Arxiu d'etiquetes: Simonsiella sp.

Basic microbiology (II):thousands of bacterial forms

Imagine a bacterium. What image has come to your mind? You have possibly thought of elongated like a Bacillus, type E. coli bacteria or into a small ball. For years, we have associated the bacterial morphology to a few basic shapes, but there are a multitude of forms in the environment. Discover them in the second chapter of Basic Microbiology!

BACTERIAL SHAPES

Microorganisms represent a very varied group of organisms invisible to the naked eye. In the previous chapter previous chapter of this article collection we talk about the microbe’s size and in this second chapter of basic microbiology we are going to talk about the different morphologies or forms that exist of the group bacteria and the archaea group (extremophile bacteria).

Usually, when we started the trip in the bacterial world, found that bacteria have a series of basic shapes: coccus (spherical or berry), bacillus (shaped) and spirillum (coiled), as well as its aggregations. These are formed by the union of the cells after division. For example, there are species that are pairs of cocci (known as diplococci), others form long chains of cocci (such as Streptococcus sp.), others are arranged in three-dimensional cubic groupings (like Sarcina sp.) and others formed structures like clusters of grapes (Staphylococcus sp.).

04-01_cocciarrange_1
Cocci and its aggregations (Image: Aula virtual).

In the case of rod-shaped bacteria, we can find also different groups such as the diplobacillus or the streptobacillus (such as for example Bacillus cereus). Apart we can find many variations of bacillus: there are shorter and more rounded (numerous coccobacillus, as it would be the case of Yersinia pestis), there are Pleomorphic (who have one or more forms depending on the phase of the cell cycle), finished in tip (as for example Epulopiscium fishelsoni), curved or crooked.

04-02_bacilli_1
Rod shaped bacteria and its aggregation (image: Aula Virtual)

 

Finally, the spiral shapes appear as it would be the case of the vibrios (in the form of comma, as Vibrio cholerae), the spirils (as Rhodospirillium rubrum) or spirochaetes (Spirochaeta stenostrepta).

04-04_spiralbacteria_1
Spiral bacteria (Image: Aula Virtual).

 

But why morphology is generalized to these forms?

Should be remember that it microbiology always had been a medical discipline and these forms are the more recurrent in the pathogenic bacteria. Now, with the rise of Microbiology, it has been observed that in the environment there is a huge variety of different morphologies, some much more complex that is known so far. The following graphic is result of an elaborate study of David T. Kysela and shows the true morphological variety that exists in the bacterial world.

imagen1
Differents bacterial morphologies around the Philogenetic tree (Image: David T. Kysela)

FEW EXAMPLES

Some individual bacteria present peculiar structures, as for example stretching narrow known as prostheca. This would be the case of Caulobacter sp. and Hyphomicrobium sp. These stretching allow to anchor the bacterium to a solid surface. There are bacteria that can also present stems, spines, or tips.

holm_niels
Hyphomicrobium sp. with their prostheca (Image: Holm Niels)

Other bacteria have unusual shapes. For example, Halophyte bacteria (that support high levels of salt concentration) like Stella sp. and Haloquadratum sp. Form a very odd aggregation. The first has a star shape and second rectangular shape.

04-05_starshaped_1
Diagram of the characteristic shape of Stella vacuolata (a) and Haloquadratum walsbyi (b). (Image: Aula virtual).

Haloarcula japonica is an individual halophyte bacteria as the previous ones, presenting a very striking morphology. As we can see in the first section of the image, in certain stages of the cell cycle has triangular shape. On the other hand, Pyrodictium abyssi (b) presents one of the most striking morphologies, since it has the form of a  “y”letter.

img_dos
a) Haloarcula japonica (Image: Nite) b) Pyrodictium abyssi (Image: Benjamin Cummings)

Also, there are very characteristics bacterial associations, as for example long chains of organisms that give an aspect of filamentous bacteria. This is the case of the bacterial phylum known as Chloroflexi, where green sulfur bacteria like Chloroflexus sp. are classified (b). Another very striking grouping are the palisades. These are characterized by bacterial rods with vertical connections. A well-known example is the case of Simonsiella muelleri (b).

chloroflexus_-simonsiella
a) Microphotography of Chloroflexus sp. (Image: JGI Genome Portal). b) Scanner microphotography of Simonsiella sp. (Image: J. Pangborn)

In some cases, there are bacteria that do not have a definite shape or this may vary throughout the cell cycle. In this case, we speak of technically known as Pleomorphic bacteria. Corynebacterium sp. and Rhizobium sp. are good examples of this type of morphology.

DETERMINED BY THE GENOME

The form or morphology that presents the different bacteria is determined by its genome. This fact, and the great diversity of morphologies in different environments, suggest that this feature has an adaptive value and that have been produced by selective forces.

