Arxiu d'etiquetes: taxonomia

¿De dónde vienen los nombres de las especies?

Todos los seres vivos del planeta conocidos poseen nombres que permiten su identificación. Sin embargo, únicamente los nombres científicos se consideran válidos en biología para su clasificación. ¿Quién se encarga de asignar estos nombres? ¿Siempre ha sido así?, y lo más importante, ¿Existen normas a la hora de poner un determinado nombre?

En otro post, desde All you need is Biology os hablamos de la clasificación y la filogenia de los organismos. En este, te explicamos cómo lo hacen los biólogos para ponerles nombre. ¡Descubrirás muchas curiosidades!

La importancia de los nombres científicos

Si nos preguntan qué es un perro o un gato, todos sabremos de qué animales se trata. Sin embargo, estos nombres no resultan útiles desde un punto de vista científico (aunque los biólogos los usemos muchas veces), especialmente cuando se realizan estudios y publicaciones. Los nombres comunes (“perro”, “gato”) no son constantes; cada idioma, cada país, e incluso cada región, dispone de sus propios términos para designar a los mismos organismos. Incluso a veces cambian con el tiempo o son usados para designar a animales distintos (una langosta puede ser un crustáceo marino o un insecto del orden de los ortópteros).

Como veis, esto puede llevar a confusión. Si alguien publica que ha llevado a cabo un estudio sobre la reproducción en poblaciones de guacamayos, no sabríamos exactamente de qué especie nos están hablando; el nombre común de esta ave varía entre países y existen diferentes especies de guacamayos, por lo que el estudio no nos diría gran cosa.

Es por esto que la correcta clasificación y designación de nombres científicos es tan importante: son constantes a nivel mundial (se evitan problemas de traducción) y aluden a un único organismo sin ambigüedades.

Actualmente, la designación de nombres científicos se ciñe a la nomenclatura binomial, o lo que es lo mismo, el nombre científico de cada especie está compuesto por dos términos: el género (un nivel de clasificación superior a la especie) y el epíteto o nombre específico (que no la especie, como muchos suelen confundir). Mientras que el primer término tiene validez por sí solo, el segundo sólo tiene valor si va precedido del género.

Así, y siguiendo con el ejemplo anterior, los denominados guacamayos en este estudio en realidad pertenecen al género Ara, pero existen diversas especies de guacamayos relacionadas entre sí dentro de este género (Ara ararauna, Ara glaucogularis, Ara militaris…).

Guacamayo de la especie Ara ararauna. Imagen de Ralph Daily, CC.

Ahora bien, ¿esto ha sido siempre así? ¿Cómo ha cambiado la forma de denominar a las especies?

Linneo, el padre de la nomenclatura binomial

Desde siempre, los biólogos han tratado de clasificar y dar nombre a los organismos. La rama encargada de definir y dar nombre a grupos de organismos basándose en sus características compartidas recibe el nombre de taxonomía.

En un principio, no existía un consenso claro sobre cómo debían asignarse los nombres. Para los primeros “taxónomos”, era especialmente importante, por ejemplo, la diferenciación e identificación de plantas venenosas y medicinales, en relación a las cuales ya existen algunos documentos del Egipto de hace más de 3000 años.

El primero en clasificar formalmente a los organismos fue Aristóteles (384-322 A.C.), el cual hizo la primera distinción entre animales y plantas, además de iniciar las primeras clasificaciones en base a las “partes” de los organismos: si tenían cuatro patas, el cuerpo caliente, etc.

Durante la edad media y gran parte de la edad moderna temprana, la mayoría de científicos seguían el sistema aristotélico. Gracias a las mejoras en los utensilios de observación, como el desarrollo de las primeras lentes ópticas durante el siglo XVI y XVII, algunos empezaron a mejorar sus descripciones hasta ir dejando poco a poco de lado este sistema. La taxonomía como tal empezaba a florecer.

Sin embargo, a pesar de que las clasificaciones de las especies mejoraban, entre los taxónomos seguía sin existir un consenso sobre cómo debían asignarse sus nombres. Previamente al sistema binomial que usamos actualmente, las especies eran denominadas mediante un término (el género) y, a continuación, un nombre o epíteto específico formado por una o diversas palabras que describían la especie. Este sistema, conocido como sistema polinomial, permitía la existencia de nombres tan largos como: Plantago foliis ovato-lanceolatus pubescentibus, spica cylindrica, scapo tereti. Claramente, este sistema no resultaba nada óptimo.

Entre el siglo XVI-XVII, Caspar Bauhin dio los primeros pasos para simplificar este sistema, reduciendo en muchos casos los nombres a únicamente dos términos. Sin embargo, fue el botánico sueco Carl von Linné o Linneo (o en su nombre latinizado, Carolus Linnaeus) quien formalizó el uso de la nomenclatura binomial en su publicación Species Plantarum (1753). A partir de este momento, las especies recibían un nombre con únicamente dos términos: el género y un término trivial designado por su descriptor; por ejemplo, Panthera tigris (tigre).

Carl von Linné. Imagen de Dominio Público.

El hecho de que se fijara este sistema resulta importante por tres motivos:

  • Su economía: sólo se necesitan dos palabras para identificar a una especie de forma inequívoca.
  • Su difusión y uso generalizado por la comunidad científica: ésta regula y fomenta su uso.
  • Su estabilidad: se trata de conservar los nombres a toda costa a pesar de que se realicen cambios a posteriori en la clasificación del organismo.

Cómo dar nombre a un organismo: los códigos de nomenclatura

Taxonomía y nomenclatura son dos conceptos inseparables, pero diferentes. Mientras que la taxonomía es la ciencia encargada de la descripción y clasificación de grupos de organismos, la nomenclatura es la herramienta que permite a los taxónomos establecer los nombres de los mismos.

En 1758, Linneo estableció las bases para llevar a cabo una clasificación objetiva de todas las especies en la décima edición de su obra Sistema Naturae:

  • Cada especie biológica debe tener asignado un nombre científico, único y universal.
  • Cuando una especie reciba dos o más nombres científicos asignados por diferentes investigadores, se respetará el más antiguo.
  • Los nombres científicos se componen de dos palabras en latín (o griego): la primera determina el género y la segunda, la especie dentro de ese género.
  • La inicial del género debe escribirse en mayúscula, mientras que el nombre específico debe escribirse en minúscula. Por otro lado, ambos términos deben escribirse en cursiva o subrayados.
Portada de la décima edición de Sistema Naturae. Imagen de Dominio Público.

Si bien estos puntos son sencillos, la nomenclatura se ha ido volviendo más compleja. Actualmente, existen códigos internacionales de nomenclatura para cada grupo de organismos, como el ICZN (International Code of Zoological Nomenclature) o el ICN (International Code of Nomenclature for algae, fungi, and plants), entre otros. Los taxónomos de cada especialidad deben obedecer a sus respectivos códigos a la hora de poner nombre a sus organismos.

Dos de los criterios más importantes para la denominación de especies son la validez y la disponibilidad de los nombres. Pongamos por ejemplo que descubrimos una nueva especie de avispa del género Polistes: para empezar, el nombre que le asignemos (Polistes x) debe estar disponible, es decir, debe cumplir los requisitos necesarios para poder asignarse. Estos requisitos están recogidos en los respectivos códigos, los cuales toman como referencia los criterios del sistema binomial de Linneo. Además de los citados anteriormente y de otros tantos, un nombre es disponible si va acompañado de una descripción. La disponibilidad de un nombre puede cambiar ante ciertas circunstancias; por ejemplo, un nombre considerado no disponible por ausencia de descripción, puede volver a estar disponible si vuelve a publicarse siguiendo los criterios del código.

Por otro lado, el nombre debe ser válido, es decir, que no haya sido usado previamente para designar a otro organismo o considerado inválido. Por ejemplo, dos taxónomos describen la misma especie con nombres distintos y un año de diferencia; en este caso, el nombre válido será el más antiguo y el segundo pasará a ser un sinónimo aplicando el principio de prioridad, dejando de ser válido para su uso. Es por esto que un taxónomo debería realizar un estudio previo de las especies existentes, evitando describirlas por duplicado o usando nombres ya existentes.

