ I ERECCIÓ

En els mamífers placentaris, com els humans, la cria es desenvolupa a l’úter i és nodrit mitjançant la placenta. Molts mascles de placentaris presenten un os penià o bàcul. Aquest os permet la còpula encara que no hagi erecció.

Os del penis del gos. La fletxa assenyala la ubicació del solc uretral. Foto: Didier Descouens

Alguns placentaris han perdut el bàcul: és el cas dels humans, hienes, èquids (cavalls, zebre …) i lagomorfs (conills, llebres …). En ells, l’erecció és possible gràcies a l’ompliment de sang dels cossos cavernosos.

DOFINS

En el cas dels dofins, el seu penis és prènsil i sensorial. La punta és giratòria i no és rar veure’ls palpar el fons marí amb el seu penis. Això ha donat lloc a falsos mites com que els dofins sempre estan excitats i intenten copular amb qualsevol cosa que se’ls posi per davant. Aquesta capacitat tàctil també els permetria estrènyer llaços socials entre ells, fins i tot entre mascles. Aquest comportament també l’observem en les orques .

La vagina dels dofins està plena de plecs i racons per dificultar l’accés de l’esperma fins a l’òvul, ja sigui de mascles rivals o de mascles amb els que la femella no desitjava aparellar-se. Si vols veure com encaixa el penis a la intricada vagina del dofí clica aquí.

HIENES

A primera vista podríem confondre una hiena mascle amb una femella. Les hienes rialleres (Crocuta crocuta) femella, tenen una llarga vagina que s’estén en un clítoris extern de la mateixa mida que el penis masculí. Les cries doncs, han de travessar aquest llarg canal en néixer, que pateix grans estrips en els primers parts i en ocasions les cries moren per no poder travessar-lo. A més, els llavis vaginals també són grans i plens de greix, el que podria arribar a recordar a uns testicles.

Genitals de la hiena riallera. Fuente: Quora

REFERÈNCIES

Regeneració d’extremitats, de l’axolot a l’ésser humà

La regeneració de parts del cos perdudes o danyades en els animals es coneix des de fa bastants segles. El 1740 el naturalista Abraham Trembley va observar a un petit cnidari que podia regenerar el seu cap si li tallaven, per això el va anomenar Hydra, fent referència al monstre de la mitologia grega que podia regenerar els seus múltiples caps si li tallaven. Posteriorment, es va descobrir que hi havíen moltes altres espècies animals amb capacitats regeneratives. En aquesta entrada parlarem sobre aquests animals.

Regeneració al regne animal

La regeneració de parts del cos està molt més extesa entre els diferents grups d’invertebrats que de vertebrats. Aquest procés pot ser bidireccional, en el que els dos troços de l’animal regeneren les parts que els falten per a generar dos animals (com a l’hidra, les planàries, els cucs i les estrelles de mar), o unidireccional, en la que l’animal perd una extremitat però només la regenera sense que es formin dos animals (artròpodes, moluscs i vertebrats). Entre els vertebrats, peixos i amfibis són els que presenten més capacitats regeneratives, tot i que molts llangardaixos i alguns mamífers poden regenerar la cua.

ch14f01Imatge de Matthew McClements sobre la regeneració bidireccional en planàries, hidres i estrelles de mar. Extret de Wolbert's Principles of Development.

La regeneració es pot donar de dues maneres diferents:

  • Regeneració sense proliferació cel·lular activa o “morphalaxis”. En aquest tipus, la part del cos que falta és recreada principalment mitjançant la remodelació de cèl·lules preexistens. Això és el que passa en la Hydra, en la que les parts perdudes es regeneren sense la creació de material nou. Per tant, si es secciona una hidra per la meitat, obtindrem dues versions més petites de la hidra original.
Vídeo d'un experiment on s'ha seccionat una Hydra en diferents trossos. Vídeo de Apnea.
  • Regeneració amb proliferació cel·lular o “epimorfosis”. En aquest, la part perduda es regenera mitjançant proliferació cel·luar o sigui, que es crea “de nou”. Aquesta en la majoria de casos es produeix mitjançant la formació d’una estructura especialitzada anomenada blastema, massa de cèl·lules mare sense diferenciar que apareix en fenòmens de regeneració cel·lular.