In general, the morphological features are attributed to environmental events as for example the limitation of nutrients, reproduction, dispersion, evasion of a predator or detection of the guest. In the case of filamentous bacteria, they presented a better buoyancy in liquid media and are more difficult to digest by protists. Helical bacteria move easiest in viscous media, while a spherical bacterium or cocci is ideal for the diffusion of nutrients (because it increases the surface/volume ratio).

So, expect that same morphology may appear by convergence in different lineages (that do not have a common ancestor), i.e. that shape is an adaptation to a given environment. For example, before, bacteria that have prostheca were grouped into a single genre known as Prosthecomicrobium, but thanks to genetic studies, this genus has been divided in three different genres. The surprise came when noted that each one of these genera was more similar to a gender without prostheca that between them, i.e., not were related phylogenetically. Simply these species have developed the same system of adaptation to the environment.

However, there are also remember that there are morphological characteristics that are inherited from a common ancestor and are preserved because it is useful for the life of the microbe.

·

As well as increase the knowledge in the microbial world and genetic techniques, we will discover more facts about these tiny organisms.

REFERENCES

  • Brock, microbe Biology. Madigan. Ed. Pearson.
  • Microbiology Introduction. Tortora. Ed. Panamericana. (Free access in spanish here)
  • David, T. Kysela. Diversity takes shape: understanding the mechanistic and adaptative basis of bacterial morphology. PLOS Biology. (Free access)
  • Kevin D. Young. The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews. (Free access)
  • Kevin D. Young. Bacterial morphology: why have different shapes? Current Opinion in Microbiology. (Free access)
  • Cover Photo: Escuela y Ciencia.

    Maribel-anglès

Microbiologia bàsica (II): Bacteris de mil i una forma

Imagina’t un bacteri. Quina imatge has pensat? Potser has pensat amb un bacteri de forma allargada, com E.coli? O potser has pensat en una esfera petita? Durant anys, hem associat la forma dels bacteris a diverses morfologies bàsiques, però a la natura podem trobar moltes formes més. Endavant, descobreix les més interessants amb nosaltres!

MIL I UNA FORMA BACTERIANES

Com bé sabem, els microorganismes representen un grup molt gran d’organismes invisibles a l’ull humà. Al darrer capítol sobre microbiologia bàsica parlarem de la mida d’aquests éssers i avui, parlarem sobre les diferents formes morfològiques que podem trobar al grup dels Bacteris (incloent-hi les Arqueas o bacteris extremòfils).

Generalment, quan iniciem el viatge pel món bacterià se’ns presenten tres morfologies bàsiques: el coc (de forma esfèrica), el bacil (en forma de bastó) i l’espiril (en espiral), i també les seves agregacions. Aquestes darreres es formen mitjançant la unió de les cèl·lules filles després de la divisió, és a dir, no s’arriben a separar. Per exemple, hi ha espècies que formen agregacions de dos cocs (diplococs), altres formen llargues cadenes (com seria el cas dels Streptococcus sp.), altres es disposen en agrupacions cúbiques tridimensionals (com Sarcina sp.) o formen estructures irregulars i en totes les dimensions, com si fossin un grell de raïm (com ara Stahpylococcus sp.).

04-01_cocciarrange_1
Diferents agrupacions de cocs. (Imatge: Aula virtual).

Respecte als bacils, podem trobar també diferents agrupacions com els diplobacils o els estreptobacils (cadenes de bacils com per exemple Bacillus cereus). A part, es poden identificar variacions dels bacils més simples: n’hi ha de curs i redons (coneguts com a cocobacils, per exemple Yersinia pestis), n’hi ha de pleomòrfics (és a dir, tenen una o més formes en funció de la fase del cicle cel·lular), n’hi ha d’acabats en punta (com Epulopiscium fishelsoni), corbats o torts.

04-02_bacilli_1
Diferents agrupacions i variacions dels bacils (imatge: Aula Virtual)

Finalment, trobem les formes tortes o en forma d’espiral com seria el cas dels vibrios ( en forma de coma, com Vibrio cholerae), els espirils (com Rhodospirillium rubrum) i les espiroquetes (en forma de llevataps, com  Spirochaeta stenostrepta).

04-04_spiralbacteria_1
Formes espiralades o helocoïdals (Imatge: Aula Virtual).

Però, per què si existeixen més morfologies a la natura, només ens parlen d’aquestes més bàsiques?