Cuando poner nombres se nos va de las manos…o no

A la hora de poner nombre a una especie, lo más habitual es que se haga en base a alguna característica específica del organismo (Dosidicus gigas (calamar gigante)), su localidad (Synergus mexicanus (avispa de las agallas mexicana)) o en honor a familiares u otros científicos. Lo mismo ocurre con los géneros u otros grupos.

Sin embargo, el mundo de la nomenclatura está lleno de curiosidades, desde científicos que asignan nombres extravagantes, pasando por los que aprovechaban la oportunidad para insultar a otros científicos, a aquellos que ponen nombres de sus personajes o series favoritas:

  • Existe un género de polillas denominado La (por Bleszynski, 1966). Su ambigüedad con el artículo “la” vuelve locos a los motores de búsqueda en Internet (además de no saber si se está hablando de un género…). Si eso no fuera suficiente, algunas de sus especies recibieron nombres tan originales como La cerveza, La cucaracha o La paloma.
  • Mientras que algunos se quedan cortos, otros se pasan: Gammaracanthuskytodermogammarus, Rhodophthalmokytodermogammarus y Siemienkiewicziechinogammarus son nombres de géneros que el naturalista Dybowski asignó a diferentes anfípodos (crustáceos) del lago Baikal. ¡Debió parecerle muy divertido!
  • Durante un tiempo, fue costumbre usar los epítetos como medio para insultar a otros científicos (por ej. stupidus). Por suerte, actualmente está estrictamente prohibido.
  • Abra cadabra, Aha ha, Attenborosaurus (género de dinosaurio dedicado al naturalista David Attenborough), Acledra nazgul, Desmia mordor (ambos en honor al Señor de los Anillos), entre muchos otros.

Cabe decir que los respectivos códigos tratan de evitar este tipo de nombres, aunque no dejan de ser divertidos. Y si no has tenido suficiente, échale un ojo a este listado. ¡No te defraudará!

.           .           .

¿Todavía piensas que ponerle un nombre a un organismo es tarea fácil?

Referencias

Foto de portada realizada por Irene Lobato Vila (autora del artículo) en el Museo Nacional de Historia Natural del Smithsonian (Washington D.C., EUA).

D’on venen els noms de les espècies?

Tots els éssers vius del planeta coneguts posseeixen noms que permeten la seva identificació. No obstant això, únicament els noms científics es consideren vàlids en biologia científicament parlant. Qui s’encarrega d’assignar aquests noms? Sempre s’ha fet de la mateixa forma? I el més important: existeixen normes a l’hora de posar un determinat nom?

En un altre post de All you need is Biology, et parlàvem de la classificació i filogènia dels organismes. En aquest, t’expliquem com ho fan els biòlegs per posar-los nom. Descobriràs moltes curiositats!

La importància dels noms científics

Si ens pregunten què és un gos o un gat, tots sabrem de quins animals es tracta. Tanmateix, aquests noms no resulten útils des d’un punt de vista científic (encara que els biòlegs els fem servir tot sovint), especialment quan es duen a terme estudis i publicacions. Els noms comuns (“gos”, “gat”) no són constants; cada idioma, cada país, i fins i tot cada regió, disposa dels seus propis termes per designar els mateixos organismes. Fins i tot de vegades canvien amb el temps o són usats per designar animals diferents (una llagosta pot ser un crustaci marí o un insecte de l’ordre dels ortòpters).

Com veieu, això pot generar confusió. Si algú publica que ha dut a terme un estudi sobre la reproducció en poblacions de guacamais, no sabríem exactament de quina espècie ens estan parlant; el nom comú d’aquesta au varia entre països i hi ha diferents espècies de guacamais, de manera que l’estudi no ens diria gran cosa.

És per això que la correcta classificació i designació de noms científics és tan important: són constants a nivell mundial (s’eviten problemes de traducció) i al·ludeixen a un únic organisme sense ambigüitats.

Actualment, la designació de noms científics segueix la nomenclatura binomial, és a dir, el nom científic de cada espècie està compost per dos termes: el gènere (un nivell de classificació superior a l’espècie) i l’epítet o nom específic (que no l’espècie, com es sol confondre). Mentre que el primer terme té validesa per si mateix, el segon només té valor si va precedit del gènere.

Així, i seguint amb l’exemple anterior, els denominats guacamais en aquest estudi en realitat pertanyen al gènere Ara, però hi ha diverses espècies de guacamais relacionades entre sí dins d’aquest gènere (Ara ararauna, Ara glaucogularis, Ara militaris…).
Guacamai de l’espècie Ara ararauna. Imatge de Ralph Daily, CC.

Ara bé, això sempre ha estat així? Com ha canviat la manera que tenim de denominar les espècies?

Linné, el pare de la nomenclatura binomial

Des de sempre, els biòlegs han tractat de classificar i donar nom als organismes. La branca encarregada de definir i posar nom a grups d’organismes basant-se en les seves característiques compartides rep el nom de taxonomia.

En un principi, no existia un consens clar sobre com s’havia de posar un nom. Pels primers “taxònoms”, era especialment important, per exemple, la diferenciació i identificació de plantes verinoses i medicinals, en relació a les quals ja es té constància d’alguns documents de l’Egipte de fa més de 3000 anys.

El primer en classificar formalment als organismes va ser Aristòtil (384-322 AC), el qual va fer la primera distinció entre animals i plantes, a més d’iniciar les primeres classificacions en base a les “parts” dels organismes: si tenien quatre potes, el cos calent, etc.

Durant l’edat mitjana i inicis de l’edat moderna, la majoria de científics seguien el sistema aristotèlic. Gràcies a les millores en els estris d’observació, com el desenvolupament de les primeres lents òptiques durant el segle XVI i XVII, alguns van començar a millorar les seves descripcions, deixant a poc a poc de banda aquest sistema.

No obstant això, entre els taxònoms seguia sense existir un consens sobre com havien d’assignar els noms. Prèviament al sistema binomial que fem servir actualment, les espècies eren denominades mitjançant un terme (el gènere) i, a continuació, un nom o epítet específic format per una o diverses paraules que descrivien l’espècie. Aquest sistema, conegut com a sistema polinomial, permetia l’existència de noms tan llargs com: Plantago foliis ovato-lanceolatus pubescentibus, spica cylindrica, scapo tereti. Clarament, aquest sistema no era gens òptim.

Entre el segle XVI-XVII, Caspar Bauhin va donar els primers passos per simplificar aquest sistema, reduint en molts casos els noms a tan sols dos termes. Tanmateix, va ser el botànic suec Carl von Linné (o en el seu nom llatinitzat, Carolus Linnaeus) qui va formalitzar l’ús de la nomenclatura binomial en la seva publicació Species Plantarum (1753). A partir d’aquest moment, les espècies rebien un nom amb únicament dos termes: el gènere i un terme trivial designat pel seu descriptor; per exemple, Panthera tigris (tigre).

Carl von Linné. Imatge de Domini Públic.

El fet que es fixés aquest sistema resulta important per tres motius:

  • La seva economia: només calen dues paraules per identificar una espècie de forma inequívoca.
  • La seva difusió i ús generalitzat per la comunitat científica: aquesta regula i fomenta el seu ús.
  • La seva estabilitat: s’intenta conservar el nom original tot i que es facin canvis a posteriori en la classificació de l’organisme.

Com posar nom a un organisme: els codis de nomenclatura

Taxonomia i nomenclatura són dos conceptes inseparables, però diferents. Mentre que la taxonomia és la ciència encarregada de la descripció i classificació de grups d’organismes, la nomenclatura és l’eina que permet als taxònoms establir-ne els noms.

L’any 1758, Linné establí les bases per a la classificació objectiva de totes les espècies en la 10a edició de la seva obra Sistema Naturae:

  • Cada espècie biològica ha de tenir assignat un nom científic, únic i universal.
  • Quan una espècie rebi dos o més noms científics assignats per diferents investigadors, es respectarà el més antic.
  • Els noms científics es componen de dues paraules en llatí (o grec): la primera determina el gènere i la segona, l’espècie dins d’aquest gènere.
  • La inicial del gènere s’ha d’escriure en majúscula, mentre que el nom o epítet específic s’ha d’escriure en minúscula. D’altra banda, tots dos termes s’han d’escriure en cursiva o subratllats.
Portada de la 10a edició de Sistema Naturae. Imatge de Domini Públic.

