Arxiu d'etiquetes: tail

Check the evolution in your own body

42% of the US population and 11.5% of the Spanish people do not believe in evolution. However, there are different evidence that Darwin was right, some of them in your own body. Have you had your appendix or wisdom teeth removed? Find out in this post which vestigial organs you have inherited from your ancestors.

WHAT ARE VESTIGIAL STRUCTURES?

Vestigial structures (often called organs althouth they are not organs properly) are body parts that have been reduced or have lost its original function during the evolution of a species. They can be found in many animals, including humans.

Esqueleto de orca en el que se observan vestigios de las extremidades traseras. Foto: Patrick Gries
Orca skeleton in which vestiges of the hind limbs can be seen. This is a proof of its terrestrial origins. Photo: Patrick Gries

Vestigial structures were fully functional in the ancestors of these species (and in the homologous structures of other existing species), but currently its function is practically useless or it has changed. For example, the second pair of flying wings in some insects such as flies have lost their function and they have been reduced to balance organs (halteres). If you want to know more about the evolution of flight in insects click here.

Besides physical structures, vestigial features can also manifest itself in behavior or biochemistry processes.

WHY ARE THEY  EVIDENCE OF EVOLUTION?

Natural selection acts on species favoring features that increase their survival and eliminating the ones with no benefits, for example when changes appear in the habitat. Individuals with unfavorable characteristics will die or will breed less and that feature will be removed after some generations, while favorable traits will remain as their carriers can pass them to the next generation.

Sometimes there are features that are neither favorable nor unfavorable, so they continue appearing in the next generations. But all has a cost structure (energy, risk to become infected, develop tumors…), so selective pressure continues acting to eliminate something that is not conducive to the success of the species. This is the case of vestigial structures, which “take longer” disappear throughout evolution. Their existence reveal that in the past these structures had an important role in our ancestors.

FIND YOUR VESTIGIAL TRAITS

THE NICTITATING MEMBRANE

We talked about it in How animals see the world. The third eyelid is a transparent or translucent membrane that protects and moisten the eye without losing visibility. It is common in amphibians, reptiles and birds. Among primates, it is only functional in lemurs and lorises.

membrana nictitante, nictitating membrane
Nictitating membrane or third eyelid of a masked lapwing (Vanellus miles). Photo: Toby Hudson

In humans the plica semilunaris is a remnant of the nictitating membrane. Obviously we can not move it but still has some lacrimal drainage function and helps on the eye movement (Dartt, 2006).

Plica semilunaris (pliegue semilunar). Foto: desconocido
Plica semilunaris. Photo: unknown

DARWIN’S TUBERCLE AND EAR MUSCLES

10% of the population has a thickening in the ear, a vestige of the common pointy ear in primates. This structure is called Darwin’s tubercle and has no function.

Variabilidad del Tubérculo de Darwin en la punta de la oreja (0= ausente). Puede presentarse en otras zonas del pabellón auditivo: ver publicación.
Variability of Darwin’s tubercle at the top of the ear (0 = absent).  Credit.
Comparación entre la oreja de un macaco y la nuestra. Fuente
Comparison between the ear of a yellow baboon (Papio cynocephalus) and ours. Credit

Also, primates (and other mammals) have mobile ears to lead the pinna toward the sound source: surely you have noticed it in your house dog or house cat. Humans (and chimps) no longer have that great mobility, although some people may move slightly pinna. It has been proven with electrodes these muscles are excited when we perceive a sound that comes from a particular direction (2002).

Auricular muscles responsible of movement of the pinna. Credit

The occipitofrontalis muscle has lost its function to prevent the head from falling, but participates in facial expression.

PALMARIS LONGUS MUSCLE

16% of Caucasians do not have this muscle on the wrist, neither 31% of nigerian people neither 4,6% of chinese people. It can even appear in one arm and not in the other or be double.

It is believed that this muscle actively participated in the arboreal locomotion of our ancestors, but currently has no function, because it does not provide more grip strength. This muscle is longer in completely arboreal primates (like lemurs) and shorter in land primates, like gorillas (reference).

And do you have it or not? Try it: join your thumb and pinky and raise your hand slightly.

mireia querol, mireia querol rovira, palmaris longus, musculo palmar largo, tendon
I have two palmaris longus in the left arm and one on the right. Photo: Mireia Querol

WISDOM TEETH

35% of people do not have wisdom teeth or third molar. In the rest, its appearance is usually painful and removal is necessary.