Quasi tots els grups d’animals amb capacitats regeneratives presenten regeneració amb formació de blastema. Tot i així, l’orígen de les cèl·lules mare del blastema varia segons el grup. Mentre que les planàries presenten cèl·lules mare pluripotents (que poden diferenciar-se a qualsevol tipus cel·lular) repartides per tot el cos, els vertebrats presenten cèl·lules dels teixits on es forma el blastema.

Entre els vertebrats terrestres, les sargantanes i els urodels són els que mostren més habilitats regeneratives. A continuació veurem com ho aconsegueixen i les aplicacions que això té a la medicina actual.

Cues prescindibles

Quan ets un petit animal que està sent perseguit per un gat o un altre depredador, probablement et surti més rentable perdre la teva preciada cua a perdre la vida. Alguns vertebrats terrestres han evolucionat seguint aquesta filosofia, i ells mateixos poden desprendre’s de la seva cua voluntàriament mitjançant un procés anomenat autotomia caudal. Això els permet fugir dels seus depredadors, els quals s’entretenen amb la cua perduda que segueix movent-se.

 Vídeo on es veu com algunes sargantanes com aquest vanzosaure de cua vermella (Vanzosaura rubricauda) tenen cues de colors vius per atraure l'atenció dels depredadors. Vídeo de Jonnytropics.

L’autotomia o autoamputació, es defineix com un comportament en el que l’animal es desprèn d’una o vàries parts del cos. L’autotomia caudal la trobem en moltes espècies de rèptils i en dues espècies de ratolins espinosos del gènere Acomys. Entre els rèptils, trobem autotomia caudal en els lacèrtids, els dragons, els escíncids i les tuatares.

Acomys.cahirinus.cahirinus.6872Foto d'un ratolí espinós del Caire (Acomys cahirinus), un mamífer que és capaç de desprendre's de la seva cua i regenerar-la. Foto de Olaf Leillinger.

En els rèptils, la fractura de la cua es dóna en zones concretes de les vèrtebres caudals que estàn debilitades de per sí. L’autotomia es pot donar de dues formes diferents: l’autotomia intravertebral, en la que les vèrtebres del centre de la cua tenen plans de fractura transversals preparats per trencar-se si es presionen suficient, i l’autotomia intervertebral, en la qual la cua es trenca entre les vèrtebres per constricció muscular.

0001-3765-aabc-201520130298-gf03Model tridimensional de els plans de fractura de la cua d'un llangardaix i la regeneració post-autotomia d'un tub cartilaginós. Imatge extreta de Joana D. C. G. de Amorim et al.

L’autotomia caudal permet fugir a l’animal, però li sortirà car. Molts rèptils utilitzen la cua com a reservori de greixos i perdre aquest magatzem d’energia sol ser perjudicial per l’animal. Per això es sap que molts llangardaixos, un cop ha desaparegut l’amenaça, buscan la seva cua perduda i se la mengen, per almenys recuperar l’energia que teníen acumulada en forma de greix. A més, regenerar una cua nova és un procés costós energèticament.

DSCN9467Foto d'una sargantana iberoprovençal (Podarcis liolepis) que ha perdut la cua. Foto de David López Bosch.

La regeneració de la cua dels rèptiles difereix de la d’amfibis i peixos en que no es forma el blastema, i que en lloc de regenerar-se realment les vèrtebres caudals, es forma un tub de cartílag. La nova cua no és tan mòbil i sol ser més curta que l’original, i sol regenerar-se completament al cap d’unes setmanes. La majoria de llangardaixos poden regenerar la cua vàries vegades, però alguns com el vidriol (Anguis fragilis) només poden fer-ho un cop. En ocasions, la cua original no es trenca del tot però s’activen els mecanismes de regeneració, cosa que pot fer que ens poguem trobar alguna sargantana o algún dragó amb més d’una cua.

056 (2)Detall de la cua d'un dragó comú (Tarentola mauritanica) que ha regenerat la cua sense acabar de perdre la cua original. Foto de Rafael Rodríguez.

Urodels, els reis de la regeneració

De tots els tetràpodes, els amfibis són els que presenten les majors capacitats regeneratives. Durant la fase larvària de la majoria d’espècies, tant la cua com les extremitats (si les presenten) poden ser regenerades si les perden. La comunitat científica creu que això es deu a que en els amfibis el desenvolupament de les extremitats i altres òrgans es retrassen fins al moment de la metamorfosi. Tot i així, les granotes i els gripaus (anurs) només conserven els seus poders regeneratius durant la fase de capgròs, perdent-los al arribar a l’edat adulta.