Si bé aquests punts són senzills, la nomenclatura s’ha tornat més complexa. Actualment, hi ha codis internacionals de nomenclatura per a cada grup d’organismes, com l’ICZN (International Code of Zoological Nomenclature) o l’ICN (International Code of Nomenclature for algae, fungi, and plants), entre altres. Els taxònoms de cada especialitat han d’obeir els seus respectius codis a l’hora de posar nom als seus organismes.

Dos dels criteris més importants a l’hora de posar nom a una espècie són la validesa i la disponibilitat dels noms. Posem, per exemple, que descobrim una nova espècie de vespa del gènere Polistes: per començar, el nom que li assignem (Polistes x) ha d’estar disponible, és a dir, ha de complir els requisits necessaris per poder ser assignat. Aquests requisits estan recollits en els respectius codis, els quals prenen com a referència els criteris del sistema binomial de Linné. A més a més dels citats anteriorment i d’altres, un nom és disponible si va acompanyat d’una descripció. La disponibilitat d’un nom pot canviar envers certes circumstàncies; per exemple, un nom considerat no disponible per absència de descripció, pot tornar a estar disponible si es publica de nou seguint els criteris del codi.

D’altra banda, el nom ha de ser vàlid, és a dir, que no hagi estat usat prèviament per designar un altre organisme o considerat invàlid. Per exemple, dos taxònoms descriuen la mateixa espècie amb noms diferents i un any de diferència; en aquest cas, el nom vàlid serà el més antic i el segon passarà a ser un sinònim aplicant el principi de prioritat, deixant de ser vàlid pel seu ús. És per això que un taxònom hauria de realitzar un estudi previ de les espècies existents, evitant descriure-les per duplicat o fer servir noms ja existents.

Quan posar noms se’ns escapa de les mans…o no

A l’hora de posar nom a una espècie, el més habitual és que es faci en base a alguna característica específica de l’organisme (Dosidicus gigas (calamar gegant)), la seva localitat (Synergus mexicanus (vespa de les gales mexicana)) o en honor a familiars o altres científics. Passa el mateix amb els gèneres o altres grups.

Tanmateix, el món de la nomenclatura està ple de curiositats, des de científics que assignen noms extravagants, passant pels que aprofitaven l’oportunitat per insultar altres científics, a aquells que posen noms dels seus personatges o sèries preferides:

  • Hi ha un gènere d’arnes denominat La (per Bleszynski, 1966). La seva ambigüitat amb l’article “la” torna bojos als motors de recerca d’Internet (a més a més de no saber si s’està parlant d’un gènere…). I per si no en teníem prou, algunes de les seves espècies van rebre noms tan originals com La cerveza, La cucaracha o La paloma.
  • Mentre que alguns es queden curts, altres es passen: Gammaracanthuskytodermogammarus, Rhodophthalmokytodermogammarus i Siemienkiewicziechinogammarus són noms de gèneres que el naturalista Dybowski va assignar a diferents amfípodes (crustacis) del llac Baikal. Segur que va riure molt!
  • Durant un temps, va ser costum usar els epítets com a mitjà per a insultar a altres científics (per ex. stupidus). Per sort, actualment està estrictament prohibit.
  • Abra cadabra, Aha ha, Attenborosaurus (gènere de dinosaure dedicat al naturalista David Attenborough), Acledra nazgul, Desmia mordor (tots dos en honor al Senyor dels Anells), entre d’altres.

Val a dir que els respectius codis tracten d’evitar aquest tipus de noms, tot i que no deixen de ser divertits. I si no n’has tingut prou, fes una ullada a  aquest llistat. No et decebrà!

.           .           .

Encara penses que posar un nom a un organisme és una tasca senzilla?

Referències

Foto de portada realitzada per Irene Lobato Vila (autora de l’article) al Museu Nacional d’Història Natural de l’Smithsonian (Washington D.C., EUA).

Podando el árbol evolutivo de los dinosaurios

Durante más de 130 años los dinosaurios han sido clasificados en dos órdenes separados, los saurisquios y los ornitisquios. Pero como siempre pasa en las ciencias biológicas, toda teoría es cierta hasta que se demuestra lo contrario. Un nuevo estudio ha puesto en entredicho la clasificación clásica de los dinosaurios, eliminando y redistribuyendo algunos de los diferentes grupos de dinosaurios. Aunque esta nueva hipótesis no es segura al 100%, en esta entrada os explicaremos en que consiste este reordenamiento de los dinosaurios.

CLASIFICACIÓN TRADICIONAL DE LOS DINOSAURIOS

Desde el siglo XIX, los dinosaurios se han dividido en dos grandes órdenes basados en la estructura de su pelvis. El orden Saurischia (pelvis de lagarto) incluye a los terópodos (dinosaurios carnívoros y aves actuales) y a los sauropodomorfos (grandes herbívoros de cuello largo); el orden Ornithischia (pelvis de ave) incluye a los ornitópodos (dinosaurios herbívoros y con pico de pato), a los marginocéfalos (dinosaurios con cuernos y estructuras craneales reforzadas) y a los tireóforos (dinosaurios acorazados).

732px-Evolution_of_dinosaurs_by_Zureks.svg-min
Árbol evolutivo tradicional de los dinosaurios por Zureks, con los dos tipos de pelvis dinosaurias abajo.

Aun así, esta clasificación no tiene la última palabra. La paleontología es una ciencia extremadamente volátil, ya que con cada nuevo descubrimiento se puede desmontar todo lo que se sabía hasta el momento, aunque se trate de una hipótesis centenaria. Esto es lo que ha pasado con los dinosaurios recientemente.

EL INICIO DE UNA NUEVA HIPÓTESIS

Un nuevo estudio publicado el marzo de 2017, ha hecho replantear la clasificación tradicional de los dinosaurios. Muchos  estudios anteriores asumían como cierta la clasificación en Saurischia/Ornithischia tradicional y por lo tanto, los caracteres y los taxones utilizados ya iban enfocados a dicha clasificación. En cambio, este nuevo estudio ha sido pionero en varios aspectos:

  • Incluye un gran número de especies y taxones (muchos más que en investigaciones anteriores).
  • Estudios anteriores daban mucho más énfasis en dinosaurios terópodos y sauropodomorfos (saurisquios tradicionales) basales, ya que fueron de los primeros grupos en diversificarse, incluyendo pocos ornitisquios basales.
  • También se han incluido muchos arcosaurios dinosauromorfos (taxones no dinosaurios).
  • Estudios anteriores habían asumido que muchos caracteres de los ornitisquios eran simplesiomórficos (caracteres ancestrales de todos los dinosaurios) y sólo se centraban en pocas sinapomorfías (caracteres compartidos por un grupo monofilético).

Este estudio se ha desprendido de muchas de las suposiciones anteriores sobre filogenia dinosauria y ha analizado un gran número de especies y multitud de caracteres no incluidos en investigaciones anteriores. Esto ha hecho que el árbol evolutivo resultante fuese muy diferente de los que se habían obtenido hasta la fecha.

RECONSTRUYENDO EL ÁRBOL

Entonces, ¿cómo queda el árbol evolutivo de los dinosaurios según esta hipótesis? Pues el tema es un poco complicado, aunque los diferentes taxones siguen quedando divididos en dos órdenes:

  • El orden Saurischia que, según el estudio, sólo incluye a los sauropodomorfos y a los herrerasáuridos (grupo de saurisquios carnívoros no terópodos).
  • El nuevo orden Ornithoscelida (patas de ave) que incluye a los ornitisquios tradicionales y a los terópodos, que dejan de ser saurisquios.

Teniendo esto en mente, veamos ahora las características que definen a estos dos grupos.

Saurisquios

El orden Saurischia se mantiene prácticamente igual, excepto que los terópodos quedan fuera del grupo. Este orden presenta la pelvis con estructura saurisquia original, como también la presentaban los antepasados de los dinosaurios. Según la nueva hipótesis, dentro de los saurisquios se incluyen los herrerasáuridos y los sauropodomorfos.

Los herrerasáuridos (familia Herrerasauridae) fueron un pequeño grupo de saurisquios basales que evolucionaron hacia una dieta carnívora. Por eso durante mucho tiempo se pensó que eran el grupo hermano de los terópodos, pero después se vio que su lugar se encontraba entre los primeros saurisquios. Aun estando bastante especializados, probablemente la competencia con otros depredadores hizo que no durasen mucho tiempo, apareciendo a mediados del Triásico y extinguiéndose a finales de este período.