Yo no tengo el tercer molar. Foto: Mireia Querol Rovira
I don’t have the third molar. Photo: Mireia Querol Rovira

Our hominin ancestors had them, much bigger than ours. A recent research explains that when a tooth develops, emits signals that determine the size of the neighboring teeth. Reducing the mandible dentition and the other along evolution has resulted in reduced molars (and eventually the disappearance of the third).

Comparativa entre la dentición de un chimpancé, Australopithecus afarensis y Homo sapiens. Fuente
Comparison between the dentition of a chimpanzee, Australopithecus afarensis and Homo sapiens. Look at the reduction of the last three molars between afarensis and sapiens, Credit

THE TAILBONE

If you touch your spine till the end, you will reach the coccyx or tailbone. It is three to five fused vertebrae, vestige of the tail of our primate ancestors. In fact, when we were in the womb, in the early stages of embryo development a 10-12 tail vertebrae formation is observed.

Distintos estados en el desarrollo embrionmario humano y comparación con otras especies. Créditos en la imagen
Different stages in human embryonic development (1 to 8) and comparison with other species. Credits in the image.

Subsequently it is reabsorbed, but not in all cases: it has been reported 40 newborns with a tail.

Neonato nacido con cola. Una mutación ha evitado la inhibición del crecimiento de la cola durante la gestación. Fuente
Infant born with tail. A mutation has prevented the growth inhibition of the tail during pregnancy. Credit

Although we have no tail, currently these bones serve as anchors of some pelvic muscles.

mireia querol, mireia querol rovira, coxis, sacro, sacrum, tailbone, rabadilla
Tailbone position. Photo: Mireia Querol Rovira

SUPERNUMERARY NIPPLES (POLYTHELIA)

It is estimated that up to 5% of the world population has more than two nipples. These “extra” nipples can be presented in different ways so sometimes are confused with freckles or moles. They are located in the mammillary line (from the axilla to the groin), exactly in the same position as other mammals with more than two breasts (observe your house dog, for example). Usually the number of breasts corresponds to the average of offspring that has a mammal, so extra nipples would be a vestige from when our ancestors had more offspring per birth. Usual is 3 nipples, but has been documented a case of up to 8 nipples in a person.

Pezón suplementario debajo del principal. Fuente
Additional nipple below the main one. Credit

FIND YOUR VESTIGIAL REFLEXES AND BEHAVIOURS

PALMAR AND FOOT SOLE GRASP REFLEX

Surely you’ve experienced that if you bring anything into the hands of a baby, automatically he grabs it with such a force that would be able to hold his own weight. This reflex disappears at 3-4 months of age and is a remnant of our arboreal past and the way to grab the hair of the mother, as with the other current primates. Watch the next video in 1934 on a study of twins (minute 0:34):

On the feet there is also a reflex of trying to grab something when the foot of a baby is touched. It disappears at 9 months of age.

By the way, have you noticed how easily children climb on any handrails or higher zones in a playground?

GOOSEBUMPS

Cold, stress or intense emotion (eg, listening to some music) causes the piloerector muscle to raise the hair giving the skin the appearance of a plucked chicken. It is an involuntary reflex in which some hormones, like adrenaline (which is released in the mentioned situations) are involved. What utility had this to our ancestors and has in modern mammals?

  • Increasing the space between the skin and the external surface, so that hot air trapped between hair helps on maintaining temperature.
  • Looking bigger to scare off potential predators or competitors.
Chimpancé con el pelo erizado durante un display antes de un conflicto. Foto: Chimpanzee Sanctuary Northwest
Chimpanzee with hair bristling in a display before a conflict. Photo: Chimpanzee Sanctuary Northwest

Obviously we have lost hair in most parts of the body, so although we retain the reflex, it has no use to us or to keep warm or to ward off predators. The hair has been preserved abundantly in areas where protection is necessary or due to sexual selection (head, eyebrows, eyelashes, beard, pubis…), but in general, can also be considered a vestigial structure.

There are more vestigial structures but in this post we have focused on the most observable. In future posts we will discuss other internal structures, like the famous appendix or vomeronasal organ.

REFERENCES

Anuncis

Limb regeneration, from the axolotl to human beings

The regeneration of lost or damaged body parts in animals is known from many centuries ago. In 1740 the naturalist Abraham Trembley observed a small cnidarian that could regenerate its head if it was cut off, so he called it Hydra, in reference to the monster from Greek mythology that could grow back its multiple heads if they were cut off. Afterwards, it was discovered that there were many other species of animals with regenerative abilities. In this entry we’ll talk about these animals.