Wood_frog_tadpoleCapgròs de granota de bosc (Rana sylvatica) que, com en tots els amfibis, posposa el desenvolupament de les extremitats fins al moment de la metamorfosi. Foto de Brian Gratwicke.

En canvi, moltes salamandres i tritons (urodels) conserven els seus poders regeneratius durant tota la vida. Encara que moltes espècies presenten autotomia caudal, a diferència de les sargantanes, els urodels regeneren completament, no només la cua, sinó pràcticament qualsevol teixit corporal perdut. De totes les espècies conegudes, l’axolot (Ambystoma mexicanum), un amfibi neotènic que arriba a l’edat adulta sense patir cap metamorfosi, ha servit com a organisme model per a l’estudi de la formació del blastema que precedeix a la regeneració.

 Vídeo on es parla del axolot, aquest curiós amfibi que està en greu perill d'extinció. Vídeo de Zoomin.TV Animals.

La regeneració que es dóna en les salamandres té fases genèticament similars a les que pateixen la resta de vertebrats al desenvolupar els diferents teixits i òrgans durant el desenvolupament embrionari. En l’axolot (i en la resta d’urodels) la regeneració després de l’amputació d’una extremitat passa per tres fases diferents:

  • Curació de la ferida: Durant la primera hora després de l’amputació, cèl·lules epidèrmiques migren a la zona de la ferida. El tancament de la ferida es produeix més o menys a les dues hores i hi intervenen els mateixos mecanismes que en la resta de vertebrats. Tot i així, la regeneració completa de la pell es retrassa fins al final de la regeneració.
  • Desdiferenciació: Aquesta segona fase comença a les 24 hores de l’amputació i és quan es forma el blastema. Aquest està format per cèl·lules dels teixits especialitzats de la zona d’amputació que perden les seves característiques (obtenen la capacitat de proliferar i diferenciar-se de nou), i de cèl·lules derivades del teixit connectiu que migren a la zona d’amputació. Quan aquestes cèl·lules de diferent origen s’acumulen i formen el blastema, s’inicia la proliferació cel·lular.
  • Remodelació: Per a l’inici de la tercera fase, és imprescindible la formació d’un blastema amb cèl·lules de diversos orígens. Un cop format el blastema de cèl·lules desdiferenciades, la formació de la nova extremitat segueix el mateix patró que en les extremitats de qualsevol vertebrat durant el desenvolupament embrionari (fins i tot hi intervenen els mateixos gens).
A_Stages_of_zebrafish_caudal_fin_regeneration_as_longitudinal_sections.Esquema de la formació del blastema en el peix zebra (Danio rerio) un altre organisme model. Imatge de Kyle A. Gurley i Alejandro Sánchez Alvarado.

Recentment s’han trobat fòssils de diversos grups de tetràpodes primitius que presenten rastres de regeneració. S’han trobat proves de regeneració d’extremitats en fòssils de temnospòndils (Apateon, Micromelerpeton i Sclerocephalus) i de lepospòndils (Microbrachis i Hyloplesion). Aquesta àmplia gamma de gèneres de tetràpodes basals que presenten regeneració i el fet de que molts peixos també la presentin, ha portat a molts científics a plantejar-se si els primers grups de tetràpodes primitius presentaven regeneració i aquesta es va perdre en els avantpassats dels amniotes (rèptils, aus i mamífers).

Axolotl_ganz
Foto d'un axolot, per LoKiLeCh.

Tot i així, es creu que la informació genètica de formació del blastema podria trobar-se en l’ADN dels amniotes tot i que estaria en estat latent. De les tres fases del procés de regeneració, l’única que és exclusiva dels urodels és la fase de desdiferenciació, ja que la fase de curació és igual a la cicatrització en la resta de vertebrats i la de remodelació és igual a la formació de extremitats durant l’embriogènesi. Actualment s’estan portant a terme multitud d’estudis sobre com reactivar els gens latents que promouen la formació del blastema en altres vertebrats, com per exemple els éssers humans.

Alguns òrgans humans com el ronyó i el fetge ja tenen certa capacitat de regeneració, però gràcies a l’investigació amb cèl·lules mare en animals com les salamandres i les sargantanes, actualment és possible regenerar dits, genitals i parts de la bufeta, el cor i els pulmons. Com hem vist, els diferents animals capaços de regenerar membres seccionats amaguen el secret que podria salvar a milers de persones. Recordem això la pròxima vegada que escoltem que centenars d’espècies d’amfibis i rèptiles es troben en perill per culpa de la mà de l’home.