229366767_309c6f9d6e_b-min
Foto de Brian Smith de un esqueleto y un modelo de Herrerasaurus del Field Museum of Natural History de Chicago.

Los herrerasáuridos ocupaban un nicho ecológico similar al de los terópodos. La nueva hipótesis implica entonces que la hipercarnivoría (alimentación exclusivamente de carne) evolucionó independientemente dos veces en los dinosaurios, cosa que hace que algunos paleontólogos la pongan en duda. Aun así, la anatomía de los herrerasáuridos y de los terópodos difería en ciertos aspectos, como la anatomía de sus manos (más generalista en los herrerasáuridos) y la estructura de la mandíbula.

Los primeros sauropodomorfos eran animales bípedos igual que los herrerasáuridos, aunque éstos eran animales omnívoros. Aun así, los sauropodomorfos acabarían convirtiéndose en enormes cuadrúpedos herbívoros con cuellos larguísimos característicos.

thecodontosaurus-antiquus-skeleton1-min
Esqueleto de Thecodontosaurus (por Qilong), un sauropodomorfo basal y una reconstrucción de Plateosaurus (por Walters, Senter & Robins) uno de más avanzado. Aunque en esta imagen no se aprecia, a lo largo de su evolución, los sauropodomorfos aumentarían mucho su tamaño (Thecodontosaurus 2 metros, Plateosaurus hasta 10 metros).

Ornitoscélidos

El nuevo orden de dinosaurios es Ornithoscelida, que agrupa los terópodos con los ornitisquios. Este taxón está apoyado por más de veinte sinapomorfías (caracteres derivados compartidos por un clado) esqueléticas, presentes tanto en terópodos como en ornitisquios basales. Algunas de estas características incluyen la presencia de una separación entre los dientes premaxilares y maxilares (diastema) y la fusión de los extremos de la tibia y la fíbula en un tibiotarso (aunque estos caracteres sólo se encuentran en las especies más basales).

ornithoscelida-min
Esquema de Baron et al. (2017) de los cráneos de dos ornitoscélidos basales, Eoraptor (un terópodo, superior) y Heterodontosaurus (un ornitisquio, inferior).

Tanto los terópodos como los primeros ornitisquios eran animales bípedos. Además, la presencia de dientes heterodontos en los miembros ancestrales de ambos grupos nos lleva a pensar que los primeros ornitoscélidos eran omnívoros, los cuáles después se especializarían en alimentarse de carne y de vegetación (terópodos y ornitisquios respectivamente).

Daemonosaurus-face-min
Reconstrucción de la cara de Daemonosaurus, uno de los primeros terópodos, por DeadMonkey8984.

Una curiosidad de la nueva clasificación es que aceptando a Ornithoscelida como un taxón válido, se agrupan a todos los dinosaurios con plumas en un solo grupo. Por todos es sabido que muchos terópodos presentaban plumas (ya que son los antepasados de las aves) pero, lo que mucha gente desconoce es que la presencia de plumas también se ha demostrado en algunos ornitisquios basales y en otros más avanzados.

Kulindadromeus_by_Tom_Parker-min
Reconstrucción por Tom Parker de Kulindadromeus, un ornitisquio del cual se han encontrado pruebas de que presentaba plumas en gran parte del cuerpo.

SEGUIR INVESTIGANDO

Y entonces, ¿es definitiva esta hipótesis? Pues no, por supuesto. Aunque resulta bastante atractivo decir que se ha cambiado la historia natural de los dinosaurios para siempre, no podemos asegurar que a partir de ahora los dinosaurios se clasifiquen de este modo.

new evolution-min
Árbol evolutivo de los dinosaurios según Baron et al. (2017), donde vemos los diferente clados; Dinosauria (A), Saurischia (B) y Ornithoscelida (C).

Aunque este estudio muestre resultados interesantes sobre el origen de los dinosaurios, no se pueden ignorar los cientos de estudios anteriores que se han hecho sobre este grupo de animales. Deberemos estar atentos a nuevos artículos que poco a poco vayan desvelando más información sobre las relaciones entre estos reptiles mesozoicos. ¡Y es que esto es lo más estimulante de la biología, que no hay nada seguro! Y que con nuevas técnicas de estudio y nuevos descubrimientos, poco a poco aprendemos más sobre el mundo que nos rodea.

¡Mantened la mente abierta y seguid investigando!

REFERENCIAS

Se han consultado las siguientes fuentes durante la elaboración de esta entrada:

difusio-castella

Podant l’arbre evolutiu dels dinosaures

Durant més de 130 anys els dinosaures han estat classificats en dos ordres separats, els saurisquis i els ornitisquis. Però com sempre passa en les ciències biològiques, tota teoria és certa fins que es demostra el contrari. Un nou estudi ha posat en entredit la classificació clàssica dels dinosaures, eliminant i redistribuïnt alguns dels diferents grups de dinosaures. Tot i que aquesta nova hipòtesis no és segura al 100%, en aquesta entrada us explicarem en què consisteix aquesta reordenació dels dinosaures.

CLASSIFICACIÓ TRADICIONAL DELS DINOSAURES

Des del segle XIX, els dinosaures s’han dividit en dos grans ordres basats en la estructura de la seva pelvis. L’ordre Saurischia (pelvis de llangardaix) inclou als teròpodes (dinosaures carnívors i ocells actuals) i als sauropodomorfs (grans herbívors de coll llarg); l’ordre Ornithischia (pelvis d’ocell) inclou als ornitòpodes (dinosaures herbívors i amb bec d’ànec), als marginocèfals (dinosaures amb banyes i estructures cranials endurides) i als tireòfors (dinosaures cuirassats).

732px-Evolution_of_dinosaurs_by_Zureks.svg-min
Arbre evolutiu tradicional dels dinosaures per Zureks, amb els dos tipus de pelvis dinosauries a baix.

Tanmateix, aquesta classificació no té l’última paraula. La paleontologia és una ciència extremadament volàtil, ja que amb cada nou descobriment es pot desmuntar tot el que es sabia fins al moment, encara que es tracti d’una hipòtesi centenària. Això és el que ha passat amb els dinosaures recentment.

L’INICI D’UNA NOVA HIPÒTESI

Un nou estudi publicat el març del 2017, ha fet replantejar la classificació tradicional del dinosaures. Molts estudis anteriors assumien com a certa la classificació en Saurischia/Ornithischia tradicional i per tant, els caràcters i els taxons utilitzats ja anaven enfocats en aquesta classificació. En canvi, aquest nou estudi ha estat pioner en varis aspectes:

  • Inclou un gran nombre d’espècies i taxons (molts més que en investigacions anteriors).
  • Estudis anteriors donaven molt més ènfasi en dinosaures teròpodes i sauropodomorfs (saurisquis tradicionals) basals, ja que van ser dels primers grups en diversificar-se, incloent pocs ornitisquis basals.
  • També s’hi han inclòs molts arcosaures dinosauromorfs (taxons no dinosaures).
  • Estudis anteriors havien assumit que molts caràcters dels ornitisquis eren simplesiomòrfics (caràcters ancestrals de tots els dinosaures) i només es centraven en poques sinapomorfies (caràcters compartits per un grup monofilètic).

Aquest estudi s’ha desprès de moltes de les presuposicions anteriors sobre filogènia dinosauria i ha analitzat un gran nombre de espècies i multitud de caràcters no inclosos en investigacions anteriors. Això ha fet que l’arbre evolutiu resultant fos molt diferent dels que s’havien obtingut fins llavors.

RECONSTRUÏNT L’ARBRE

Llavors, com queda l’arbre evolutiu dels dinosaures segons aquesta hipòtesi? Doncs el tema és una mica complicat, tot i que els diferents taxons segueixen quedant dividits en dos ordres:

  • L’ordre Saurischia que, segons l’estudi, només inclou als sauropodomorfs i als herrerasàurids (grup de saurisquis carnívors no teròpodes).
  • El nou ordre Ornithoscelida (potes d’ocell) que inclou als ornitisquis tradicionals i als teròpodes, que deixen de ser saurisquis.

Tenint això en ment, vegem doncs les característiques que defineixen aquests dos grups.