Regeneration in the animal kingdom

Regeneration of body parts is more widespread between the different groups of invertebrates than it is between the vertebrates. This process can be bidirectional, in which both parts of the animal regenerate their missing parts to form two animals (just like the hydra, planarians, earthworms and starfishes) or unidirectional, in which the animal loses an extremity but it just regenerates, without forming two animals (arthropods, molluscs and vertebrates). In vertebrates, fishes and amphibians are the ones that present the greatest regenerative capacities, although many lizards and some mammals are able to regrow their tails.

ch14f01Image by Matthew McClements about bidirectional regeneration in planarians, hydras and seastars. Extracted from Wolbert's Principles of Development.

Regeneration can be done by two different ways:

  • Regeneration without active cellular proliferation or “morphallaxis”. In this type, the absent body part is regrown through remodelling of pre-existing cells. This is what happens in the Hydra, in which lost body parts are regenerated without the creation of new material. So, if a hydra is cut in half, we’ll obtain two smaller versions of the original hydra.
Video about an experiment in which an Hydra has been cut in different pieces. Video by Apnea.
  • Regeneration with cellular proliferation or “epimorphosis”. In this type, the lost part is regenerated via cellular proliferation, it is “newly created”. In most cases, it happens through the formation of a specialized structure called blastema, a mass of undifferentiated cells which appears during phenomena of cellular regeneration.

Almost all groups of animals with regenerative capacities present regeneration with blastema formation. Yet the origin of the blastemal stem cells varies between groups. While planarians present pluripotent (that can differentiate to any kind of cell type) stem cells all along their bodies, vertebrates have specific cells in each type of tissue (cartilage, muscle, skin…) that only regenerate cells of the tissue they come from.

In land vertebrates, lizards and urodeles are the ones that present the most powerful regenerative abilities. Down below we’ll see how they regenerate and the applications it has in modern human medicine.

Expendable tails

When you are a small animal that is being chased by a cat or any other predator, it probably is better for you to lose your precious tail than to lose your life. Some terrestrial vertebrates have evolved following this philosophy, and they are able to shed off their tails voluntarily through a process called caudal autotomy. This allows them to escape from their predators, which are entertained with the still moving lost tail.

 Video in which we can see how some lizards like this red-tailed vanzosaur (Vanzosaura rubricauda) have brightly coloured tails to attract the attention of predators. Video by Jonnytropics.

Autotomy or self-amputation, is defined as a behaviour in which the animal can shed off one or more body parts. Caudal autotomy is found in many species of reptiles and in two species of spiny mouse of the genus Acomys. In reptiles we can find caudal autotomy in lacertids, geckos, skinks and tuataras.

Acomys.cahirinus.cahirinus.6872Foto of a Cairo spiny mouse (Acomys cahirinus), a mammal which is able to shed and regrow its tail. Photo by Olaf Leillinger.

In reptiles, the fracture of the tail happens in specific areas of the caudal vertebras which are naturally weakened. The autotomy may happen in two different ways: intravertebral autotomy, in which the vertebra at the centre of the tail have transversal fracture planes prepared to break if they are pressed hard enough, and intervertebral autotomy, where the tail breaks between vertebras by muscular constriction.

0001-3765-aabc-201520130298-gf03Tridimensional model of the fracture planes on the tail of a lizard and the regeneration post-autotomy of a cartilaginous tube. Image extracted from Joana D. C. G. de Amorim et al.

Caudal autotomy allows the animal to escape, but it isn’t without cost. Many reptiles use their tails as a reserve of fat and losing this energy store is usually detrimental for the animal. That’s why many lizards, once the threat has disappeared, look for their lost tail and eat it, to at least regain the energy it had as fat. In addition, regenerating a new tail requires a great expenditure of energy.

DSCN9467Photo of a Catalonian wall lizard (Podarcis liolepis) that has shed its tail. Photo by David López Bosch.

The regeneration of the tail in reptiles differs from that of amphibians and fishes in that it happens without the formation of a blastema and instead of an actual regeneration of the caudal vertebras, it forms a cartilaginous tube along it. The new tail is stiffer and shorter than the original one, and it usually regenerates whole some weeks after the amputation. Most lizards can regenerate their tails multiple times, but some species like the slow worm (Anguis fragilis) can only do it once. Sometimes, the original tail isn’t completely broken but the regeneration mechanisms are activated, which can lead to lizards and geckos with more than one tail.