Difusió-català

Referències

Per a l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

No tenir potes no et converteix en una serp

Amb l’arribada del bon temps és més probable que sortim al camp a gaudir de la natura i això augmenta les possibilitats de que ens trobem a serps i altres rèptils prenent el sol a sobre una pedra o corretejant entre l’herba. Les serps són el grup d’escamosos sense potes més conegut, tot i que moltes altres espècies de llangardaixos i sargantanes també han perdut les extremitats al llarg de la seva evolució. En aquesta entrada explicaré algunes característiques distintives de les tres espècies de llangardaixos sense potes que trobem a la Península Ibèrica, el vidriol i les colobretes cegues.

LLANGARDAIXOS SENSE POTES

La pèrdua de potes (apodisme) és un fenomen evolutiu que s’ha donat més d’un cop en l’ordre dels Squamata. De fet, actualment existeixen com a mínim uns nou llinatges (a part de les serps) que han patit un procés de pèrdua de la funcionalitat de les potes. En la majoria de grups això es deu a una adaptació a una vida subterrània (solen tindre la cua curta i arrodonida) o a una vida entre l’herba i la vegetació (solen tindre una cua llarga i prima).

1Scheltopusik o llangardaix àpode europeu (Ophisaurus apodus) un llangardaiz sense potes de la família Anguidae, foto de Tim Vickers.

Tot i que tècnicament les serps també són llangardaixos que han perdut les potes, a diferència dels altres grups, alguns ofidis poden representar un perill per a l’ésser humà. Per això és important saber diferenciar a una serp de la resta de llangardaixos sense extremitats. Hi ha un seguit de característiques que ens poden ajudar a identificar a una serp o a un llangardaix no verinós:

  • Les serps no tenen parpelles mòbils, mentre que la resta de llangardaixos si que en solen tindre.
  • Els ofidis no presenten oïda externa, mentre que en la majoria de llangardaixos es pot apreciar el forat auditiu.
  • Les serps presenten escames ventrals especialitzades per a la locomoció, mentre que molts llangardaixos àpodes s’han de desplaçar ajudant-se de les irregularitats del terreny.
  • Molts llangardaixos àpodes poden desprendre’s de la cua com a mètode de defensa (autotomia caudal) mentre que les serps no.
www.public-domain-image.com (public domain image)Fotografia d'una mamba verda occidental (Dendroaspis viridis),un ofidi típic, per Jon Sullivan.

En una entrada anterior ja vam explicar les diferents espècies de serps que podem trobar a la Península Ibèrica. A continuació us presentaré a les tres espècies d’escamosos àpodes que ens podem trobar quan sortim a passejar per paratges naturals del nostre país.

VIDRIOL (Anguis fragilis)

El vidriol és un llangardaix àpode de la família dels ànguids (Anguidae) dintre de la qual hi trobem la subfamília Anguinae, en la que molts membres han perdut les extremitats o les tenen molt reduïdes. El nom científic del vidriol, Anguis fragilis vol dir literalment “serp fràgil”, per la seva capacitat de desprendre’s de la cua per a fugir dels depredadors.

SONY DSCFoto de un vidriol a prop de Nismes, per © Hans Hillewaert.

Descripció

El vidriol és un petit llangardaix sense potes que arriba a fer 40 centímetres de llargada. Presenta escates llises i brillants i un cap petit amb el coll poc definit. A diferència de les serps té parpelles mòbils, una llengua forcada i una petita obertura timpànica.

Els exemplars juvenils solen presentar una coloració bruna daurada, platejada o groguenca amb els costats i el ventre negres. Les femelles presenten una coloració semblant als juvenils, sent de color ocre amb el ventre marró fosc o negre i una banda dorsal negra, tot i que la seva coloració varia molt.

Slow Worm (Anguis fragilis), seen near Hitchin, Hertfordshire, during the final test of the August GOC walk, on 3 August 2013. It's the first ever reptile I've photographed, and indeed, the first I've seen in the wild! So I was very happy.Vidriol femella, fotografiat a Hertfordshire per Peter O'Connor.

Els mascles són més uniformes, amb el dors i els costats de color bru, grisós o castany i alguns amb taques marrons als costats que es poden tornar de color blau.

6Mascle de vidriol, amb les taques blaves distintives, per Maria Haanpää.