Saurisquis

L’ordre Saurischia es manté pràcticament igual, excepte que els teròpodes es queden fora del grup. Aquest ordre presenta la pelvis d’estructura saurisquia original, com també la presentaven els avantpassats dels dinosaures. Segons la nova hipòtesi, dins dels saurisquis s’hi inclouen els herrerasàurids i els sauropodomorfs.

Els herrerasàurids (família Herrerasauridae) van ser un petit grup de saurisquis basals que van evolucionar cap a una dieta carnívora. Per això durant un temps es pensava que eren el grup germà dels teròpodes, però després es va veure que el seu lloc es trobava entre els primers saurisquis. Tot i estar força especialitzats, probablement la competència amb altres depredadors va fer que no duressin molt de temps, apareixent a mitjans del Triàssic i extingint-se al finals d’aquest període.

229366767_309c6f9d6e_b-min
Foto de Brian Smith d’un esquelet i un model de Herrerasaurus del Field Museum of Natural History de Chicago.

Els herrerasàurids ocupaven un nínxol ecològic similar al dels teròpodes. La nova hipòtesi implica doncs que la hipercanivoria (alimentació exclusivament de carn) va evolucionar independentment dos cops en els dinosaures, cosa que fa que alguns paleontòlegs la posin en dubte. Tanmateix, l’anatomia dels herrerasàurids i dels teròpodes diferia en certs aspectes, com la anatomia de les mans (més generalista en els herrerasàurids) i la estructura de la mandíbula.

Els primers sauropodomorfs eren animals bípedes igual que els herrerasàurids, tot i que aquests eren animals omnívors. Tanmateix, els sauropodomorfs acabarien convertint-se en enormes quadrúpedes herbívors amb colls llarguíssims característics.

thecodontosaurus-antiquus-skeleton1-min
Esquelet de Thecodontosaurus (per Qilong), un sauropodomorf basal i una reconstrucció de Plateosaurus (per Walters, Senter & Robins) un de més avançat. Tot i que en aquesta imatge no s’aprecia, al llarg de la seva evolució, els sauropodomorfs augmentarien molt la seva mida (Thecodontosaurus 2 metres, Plateosaurus fins a 10 metres).

Ornitoscèlids

El nou ordre de dinosaures és Ornithoscelida, que agrupa els teròpodes amb els ornitisquis. Aquest taxó està recolzada per més de vint sinapomorfies (caràcters derivats compartits per un clade) esquelètiques, presents tant en teròpodes com en ornitisquis basals. Algunes d’aquestes característiques inclouen la presència d’una separació entre les dents premaxil·lars i maxil·lars (diastema) i la fusió dels extrems de la tíbia i la fíbula en un tibiotars (tot i que aquests caràcters només es troben en les espècies més basals).

ornithoscelida-min
Esquema de Baron et al. (2017) dels cranis de dos ornitoscèlids basals, Eoraptor (un teròpode, superior) i Heterodontosaurus (un ornitisqui, inferior).

Tant els teròpodes com els primers ornitisquis eren animals bípedes. A més, la presència de dents heterodontes en els membres ancestrals d’ambdós grups fa pensar que els primers ornitoscèlids eren omnívors, els quals després s’especialitzarien en alimentar-se de carn i de vegetació (teròpodes i ornitisquis respectivament).

Daemonosaurus-face-min
Reconstrucció de la cara de Daemonosaurus, un dels primers teròpodes, per DeadMonkey8984.

Una curiositat de la nova classificació és que acceptant a Ornithoscelida com un taxó vàlid, s’agrupen a tots els dinosaures amb plomes en un sol grup. Per tots és sabut que molts teròpodes presentaven plomes (ja que eren els avantpassats dels ocells) però, el que molta gent desconeix és que la presència de plomes també s’ha demostrat en alguns ornitisquis basals i en altres més avançats.

Kulindadromeus_by_Tom_Parker-min
Reconstrucció per Tom Parker de Kulindadromeus, un ornitisqui del qual s’han trobat proves que presentava plomes a gran part del cos.

SEGUIR INVESTIGANT

I llavors, és definitiva aquesta hipòtesi? Doncs no, per descomptat. Tot i que resulta força atractiu dir que s’ha canviat la història natural dels dinosaures per sempre, no podem dir que a partir d’ara els dinosaures es classifiquin d’aquesta manera.

new evolution-min
Arbre evolutiu dels dinosaures segons Baron et al. (2017), on veiem els diferents clades; Dinosauria (A), Saurischia (B) i Ornithoscelida (C).

Encara que aquest estudi mostri resultats interessants sobre l’origen dels dinosaures, no es poden ignorar els centenars d’estudis anteriors que s’han fet sobre aquest grup d’animals. Haurem d’estar atents a nous articles que poc a poc vagin desvelant més informació sobre les relacions entre aquests rèptils mesozoics. I és que això és el més estimulant de la biologia, que no hi ha res segur! I que amb noves tècniques d’estudi i nous descobriments, poc a poc aprenem més sobre el món que ens envolta.

Mantingueu la ment oberta i seguiu investigant!

REFERÈNCIES

S’han consultat les següents fonts durant l’elaboració d’aquesta entrada:

difusio-catala

Existeix el Monstre del Llac Ness i el Ieti?

El Monstre del Llac Ness, el Ieti, el Chupacabras, el Bigfoot, el Kraken… tothom hem sentit a parlar d’ells alguna vegada i fins i tot hem dubtat de seva (in)existència. Què hi ha de cert sobre aquestes criatures? Són reals? Si no ho són, quines respostes dóna la ciència per rebatre-ho? Descobreix-ho en aquest article.

LA CRIPTOZOOLOGIA

La criptozoologia és una pseudociència, és a dir, utilitza termes suposadament científics però es basa en creences enlloc de en evidències i no utilitza el mètode científic. S’encarrega de buscar animals que no han estat confirmats per la ciència, anomenats críptids. Habitualment es tracta d’éssers apareguts en mites i llegendes, però també d’espècies extintes de les que s’assegura que han estat vistes en l’actualitat, com el llop marsupial o els dinosaures (no avians). Només cal una recerca a internet per trobar fotos trucades que no enganyarien ni al més crèdul (o si?), però quan es tracta d’històries instal·lades a la memòria col·lectiva, el nombre de seguidors i defensors de la criptozoologia es dispara.

sirena, juan cabana, sirena real, mermaid, real
La sirena de Maracaibo, un clàssic críptid que corre per internet. Tot i ser una escultura de Juan Cabana, alguns encara creuen en la veracitat d’aquests éssers. Foto: desconegut

La criptozoologia sol intentar afegir trets d’animals reals als críptids per fer-los més creïbles, i fins i tot s’apropia de les espècies descobertes per la biologia (zoologia), com quan diu que el Kraken en realitat és un calamar gegant.

EL MONSTRE DEL LLAC NESS

Nessie és el críptid més famós, un animal aquàtic gegantí que se suposa que viu al Llac Ness, a Inverness, Escòcia. Com passa amb tots els éssers criptozoològics, les proves de la seva existència són fotos borroses i testimonis d’albiraments. Segur que has vist alguna vegada la foto més famosa del monstre :

nessi, 1934, foto del cirujano, monstruo del lago ness, loch ness, monster
La primera foto de Nessie, presa el 1934 es va considerar (i es considera) una prova de la seva existència. 60 anys després Chris Spurling va confessar que era un frau. Foto: Marmaduke Wheterell

Aquesta, igual que la resta de fotos del monstre , s’ha demostrat que han estat muntatges i fraus. Tot i això, segueixen alimentant el mite: els guanys anuals d’aquesta zona d’Escòcia són de diversos milions d’euros. Així doncs, no és d’estranyar que molts llacs al voltant del món tinguin seu monstre, com el Nahuelito, Caddy, Camp, Manipogo, Ponik…

PER QUÈ NO POT EXISTIR EL MONSTRE DEL LLAC NESS?