Cal recordar que durant gairebé tota la història, la microbiologia ha estat una disciplina mèdica i aquestes formes bàsiques són les que trobem majoritàriament als bacteris patògens. Actualment, com la microbiologia estudia ambients més amplis s’ha observat que hi ha una gran varietat de formes diferents, algunes molt més complexes del que es pensava. Al gràfic filogenètic següent, podem observar les formes que presenten els diferents fílums bacterians.

imagen1
Diferents morfologies que podem trobar als fílums bacterians (Imatge: David T. Kysela)

ALGUNS EXEMPLES

Hi ha bacteris individuals que presenten estructures molt curioses, com per exemple elongacions estretes conegudes tècnicament com a prosteques. Caulobacter sp. i Hyphomicrobium sp. són exemples molt clars d’aquest tipus de cèl·lules. Aquestes estructures permeten als organismes aferrar-se a una superfície sòlida. En altres casos, també podem trobar bacteris amb  espines o puntes.

holm_niels
Bacteri de l’espècie Hyphomicrobium sp. amb la seva característica elongació o prosteca. (Imatge: Holm Niels)

Altres bacteris presenten formes més peculiars i variades. Per exemple, els bacteris halòfils (que poden sobreviure en ambients amb elevades concentracions salines) de les espècies Stella sp. i Haloquadratum sp. formen agregacions molt característiques: la primera ho fa en forma d’estrella i la segona en forma de rectangle.

04-05_starshaped_1
Forma característica de Stella vacuolata (a) i Haloquadratum walsbyi (b). (Imatge: Aula virtual).

Haloarcula japonica és un bacteri halòfil (com les anteriors) que presenta una morfologia curiosa: és triangular. Per altra banda, tenim a Pyrodictium abyssi amb la seva forma característica: forma de i grega.

img_dos
a) Haloarcula japonica (Imatge: Nite) b) Pyrodictium abyssi (Imatge: Benjamin Cummings)

En el cas de les agrupacions, també trobem alguns exemples molt curiosos. Per exemple, existeixen bacteris filamentosos que formen llargues cadenes d’individus, com seria el cas del fílum bacterià Chloroflexi, on trobem els bacteris verds del sofre Chloroflexus sp. Una altra espècie que té una morfologia molt interessant és Simonsiella muelleri. Aquestes estructures es formen per la unió vertical dels bacils.

chloroflexus_-simonsiella
a) Microfotografia d’una colònia de Chloroflexus sp. (Imatge: JGI Genome Portal). b) Microfotografia d’escàner de Simonsiella sp. (Imatge: J. Pangborn)

Com ja hem dit abans, hi ha certs casos de bacteris que no presenten una forma definida o aquesta pot variar al llarg del cicle cel·lular. En aquest cas parlem de bacteris pleomòrfiques. Aquesta característica la presenten bacteris de l’espècie Corynebacterium sp. i Rhizobium sp.

EL GENOMA MANA

La morfologia que presenten els diferents bacteris ve determinada pel genoma de l’individu. Aquest fet, juntament amb la gran diversitat de formes descobertes, suggereixen que aquesta característica té un determinat valor adaptatiu i que s’ha produït com a resultat de la pressió per diverses forces selectives.

En general, les característiques morfològiques s’atribueixen a factors ambientals com per exemple la limitació dels nutrients, la reproducció, la dispersió, difusió de nutrients, evasió d’un depredador o detecció d’un hostatger. Per exemple en el cas dels bacteris filamentosos, aquests presenten una millor capacitat de surar al medi líquid i són més difícils de digerir per protozous. Els bacteris helicoïdals o espirals tenen una millor mobilitat en ambients viscosos, mentre que un bacteri de forma esfèrica és ideal per la difusió dels nutrients, ja que augmenta la relació superfície/volum.

Així, doncs, una mateixa morfologia pot aparèixer per convergència a llinatges bacterians diferents (és a dir, que no tenen un avantpassat comú). Per tant, això significa que la forma ha estat adquirida com a adaptació a unes condicions determinades de l’ambient. Per exemple, abans els bacteris que presenten prosteca s’agrupaven a dins un mateix gènere conegut com a Prosthecomicrobium, però gràcies als estudis genètics es va separar en tres gèneres diferents. Van observar també, que aquests nous gèneres tenien més semblances amb gèneres de bacteris fora prosteca que entre ells. Això significava que no estaven relacionats filogenèticament, però que els tres havien adquirit la prosteca de forma independent com a resultat d’una adaptació al medi.

També hi ha grups bacterians que comparteixen una mateixa característica morfològica per què l’han heretada d’un avantpassat comú i la mantenen per què és útil en les condicions ambientals que viuen.

·

A mesura que augmentin els coneixements sobre el món microbià, anirem descobrint més i més curiositats sobre aquests fascinants éssers. No us ho podeu perdre!

REFERÈNCIES

  • Brock, Biología de los Microorganismos. Madigan. Ed. Pearson. (Castellà)
  • Introducción a la Microbiología. Tortora. Ed. Panamericana. (Disponible en castellà aquí)
  • David, T. Kysela. Diversity takes shape: understanding the mechanistic and adaptative basis of bacterial morphology. PLOS Biology. (Article en anglès aquí).
  • Kevin D. Young. The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews. (Article en anglès aquí).
  • Kevin D. Young. Bacterial morphology: why have different shapes? Current Opinion in Microbiology. (Article en anglès aquí).
  • Imatge de portada: Escuela y Ciencia. 

Maribel-català