Hàbitat i distribució

És un rèptil àmpliament distribuït per la major part d’Europa, trobant-se des de la Península Ibèrica, Anglaterra i Escòcia fins a Iran i l’oest de Sibèria, passant per Grècia i Turquia.

7Mapa mostrant la distribució del vidriol, per Osado.

A la Península Ibèrica es troba sobretot a la meitat nord, ocupant gran part de Galícia, Astúries, Cantàbria, País Basc i Castilla y León i el nord d’Aragó i Catalunya. El vidriol és una espècie comuna que passa desapercebuda pels seus costums discrets. Els podem trobar en una àmplia varietat d’hàbitats oberts com ara herbassars, matollars i boscos oberts.

8Distribució del vidriol a Espanya, per Lameiro.

A diferència de la majoria de rèptils que busquen el sol per a escalfar-se, el vidriol té una marcada preferència pels llocs humits i ombrívols, amb vegetació baixa i abundant. Es sol refugiar sota pedres, troncs, plàstics o caus de petits mamífers.

Male slow worm (Anguis fragilis)Un vidriol mascle en el seu hàbitat, als Països Baixos, per Viridiflavus.

Biologia i ecologia

A la Península Ibèrica el vidriol està actiu des de finals de febrer fins al novembre, moment en que comença la hibernació, durant la qual s’agrupen fins a 100 individus. L’aparellament dura des de mitjans de març fins al juliol, durant el qual es poden produir baralles entre els mascles. La gestació del vidriol dura uns 3 mesos, és una espècie ovovivípara (té ous però aquests eclosionen a l’interior de la femella) i pareix entre 2 i 22 cries.

Nombroses espècies de rèptils, aus i mamífers s’alimenten d’aquesta espècie. Com molts altres llangardaixos, el vidriol es pot desprendre de la cua com a mètode de defensa, la qual es continua movent mentre que el que queda de l’animal fuig. La cua es comença a regenerar al cap d’unes setmanes.

10Fotografia d'un vidriol després de desprendre's de la seva cua, per SuperMarker.

El vidriol s’alimenta de cargols, cucs, larves d’insectes i molts altres invertebrats petits, ja que a diferència de les serps, no pot desencaixar les mandíbules per a empassar-se grans preses. A molts llocs ha estat injustament perseguit tot i ser una espècie beneficiosa per a camps i jardins, ja que s’alimenta de molts animals considerats plagues per a les plantes.

11Foto d'un vidriol apunt de menjar-se un llimac, per Biosphoto/Thiebaud Gontard.

COLOBRETES CEGUES (Blanus cinereus i Blanus mariae)

Els amfisbènids (clade Amphisbaenia) són un grup altament especialitzat d’escamosos subterranis coneguts amb el nom de llangardaixos cecs. Tot i que externament s’assemblen a algunes serps primitives, es diferencien en que, mentre que les serps van perdre primer les potes del davant i el pulmó esquerre, els amfisbènids van perdre primer les potes del darrera i el pulmó dret. Actualment es coneixen unes 180 espècies d’amfisbènids, dues de les quals les trobem a la Península Ibèrica: la colobreta cega ibèrica (Blanus cinereus) i la colobreta cega de Maria (Blanus mariae), ambdues diferenciant-se tant per la distribució com per estudis genòmics.

12Colobreta cega ibèrica a Andalusia, foto feta per Antonio.

Descripció

Les colobretes cegues són uns rèptils estrictament adaptats a la vida subterrània i amb un aspecte semblant a un cuc de terra. A primera vista resulta difícil diferenciar el cap de la cua, cosa que els resulta molt útil a l’hora de fugir dels depredadors (igual que el vidriol poden desprendre’s de la cua, tot i que aquesta no es regenera completament).

SONY DSCColobreta cega ibèrica al costat de Múrcia. Notis la similitud entre el cap i la cua. Foto de Jorozko.

Els adults arriben a mesurar més de 15 centímetres de llargada, amb alguns exemplars arribant als 30 centímetres. El cap és curt i arrodonit, amb una àmplia placa frontal per a ajudar en l’excavació. Els ulls són vestigials (només detecten canvis en la intensitat de la llum) i estan coberts d’escates, mentre que l’oïda i l’olfacte estan altament desenvolupats.

14Foto del cap d'una colobreta cega ibèrica, en la que es poden veure els ulls coberts d'escates, per J. Gállego.

Les escates són rectangulars i estan distribuïdes formant anells al voltant del cos. La coloració passa pel rosa pàl·lid, el porpra fosc i el marró, i no existeix diferència entre mascles i femelles. Com tots els amfisbènids, les colobretes cegues poden desplaçar-se tant endavant com endarrere.

15Colobreta cega adulta al costat de Càceres, en la que es veuen les escates rectangulars i uniformement distribuïdes. Foto de Mario Modesto.

Hàbitat i distribució

Les dues espècies de colobretes cegues es troben exclusivament a la Península Ibèrica excepte pel nord i nord-est, des del nivell del mar fins als 1800 metres (a Sierra Nevada). La colobreta cega ibèrica (Blanus cinereus) és la més estesa, mentre que la colobreta cega de Maria (Blanus mariae) ocupa el sud-oest peninsular.

16Mapa de distribució que inclou tant a Blanus cinereus com a Blanus mariae, per Carlosblh.

Les colobretes cegues es troben en una gran varietat d’hàbitats, des de boscos d’alzines, pins i roures fins a cultius, jardins i àrees sorrenques. És una espècie d’hàbits subterranis que es sol refugiar a sota de pedres i troncs. Igual que el vidriol prefereix els ambients humits i amb terrenys tous per a poder excavar.

Biologia i ecologia

Les colobretes cegues estan actives tot l’any, tot i que intensifiquen la seva activitat durant la primavera i l’estiu, i també després de les pluges. Durant el dia solen refugiar-se en galeries excavades sota terra o a sota de troncs i pedres. A l’hivern mantenen la seva temperatura corporal movent-se per les galeries a diferents profunditats o bé col·locant-se sota pedres exposades al sol.

P1050134Foto d'una colobreta cega ibèrica aprop de Cadis, foto feta per Jorge López.

La seva dieta es composa d’insectes, aràcnids i altres artròpodes que troben entre la fullaraca o sota terra. Les colobretes són depredades per un gran nombre de vertebrats terrestres, i els seus mètodes de defensa inclouen: escissió de la cua, fugir per alguna de les seves galeries o embolicar-se i fer-se una bola.

Vídeo d'una colobreta cega ibèrica d'Albacete, per Encarna Buendia.

L’època d’aparellament va del febrer al juny, mentre que la còpula es sol produir entre l’abril i el maig. La femella pon un únic ou relativament gran, que abandona enterrat sota terra. El període d’incubació dura entre 69 i 82 dies, i els recent nascuts mesuren entre 78 i 86 mil·límetres.

16Foto d'una parella de colobretes cegues ibèriques en un jardí aprop de Sevilla, per Richard Avery.

ALTRES LLANGARDAIXOS ÀPODES

Com ja hem dit, a part de les espècies aquí descrites existeixen molts altres grups de llangardaixos àpodes arreu del món. Alguns dels grups més destacats són:

La família Scincidae: Família de llangardaixos rabassuts amb potes curtes, molts membres de la qual no presenten extremitats funcionals. A la Península Ibèrica hi trobem dues espècies: la bívia ibèrica (Chalcides bedriagai) i el lludrió llistat o bívia tridàctila (Chalcides striatus).

Benny_Trapp_Chalcides_striatus_Spanien
Bívia tridàctila o lludrió llistat, foto de Benny Trapp.

La família Pygopodidae: llangardaixos amb extremitats absents o reduïdes emparentats amb els geckos

17Foto d'un llangardaix àpode de Burton (Lialis burtoni) del sud d'Austràlia, per Matt.

La família Dibamidae: Llangardaixos àpodes tropicals i de costums excavadors.

18Foto d'un dibàmid anomenat Anelytropsis papillosus, presa de Tod W. Reeder et al.

La família Anniellidae: Llangardaixos àpodes americans.

19Un llangardaix àpode del gènere Anniella, de California, per Marlin Harms.

Encara que la majoria de llangardaixos àpodes siguin inofensius, no vol dir que puguem tocar-los i manipular-los de qualsevol manera quan ens els trobem a la natura. Els llangardaixos àpodes, com la majoria d’animals salvatges, s’estressen fàcilment amb el contacte humà i no s’haurien  de manipular, excepte per a propòsits científics. La millor manera de disfrutar de la natura és observant-la sense pertubrar-la.

REFERÈNCIES

S’han consultat les següents fonts durant l’elaboració d’aquesta entrada:

Difusió-català