  • La seva edat: la primera referència d’un ésser en aquest llac data de l’any 565. És a dir, que actualment tindria … 1451 anys, molt més que l’animal més longeu conegut, la cloïssa Ming amb 507 anys. O fins i tot més, ja que alguns criptozoòlegs defensen que podria tractar-se d’un plesiosaure o un animal semblant (extingits fa més de 65 milions d’anys) d’uns 20 metres de llarg i entre 10-20 tones.

    lago ness, nutria, elefante
    O potser només era una llúdriga… Foto: Jonathan Wills
  • El seu origen: si fos un animal de l’època dels dinosaures, o els seus descendents, és impossible que hagi viscut sempre al llac, que va estar congelat des de l’última glaciació fins fa uns 12.000 anys. No hi ha cap via que comuniqui el llac amb la mar ni cap albirament fora del llac, per la qual cosa cal descartar que el monstre pugui entrar o sortir a buscar aliment, per exemple. Presumint a més que fos un rèptil aquàtic, la seva preferència serien les aigües subtropicals, no les fredes aigües de Inverness (6°C de mitjana).
  • Família de Nessies: l’única possible explicació que segueixi existint durant milers o milions d’anys, és que no hi hagi un, sinó com a mínim 100 individus com Nessie perquè la població fos viable, segons l’ecologia de poblacions. La població mínima viable és la població aïllada més petita que tingui el 99% de probabilitat de mantenir-se durant 1000 anys tot i l’atzar (Shaffer, 1981). A més, tenint en compte que el llac Ness té 56,4 km² i 226 m de profunditat, és evident la manca de territori per a tots ells (a més de que els albiraments serien constants).
  • Manca de cadàvers: en el cas que existís un grup de plesiosaures, tard o d’hora haurien d’aparèixer cadàvers a la riba i no obstant això mai s’ha trobat cap resta, ni de Nessie, que amb l’auge de les càmeres digitals cada vegada es deixa veure menys.

    Elefant nedant. L’any amb més albiraments, 1933, un circ va recórrer la zona. Pel que sembla el seu elefant es va banyar al llac diverses vegades. Foto: Jeremy Tucker
  • Insuficient aliment: el llac és profund, llarg i estret (32 km x 1,6 km). Igual que la base de la cadena alimentària a la terra són les plantes, en les zones aquàtiques ho són el fitoplàncton, algues i plantes que puguin sostenir a herbívors i carnívors. El llac Ness té poca superfície exposada al sol, de manera que no rep prou insolació perquè es pugui fer la fotosíntesi massivament. A més, les seves aigües són fosques per tenir torba en suspensió, impedint que entre llum a partir de pocs metres de profunditat. És tan poc productiu, que no podria sobreviure en ell un depredador de més de 300 quilos. Òbviament, els pocs animals que hi ha són totalment insuficients per alimentar un o més animals de 20 tones.

    cadena trofica, red alimenticia, xarxa tròfica,
    cadena tròfica d’un sistema d’aigua dolça. Les fletxes indiquen la direcció de l’energia d’una baula a una altra. Autor desconegut
  • Manca de proves amb les últimes tecnologies: la BBC ha rastrejat el llac diverses vegades amb sonars i tecnologia de navegació per satèl·lit amb resultats negatius. Ni els minisubmarins ni les càmeres web 24 hores han trobat ni rastre del monstre.

EL IETI, L’ABOMINABLE HOME DE LES NEUS

El segon críptid més famós és un simi gegant bípede que habita a l’Himàlaia. O a Amèrica del Nord (Bigfoot), Canadà (Sasquatch), Almasty (Rússia), Hibagón (Japó), Yowy (Austràlia)… com passa amb Nessie, el Yeti mou milions d’euros i cada país té el seu propi. També se suggereix que és alguna espècie d’homínid extinta, un neandertal, un Homo erectus o un Gigantopithecus .

yeti, huella, footprint, petjada
Fotografia que va revifar la llegenda del Yeti (1951). Foto: Eric Shipton

Com succeeix amb els críptids, la proves es basen en testimonis oculars, fotos trucades o de dubtós origen. Però en aquest cas hi ha més: mostres de pèl que s’assegura que pertanyen al Yeti. Què hi diu la ciència?

ANÀLISI D’ADN

El coneixement actual de la genètica ha permès establir amb més precisió les relacions de parentiu i identificar els éssers vius mitjançant els anàlisis d’ADN. Així que Bryan Sykes (Oxford University) va liderar un estudi en el qual van analitzar més de 30 mostres de pèl que es conserven en temples budistes, museus i col·leccions privades. Resultat: pèl de cavall, bisó, humà, ós rentador, vaca, llop, coiot… però cap del Yeti.

La bona notícia per a la zoologia és que dues mostres de pèl corresponen amb l’ADN d’un fòssil d’ós polar, pel que podrien pertànyer a una espècie d’ós desconeguda fins ara o una varietat d’ós polar d’un altre color (daurat-rogenc).

PAtterson-gimlin film, bigfoot
La foto més famosa del Bigfoot és una captura d’un video enregistrat per Patterson-Gimlin

EL CHUPACABRAS

El Chupacabras se suposa que és una criatura que mata i xucla la sang d’animals de corral, sense vessar ni una gota. Les definicions són diverses, que si ulls vermells brillants, escates, bípedes, punxes a l’esquena… fins i tot es reporten casos de Chupacabras trobats morts:

chupacabras mexico
Els suposats cadàvers de chupacabras solen ser cànids amb sarna que han perdut el pèl, óssos rentadors o en aquest cas una guineu voladora. Foto: desconegut

El Chupacabras té la particularitat d’actuar en països llatins: Veneçuela, Puerto Rico, Mèxic, Argentina, Espanya, Xile… El presumpte hàbitat del chupacabras xoca amb la biogeografia: una branca de la ciència que estudia la distribució dels éssers vius sobre el nostre planeta.

Tenint unes nocions bàsiques d’evolució biològica, climàtica i de masses continentals i aquàtiques, fins i tot nosaltres podem pensar com a biogeògrafs: les espècies es distribueixen segons el seu hàbitat i presenten adaptacions als diferents territoris i climes. Ningú pensaria en una granota vivint al desert del Sàhara, per exemple. En canvi al chupacabras sembla que li és igual: habita en gran varietat de paisatges entre dos continents i diverses illes, però això sí, presenta predilecció pels llocs de parla castellana. Res a veure amb la biologia: és producte d’una llegenda de tradició oral, en aquest cas, hispana.

ZOOLOGIA VS CRIPTOZOOLOGIA

En conclusió, la zoologia és la branca de la biologia que per certificar que s’ha descobert una nova espècie ha de:

    • Presentar un holotip (un exemplar de l’animal) davant la comunitat científica (museu de ciències naturals, universitat…) a disposició dels interessats.
    • L’holotip ha de superar una anàlisi d’ADN.
    • El descobriment s’ha de publicar en una revista científica amb arbitratge o revisió per parells -peer review- (mètode per validar els resultats de la recerca)
    • Després de la seva validació es classifica seguint les normes de la taxonomia i sistemàtica .

No cal inventar estranyes criatures i desacreditar la biologia: la naturalesa és prou sorprenent com per meravellar-nos amb noves espècies tangibles que la zoologia segueix descobrint i descrivint. Animals increïbles com els tardígrads , els pirosòmids , els calamars gegants i les espècies abissals, els ornitorincs i rates verinoses… i molts altres que queden per descobrir.

REFERÈNCIES

mireia querol rovira

¿Existe el Monstruo del Lago Ness y el Yeti?

El monstruo del Lago Ness, el Yeti, el Chupacabras, el BigFoot, el Kraken… todos hemos oído a hablar de ellos alguna vez e incluso hemos dudado de su (in)existencia. ¿Qué hay de cierto sobre estas criaturas? ¿Son reales? Si no lo son, ¿qué respuestas da la ciencia para rebatirlo? Descúbrelo en este artículo.

LA CRIPTOZOOLOGÍA

La criptozoología es una pseudociencia, esto es, utiliza términos supuestamente científicos pero se basa en creencias en lugar de en evidencias y no utiliza el método científico. Se encarga de buscar animales que no han sido confirmados por la ciencia, llamados críptidos. Habitualmente se trata de seres aparecidos en mitos y leyendas, pero también de especies extintas de las que se asegura que han sido vistas en la actualidad, como el tilacino o los dinosaurios (no avianos). Basta una búsqueda en internet para encontrar fotos trucadas que no engañarían ni al más crédulo (¿o si?), pero cuando se trata de historias instaladas en la memoria colectiva, el número de seguidores y defensores de la criptozoología se dispara.

sirena, juan cabana, sirena real, mermaid, real
La Sirena de Maracaibo, un clásico críptido que corre por internet. A pesar de ser una escultura de Juan Cabana, algunos aún creen en la veracidad de estos seres. Foto: desconocido.

La criptozoología suele intentar añadir rasgos de animales reales a los críptidos para hacerlos más creíbles, e incluso se apropia de las especies descubiertas por la biología (zoología), como cuando dice que el Kraken en realidad es un calamar gigante.

EL MONSTRUO DEL LAGO NESS

Nessie es el críptido más famoso, un animal acuático gigantesco que se supone que vive en el Lago Ness, en Inverness, Escocia. Como pasa con todos los seres criptozoológicos, las pruebas de su existencia son fotos borrosas y testimonios de avistamientos. Seguro que has visto alguna vez la foto más famosa del monstruo:

nessi, 1934, foto del cirujano, monstruo del lago ness, loch ness, monster
La primera foto de Nessie, tomada en 1934 se consideró (y se considera) una prueba de su existencia. 60 años después Chris Spurling confesó que era un fraude.  Foto: Marmaduke Wheterell

Ésta, igual que el resto de fotos del monstruo, se ha demostrado que han sido montajes y fraudes. A pesar de ello, siguen alimentando el mito: las ganancias anuales de esta zona de Escocia son de varios millones de euros. Así pues, no es de extrañar que muchos lagos alrededor del mundo tengan su monstruo, como el Nahuelito, Caddy, Champ, Manipogo, Ponik…

¿POR QUÉ NO EXISTE EL MONSTRUO DEL LAGO NESS?

  • Su edad: la primera referencia de un ser en este lago data del año 565. Es decir, que actualmente tendría…1451 años, mucho más que el animal más longevo conocido, la almeja Ming con 507 años. O incluso más, ya que algunos criptozoólogos defienden que podría tratarse de un plesiosaurio o un animal parecido (extinguidos hace más de 65 millones de años) de unos 20 metros de largo y entre 10-20 toneladas.

    lago ness, nutria, elefante
    O quizá sólo fuera una nutria…  Foto: Jonathan Wills
  • Su origen: si fuera un animal de la época de los dinosaurios, o sus descendientes, es imposible que haya permanecido siempre en el lago, que estuvo congelado desde la última glaciación hasta hace unos 12.000 años. No existe ninguna vía que comunique el lago con el mar ni ningún avistamiento fuera del lago, por lo que hay que descartar que el monstruo pueda entrar o salir a buscar alimento, por ejemplo. Presumiendo además que fuera un reptil acuático, su preferencia serían aguas subtropicales, no las frías aguas de Inverness (6°C de media).
  • Familia de Nessies: la única posible explicación de que siga existiendo durante miles o millones de años, es que no haya uno, sino como mínimo de 100 individuos como Nessie para que la población fuera viable, según la ecología de poblaciones. La población mínima viable es la población aislada más pequeña que tenga el 99% de probabilidad de mantenerse por 1000 años a pesar del azar (Shaffer, 1981). Además, teniendo en cuenta que el lago Ness tiene 56,4 km² y 226 m de profundidad, es evidente la falta de territorio para todos ellos (además de que los avistamientos serían constantes).
  • Falta de cadáveres: en el caso que existiera un grupo de plesiosaurios, tarde o temprano deberían aparecer cadáveres en la orilla y sin embargo nunca se ha encontrado ningún resto, ni de Nessie, que con el auge de las cámaras digitales cada vez se deja ver menos.

    Elefante nadando. El año con más avistamientos, 1933, un circo recorrió la zona. All parecer su elefante se bañó en el lago varias veces. Foto: Jeremy Tucker
    Elefante nadando. El año con más avistamientos, 1933, un circo recorrió la zona. Al parecer su elefante se bañó en el lago varias veces. Foto: Jeremy Tucker
  • Insuficiente alimento: el lago es profundo, largo y estrecho (32 km x 1,6 km). Igual que la base de la cadena alimentaria en la tierra son las plantas, en las zonas acuáticas lo son el fitoplancton, algas y plantas que puedan sostener a herbívoros y carnívoros. El lago Ness tiene poca superficie expuesta al sol, por lo que no recibe suficiente insolación para que se pueda hacer la fotosíntesis masivamente. Además, sus aguas son oscuras por tener turba en suspensión, impidiendo que entre luz a partir de pocos metros de profundidad. Es tan poco productivo, que no podría sobrevivir en él un depredador de más de 300 kilos. Obviamente, los pocos animales que hay son totalmente insuficientes para alimentar uno o más animales de 20 toneladas.

    cadena trofica, red alimenticia, xarxa tròfica,
    Cadena trófica de un sistema de agua dulce. Las flechas indican la dirección de la energía de un eslabón a otro. Autor desconocido
  • Falta de pruebas con las últimas tecnologías: la BBC ha rastreado el lago varias veces con sónares y tecnología de navegación por satélite con resultados negativos. Ni los minisubmarinos ni las webcams 24 horas han encontrado ni rastro del monstruo.

EL YETI, EL ABOMINABLE HOMBRE DE LAS NIEVES

El segundo críptido más famoso es un simio gigante bípedo que habita en el Himalaya. O en Norteamérica (Bigfoot), Canadá (Sasquatch), Almasty (Rusia), Hibagón (Japón), Yowy (Australia)… como sucede con Nessie, el Yeti mueve millones de euros y cada país tiene el suyo propio. Y también se sugiere que es alguna especie de homínido extinta, un neandertal, un Homo erectus o un Gigantopithecus.

yeti, huella, footprint, petjada
Fotografía que reavivó la leyenda del Yeti (1951). Foto: Eric Shipton

Como sucede con los críptidos, la pruebas se basan en testimonios oculares, fotos trucadas o de dudoso origen.  Pero en este caso hay más: muestras de pelo que se asegura que pertenecen al Yeti ¿Qué dice la ciencia?

ANÁLISIS DE ADN

El conocimiento actual de la genética ha permitido establecer con más precisión las relaciones de parentesco e identificar los seres vivos mediante los análisis de ADN. Así que Bryan Sykes (Oxford University) lideró un estudio en el que analizaron más de 30 muestras de pelo que se conservan en templos budistas, museos y colecciones privadas. Resultado: pelo de caballo, bisonte, humano, mapache, vaca, lobo, coyote… pero ninguno de una especie desconocida por la ciencia, y mucho menos del Yeti.

La buena noticia para la zoología es que dos muestras de pelo corresponden con el ADN de un fósil de oso polar, por lo que podrían pertenecer a una especie de oso desconocida hasta ahora o a una variedad de oso polar de otro color (dorado-rojizo).

PAtterson-gimlin film, bigfoot
La foto más famosa del Bigfoot es una captura de un vídeo tomado por Patterson-Gimlin.

EL CHUPACABRAS

El Chupacabras se supone que es una criatura que mata y chupa la sangre a animales de corral, sin derramar ni una gota. Las definiciones son variopintas, que si ojos rojos brillantes, escamas, bípedos, púas en la espalda… hasta se reportan casos de Chupacabras encontrados muertos:

chupacabras mexico
Los supuestos cadáveres de chupacabras suelen ser cánidos con sarna que han perdido el pelo, mapaches o en este caso un zorro volador. Foto: desconocido

El Chupacabras tiene la particularidad de actuar en países latinos: Venezuela, Puerto Rico, México, Argentina, España, Chile… El presunto hábitat del chupacabras choca con la biogeografía: una rama de la ciencia que estudia la distribución de los seres vivos sobre nuestro planeta.

Teniendo unas nociones básicas de evolución biológica, climática y de masas continentales y acuáticas, incluso nosotros podemos pensar como biogeógrafos: las especies se distribuyen según su hábitat y presentan adaptaciones a los distintos territorios y climas. Nadie pensaría en una rana viviendo en el desierto del Sáhara, por ejemplo. En cambio al chupacabras parece que le da igual: habita en variedad de paisajes entre dos continentes y varias islas, pero eso sí, presenta predilección por los lugares de habla castellana. Nada que ver con la biología: es producto de una leyenda de tradición oral, en este caso, hispana.

ZOOLOGÍA VS CRIPTOZOOLOGÍA

En conclusión, la zoología es la rama de la biología que para certificar que se ha descubierto una nueva especie tiene que:

  • Presentar un holotipo (un ejemplar del ser vivo) ante la comunidad científica (museo de ciencias naturales, universidad…) a disposición de los interesados.
  • El holotipo tiene que superar un análisis de ADN.
  • El descubrimiento se tiene que publicar en una revista científica con arbitraje o revisión por pares -peer review- (método para validar los resultados de la investigación)
  • Después de su validación se clasifica siguiendo las normas de la taxonomía y sistemática.

No hace falta inventar extrañas criaturas y desacreditar a la biología: la naturaleza es suficientemente sorprendente como para maravillarnos con nuevas especies tangibles que la zoología sigue descubriendo y describiendo. Animales increíbles como los tardígrados, los pirosómidos, los calamares gigantes y las especies abisales, los ornitorrincos y ratas venenosas… y muchos otros que quedan por descubrir.

REFERENCIAS

Clasificación y filogenia para principiantes

En este blog a menudo se utilizan términos relacionados con la clasificación de los seres vivos y su filogenia. Puesto que son términos que no son conocidos por todos, este artículo pretende aclarar varios conceptos para los principiantes en este campo. 

INTRODUCCIÓN

Antes de introducirnos de lleno en el tema, conviene dejar claros dos conceptos, que muy a menudo se confunden: la sistemática y la taxonomía.

La sistemática es la ciencia de la clasificación y de la reconstrucción de la filogenia, es decir, se encarga de reconstruir el origen y la diversificación de un taxón (unidad que queremos clasificar, como por ejemplo una especie, una familia o un orden).

Por otro lado, la taxonomía es el estudio de los principios de la clasificación científica, la ordenación y denominación sistemática de los organismos.

En otras palabras, mientas que la sistemática se encarga de crear sistemas de clasificación, los cuales se representan en forma de árbol ramificado, la taxonomía pone las reglas y los procedimientos para identificar, poner nombre y clasificar cada especie en las diferentes categorías taxonómicas basándose en la sistemática.

SOBRE LAS ESPECIES Y MÁS ALLÁ

No podemos empezar a hablar sobre cómo se clasifican las especies sin saber qué es una especie y otros niveles de clasificación de los seres vivos.

¿QUÉ ES UNA ESPECIE?

A lo largo de la historia se ha intentado explicar lo que es una especie, de manera que encontramos diferentes definiciones según el enfoque que tomemos.

  • Concepto morfológico o tipológico de especie: una especie es un conjunto de organismos que presentan características fijas y esenciales que representan un patrón o arquetipo. Este concepto está actualmente totalmente descartado, aunque la mayoría de guías se basan en explicaciones morfológicas para identificar a las especies.
INFO-BALLENA
Aunque las guías para identificar las especies se basan en su morfología, el concepto morfológico de especie no es aceptado (Foto: Revista Viva).
  • Concepto biológico de especie: una especie es un grupo de poblaciones naturales interfecundas y reproductivamente aisladas, la cual ocupa un nicho específico en la naturaleza. Por lo tanto, una especie tiene una ascendencia común y comparten caracteres de variación gradual. Esta definición tiene varios problemas: sólo es aplicable a las especies con reproducción sexual y no se puede aplicar para las especies extinguidas.
  • Concepto evolutivo de especie: una especie es un único linaje de poblaciones ancestro-descendiente que mantiene su identidad frente a otros linajes y que tiene sus propias tendencias evolutivas y su destino histórico. Este enfoque y el biológico son, de hecho, complementarios puesto que hay una duplicidad de fenómenos.
  • Concepto filogenético de especie: según esta perspectiva, una especie es un grupo irreducible de organismos, diagnósticamente distinguible de otros grupos semejantes y dentro del cual existe un patrón parental de ascendencia y descendencia. Este criterio cubre tanto la reproducción sexual como la asexual.
ensatina_phylogeny
Según la definición filogenética, A, B y C son especies diferentes. Todos los organismos dentro de C son también una única especie con diferentes formas (Foto: Sesbe).

MÁS ALLÁ DE LAS ESPECIES

Por si no fuera suficiente el lío planteado para definir lo que es una especie, éstas se clasifican según un sistema jerárquico basado en más categorías taxonómicas. Aquellas que están por encima de la especie se llaman supraespecíficas, mientras que las que quedan por debajo son las infraespecíficas.

Así pues, desde la categoría más alta a la más baja, los seres vivos se pueden clasificar en: Dominio > Reino > Filo o División > Clase > Orden > Familia > Género > Especie > Subespecie > Variedad > Forma. ¡Y que conste que aquí hemos simplificado bastante!

Vamos a ver un ejemplo: imagina al perro. El perro, como el lobo, forman parte de una misma especie: Canis lupus, pero el perro es la subespecie Canis lupus familiaris. La designación de una especie se hace mediante su género (Canis) seguido del epíteto específico (lupus). Las categorías supraespecíficas del perro son: Dominio Eucariota, Reino animal, Filo Cordados, Subfilo Vertebrados, Clase Mamíferos, Orden Carnívoros y Familia Cánidos.

DSC02196
Los perros y los lobos están incluidos dentro de la misma especie, pero están en subespecies distintas (Foto: Marc Arenas Camps).

¿CÓMO SE RECONSTRUYE EL ÁRBOL DE LA VIDA?

Para reconstruir el árbol de la vida, es decir, las relaciones que hay entre las especies vivas y extintas (filogenia) se utilizan los caracteres, es decir, los rasgos de los organismos utilizados para estudiar la variación dentro una especie y entre ellas.

Así, para reconstruir la filogenia se usan caracteres compartidos entre diferentes taxones. Aquí debemos diferenciar dos tipos de semejanza: cuando la semejanza de caracteres resulta de la ascendencia común se denomina homología, mientras que cuando no es resultado de tener antecedentes comunes se llama homoplasia.

Seguramente con un ejemplo quedará más clara la diferencia entre homología y homoplasia. Que las alas de una lechuza y una codorniz se parezcan es porque tienen el mismo origen (homología), pero que las alas de los insectos, las aves y los murciélagos sirvan para volar no se debe a que tengan el mismo origen (homoplasia).

bio_evoluc_convergente
Las alas de insectos, aves y murciélagos son una homoplasia (Foto: Natureduca).

 Hay tres grandes tipos de homoplasia:

  • Paralelismo: la condición ancestral de un carácter variable (plesiomórfico) está presente en el antepasado común, pero el estadio actual o derivado (apomórfico) ha evolucionado independientemente. Sería un ejemplo de paralelismo el desarrollo de un corazón formado por 4 cavidades en aves y mamíferos.
  • Convergencia: en este caso, el carácter homoplástico no estaría presente en el antepasado común. Las estructuras originadas por convergencia se dice que son análogas. Un ejemplo serían las alas de insectos y aves.
  • Pérdida secundaria o reversión: consiste en la reversión de un carácter determinado a uno que parece ancestral. Así, parece que sea ancestral pero en realidad es derivado.
paralelismo, convergencia, reversion
Paralelismo, convergencia y reversión biológica (Foto: Marc Arenas Camps).

Se utilizan distintos tipos de caracteres para ordenar a los seres vivos: morfológicos, estructurales, embriológicos, palenotológicos, etológicos, ecológicos, bioquímicos y moleculares.

Las especies que comparten estados derivados de un carácter forman un clado y al carácter se le conoce como sinapomorfía. Así, las sinapomorfías son los caracteres que se originaron en un ancestro común de un clado y que se conserva tanto en el ancestro como en todos sus descendientes. Así pues, las glándulas mamarias son una sinapomorfía de todos los mamíferos.

animalia54
Las glándulas mamarias son una sinapomorfía de los mamíferos (Foto: Tiempo de éxito).

Una vez se han seleccionado los caracteres, las diferentes escuelas de clasificación biológica los utilizan de diferentes maneras para obtener las relaciones entre los seres vivos lo más fiables posibles.

REFERENCIAS

  • Apuntes de Fundamentos de Biología Avanzada, de la Licenciatura en Biología de la Universidad de Barcelona.
  • Hickman, Roberts, Larson, l’Anson & Eisenhour (2006). Principios integrales de zoología. Ed. McGraw Hill (13 ed).
  • Izco (2004). Botánica. Ed. McGraw Hill (2 ed).
  • Shnek & Massarini (2008). Biología. Ed. Médica Panamericana (7 ed).
  • Vargas (2009). Glosario de Cladística: Introducción a la sistemática filogenética.
  • Foto de portada: Tree of life mural, Kerry Darlington

Difusió-castellà