056 (2)Detail of the tail of a common wall gecko (Tarentola mauritanica) which has regenerated the tail without losing its original tail. Photo by Rafael Rodríguez.

Urodeles, the kings of regeneration

Of all tetrapods, amphibians are the ones that present the more astonishing regenerative capacities. During the larval stage of most species, both the tail and the limbs (if they have them) can be regenerated after its loss. The scientific community thinks that this is due to the fact that in amphibians the development of limbs and other organs is delayed until the moment of metamorphosis. Yet, frogs and toads (anurans) only maintain their regenerative powers during their tadpole stage, losing them when reaching adulthood.

Wood_frog_tadpoleWood frog tadpole (Rana sylvatica) which, like all amphibians, delays the development of its legs up to the moment of metamorphosis. Photo by Brian Gratwicke.

Instead, many salamanders and newts (urodeles) conserve their regenerative powers their whole life. Even if many species present caudal autotomy, unlike lizards urodeles are able to completely regenerate, not only their tails, but practically any kind of lost body tissue. Of all known species, the axolotl (Ambystoma mexicanum), a neotenic amphibian which reaches adulthood without undergoing metamorphosis, has served as a model organism for the study of the formation of the blastema that precedes regeneration.

 Video about the axolotl, this curious amphibian which is greatly endangered. Video by Zoomin.TV Animals.

Regeneration as it happens in salamanders has stages genetically similar to the ones that occur during the development of the different body tissues and organs during the embryonic development of the rest of vertebrates. In the axolotl (and in the rest of urodeles) regeneration of a limb after amputation goes through three different stages:

  • Wound healing: During the first hour after the amputation, epidermal cells migrate to the wound. The closing of the wound usually completes two hours later with the same mechanisms as in the rest of vertebrates. Yet, the complete regeneration of the skin is delayed up until the end of the regeneration.
  • Dedifferentiation: This second phase, in which the blastema is formed, starts 24 hours after amputation. This is composed both of cells from the specialized tissues of the amputated zone which lose their characteristics (they obtain the capacity to proliferate and differentiate again) and cells derived from the connective tissue that migrate to the amputation zone. When these cells of different origins accumulate and form the blastema, the cellular proliferation starts.
  • Remodelling: For the third stage to start, the formation of the blastema is required. Once the blastema is formed by different dedifferentiated cells, the formation of the new limb follows the same pattern as any kind of vertebrate follows during embryonic development (it even has de same genes intervening).
A_Stages_of_zebrafish_caudal_fin_regeneration_as_longitudinal_sections.Diagram about the formation of the blastema in a zebrafish (Danio rerio) another model organism. Image from Kyle A. Gurley i Alejandro Sánchez Alvarado.

Recently fossils have been found from many different groups of primitive tetrapods which present signs of regeneration. Proof has also been found of limb regeneration in temnospondyl (Apateon, Micromelerpeton and Sclerocephalus) and lepospondyl (Microbrachis and Hyloplesion) fossils. This wide variety of basal tetrapod genera presenting regeneration and the fact that many fish also present it, has led many scientists to consider if the different groups of primitive tetrapods had the ability to regenerate, and if it was lost in the ancestors of amniotes (reptiles, birds and mammals).

Axolotl_ganz
Photo of an axolotl, by LoKiLeCh.

However, it is believed that the genetic information that forms the blastema could still be found in the DNA of amniotes but in a latent state. Of the three stages of the regeneration process, the only one exclusive to urodeles is the dedifferentiation stage, as the healing stage is the same as in the rest of vertebrates and the remodelling stage is like the one during embryogenesis. Currently many studies are being carried out on the way to reactivate the latent genes that promote the formation of the blastema in other vertebrates, such as humans.

Some human organs like the kidneys and the liver already have some degree of regenerative capacities, but thanks to investigation with stem cells in animals like salamanders and lizards currently it is able to regenerate fingers, toes, genitals and parts of the bladder, the heart and the lungs. As we have seen, the different animals able to regenerate amputated limbs hold the secret that could save thousands of people. Remember this the next time you hear that hundreds of species of amphibians and reptiles are endangered because of human beings.

Difusió-anglès

References

During the writing of this entry the following sources have been consulted: