Arxiu d'etiquetes: temperatura

Rèptils del desert

Els deserts són uns dels hàbitats més extrems del planeta. El del Sàhara, el del Gobi i el de Sonora són exemples d’alguns dels deserts càlids on les altes temperatures i la falta d’aigua suposen un gran repte pels animals que hi viuen. Els rèptils són un dels grups d’animals que presenten les adaptacions més increïbles per a la vida al desert. En aquesta entrada us explicarem els problemes als que s’enfronten els rèptils que hi viuen, i us presentarem diferents espècies de serps i llangardaixos que han trobat en el desert la seva llar.

ELS RÈPTILS AL DESERT

La característica que uneix a tots els deserts és l’escassa precipitació ja que, contràriament al que molta gent pensa, no tots els deserts presenten temperatures altes (existeixen també els deserts freds, com el desert Àrtic i l’Antàrtic, ambdós en perill pel canvi climàtic). Els rèptils són més abundants en els deserts càlids que en els freds, ja que les baixes temperatures els impedirien dur a terme la seva activitat vital.

aavikko
Mapa per Vzb83 dels deserts càlids, àrids i semiàrids, del món.

Els deserts càlids no sempre tenen temperatures extremadament altes. Mentre que durant el dia les temperatures poden arribar a sobrepassar els 45°C, quan es pon el sol les temperatures poden descendir fins a sota del punt de congelació, creant oscil·lacions diàries de fins a 22°C. Els diferents rèptils del desert, al ser poiquiloterms i ectoterms, utilitzen diferents estratègies comportamentals per tal d’evitar el sobreescalfament durant el dia i conservar la temperatura durant la nit (per exemple, enfilant-se a zones elevades o dormint en caus).

El camaleó de Namaqua (Chamaleo namaquensis) regula la seva temperatura corporal canviant de color. A les primeres hores de sol és de color negre per absorbir el màxim de radiació i activar el seu metabolisme. Quan les temperatures augmenten massa, es torna de color blanc per a reflectir la radiació solar. Vídeo de la BBC.

Com ja hem dit, la principal característica de qualsevol desert és la manca d’aigua. En general, en un desert cauen menys de 250 mm d’aigua a l’any. La pell escamosa i impermeable dels rèptils evita la pèrdua d’aigua i els seus excrements contenen àcid úric que, comparat amb la urea, és molt menys soluble en l’aigua, fent que retinguin més líquids. La majoria de rèptils dels deserts extrauen l’aigua que necessiten de l’aliment i alguns beuen l’aigua de la rosada.

Tant les temperatures extremes com les poques precipitacions fan que en els deserts generalment hi hagi poca vida. La vegetació és escassa i els animals solen ser petits i discrets. Aquesta manca de recursos fa que els rèptils del desert siguin més aviat petits comparats amb els seus parents d’ambient més benèvols. A més aquests sauris solen ser animals que aprofiten qualsevol aliment disponible, tot i que s’ho pensen molt bé a l’hora de gastar la seva valuosa energia per aconseguir el seu següent àpat.

SERPS DE LA SORRA

En molts deserts sorrencs hi trobem vàries espècies de serps (i de llangardaixos àpodes) que s’han adaptat a la vida entre les dunes. Molts d’aquests ofidis comparteixen un mètode de desplaçament anomenat “a cops laterals” (en anglès “sidewinding”), en el qual aixequen el cap i coll de terra i els mouen lateralment, mentre que la resta del cos es queda a terra. Quan tornen a posar el cap a terra, el cos s’aixeca fent que les serps es desplacin lateralment en un angle de 45°. Aquest mètode de locomoció fa que les serps dels deserts es desplacin de forma molt eficaç en un terreny inestable. A més, també minimitza el contacte amb un substrat extremament calent, ja que el cos d’aquests ofidis només toca el terra en dos punts en tot moment.

Com veiem en aquest vídeo de RoyalPanthera, el “sidewinding” permet a les serps del desert desplaçar-se minimitzant el contacte amb el terra calent.

Molts ofidis del desert s’enterren a la sorra tant per a evitar la insolació com per a camuflar-se i sorpendre a les seves preses. Això ha fet que moltes serps desertícoles siguin sensibles a les vibracions generades per les seves preses al moure’s per la sorra. A més algunes espècies presenten l’escama rostral (l’escama de la punta del musell) més engruixida i desenvolupada per a ajudar-les a excavar en terrenys sorrencs.

heterodon_nasicus2
Un exemple d’això són les serps nord americanes del gènere Heterodon, conegudes també com a serps musell de porc, ja que presenten l’escama rostral elevada donant-li al seu musell una forma característica. Foto de Heterodon nasicus per Dawson.

Els escurçons banyuts del gènere Cerastes també presenten vàries característiques que els faciliten la vida als deserts. Aquests escurçons eviten les altes temperatures sent actius durant la nit i passen el dia enterrats a la sorra. El seu mètode de caça consisteix en enterrar-se esperant a que passi una presa, estalviant així el màxim d’energia. Les seves escames supraoculars en forma de banya es creu que els serveixen per a evitar que la sorra cobreixi els seus ulls quan estàn enterrats.

10680524213_5584c4ddb8_o
Foto de Tambako The Jaguar d’un escurçó banyut del Sàhara (Cerastes vipera), espècie del nord d’Àfrica i la Península del Sinaí.

CRIATURES ESPINOSES

En diferents deserts del món hi trobem rèptils que tenen el cos recobert d’espines. Això, no només els proporciona certa protección contra els depredadors, sinó que a més els camufla en un ambient on abunden les plantes espinoses. Dos d’aquests animals són membres del subordre Iguania: el diable espinós i els llangardaixos cornuts.

thorny_-_christopher_watson
Foto d’un diable espinós (Moloch horridus) per Christopher Watson.

El diable espinós (Moloch horridus) és un agàmid que viu en deserts sorrencs d’Austràlia. Aquest llangardaix presenta espines per tot el cos que el fan difícil d’empassar per als seus depredadors. També presenta una protuberància darrera del cap que actua com a magatzem de greix. Quan es sent amenaçat, amaga el seu cap autèntic entre les potes i mostra la protuberància del coll com un cap fals. Probablement l’adaptació més interessant d’aquest animal és el sistema de petits canals que presenta entre les escames, els quals recullen tota aigua que entra en contacte amb la pell i la condueixen directament a la boca.

Els llangardaixos cornuts (gènere Phrynosoma, coneguts també com a “gripaus banyuts”) són iguànids que es troben en diferents hàbitats àrids d’Amèrica del Nord. De forma similar al diable espinós, els seus cossos recoberts d’espines els fan difícils d’empassar pels depredadors. A més, al ser atrapats inflen el seu cos per dificultar’ls-hi encara més la tasca. Finalment, algunes espècies com el llangardaix cornut de Texas (Phrynosoma cornutum) són coneguts per la seva capacitat d’autohemorragia: quan es veuen acorralats poden ejectar un raig de sang pudent de l’ull que espanta  a la majoria de depredadors.

federal_horned_toad_pic_crop
Foto del U.S. Fish & Wildlife Service d’un llangardaix cornut de Texas (Phrynosoma cornutum).

Com podeu veure, en els deserts hi podem trobar rèptils amb algunes de les adaptacions més enginyoses (i fastigoses) del món. Aquests només són uns pocs exemples de la increïble diversitat de sauris que trobem pels deserts del món, els quals només procuren sobreviure a les dures condicions d’aquests ambients tant extrems. A vegades però, només cal evitar cremar-se els peus amb la sorra.

Vídeo de BBCWorldwide d’un llangardaix musell de pala (Zeros anchietae) fent la “dansa termal” per disminuir el contacte amb la sorra calenta.

REFERÈNCIES

S’han consultat les següents fonts durant l’elaboració d’aquesta entrada:

difusio-catala

Reptiles del desierto

Los desiertos son unos de los hábitats más extremos del planeta. El del Sahara, el del Gobi y el de Sonora son ejemplos de algunos de los desiertos cálidos donde las altas temperaturas y la falta de agua suponen un gran reto para los animales que allí viven. Los reptiles son uno de los grupos de animales que presentan las adaptaciones más increíbles para la vida en el desierto. En esta entrada os explicaremos los problemas a los que se enfrentan los reptiles que allí viven, y os presentaremos diferentes especies de serpientes y lagartos que han encontrado su hogar en el desierto.

LOS REPTILES EN EL DESIERTO

La característica que une a todos los desiertos es la escasa precipitación ya que, contrariamente a lo que mucha gente piensa, no todos los desiertos presentan temperaturas altas (existen también los desiertos fríos, como el desierto Ártico y el Antártico, ambos en peligro por el cambio climático). Los reptiles son más abundantes en los desiertos cálidos que en los fríos, ya que las bajas temperaturas les impedirían llevar a cabo su actividad vital.

aavikko
Mapa por Vzb83 de los desiertos cálidos, áridos y semiáridos, del mundo.

Los desiertos cálidos no siempre tienen temperaturas extremadamente altas. Mientras que durante el día las temperaturas pueden llegar a sobrepasar los 45°C, cuando se pone el  sol las temperaturas pueden llegar a descender hasta debajo del punto de congelación, creando oscilaciones diarias de hasta 22°C. Los diferentes reptiles del desierto, al ser poiquilotermos y ectotermos, utilizan diferentes estrategias comportamentales con tal de evitar el sobrecalentamiento durante el día y conservar la temperatura durante la noche (por ejemplo, subiéndose a zonas elevadas o durmiendo en madrigueras).

El camaleón de Namaqua (Chamaleo namaquensis) regula su temperatura corporal cambiando de color. A las primeras horas de sol es de color negro para absorber el máximo de radiación y activar su metabolismo. Cuando las temperaturas aumentan demasiado, se vuelve de color blanco para reflejar la radiación solar. Vídeo de la BBC.

Como ya hemos dicho, la principal característica de cualquier desierto es la falta de agua. En general, en un desierto caen menos de 250 mm de agua al año. La piel escamosa e impermeable de los reptiles evita la pérdida de agua y sus excrementos contienen ácido úrico que, comparado con la urea, es mucho menos soluble en el agua, haciendo que retengan más líquidos. La mayoría de reptiles de los desiertos extraen el agua que necesitan del alimento y algunos beben agua del rocío.

Tanto las temperaturas extremas como las pocas precipitaciones hacen que en los desiertos generalmente haya poca vida. La vegetación es escasa y los animales suelen ser pequeños y discretos. Esta falta de recursos hace que los reptiles del desierto sean más bien pequeños comparados con sus parientes de ambientes más benévolos. Además estos saurios suelen ser animales que aprovechan cualquier alimento disponible, aunque se lo piensan dos veces a la hora de gastar su valiosa energía para conseguir su siguiente comida.

SERPIENTES DE LA ARENA

En muchos desiertos arenosos encontramos varias especies de serpientes (y de lagartos ápodos) que se han adaptado a la vida entre las dunas. Muchos de estos ofidios comparten un método de desplazamiento llamado “a golpes laterales” (en inglés “sidewinding”), en el cual levantan la cabeza y cuello del suelo y los mueven lateralmente, mientras el resto del cuerpo se queda en el suelo. Cuando vuelven a poner la cabeza en el suelo, el cuerpo se levanta haciendo que las serpientes se desplacen lateralmente en un ángulo de 45°. Este método de locomoción hace que las serpientes de los desiertos se desplacen de forma muy eficaz en un terreno inestable. Además, también minimiza el contacto con un sustrato extremamente caliente, ya que el cuerpo de estos ofidios solo toca el suelo en dos puntos en todo momento.

Como vemos en este vídeo de RoyalPanthera, el “sidewinding” permite a las serpientes del desierto desplazarse minimizando el contacto con el suelo caliente.

Muchos ofidios del desierto se entierran en la arena tanto para evitar la insolación como para camuflarse y sorprender a sus presas. Esto ha hecho que muchas serpientes desertícolas sean sensibles a las vibraciones generadas por sus presas al moverse por la arena. Además algunas especies presentan la escama rostral (la escama de la punta del hocico) más gruesa y desarrollada para ayudarlas a excavar en terrenos arenosos.

heterodon_nasicus2
Un ejemplo de esto son las serpientes del género Heterodon, conocidas también como serpientes hocico de cerdo, ya que presentan la escama rostral elevada dándole a su hocico una forma característica. Foto de Heterodon nasicus por Dawson.

Las víboras cornudas del género Cerastes también presentan varias características que les facilitan la vida en los desiertos. Estas víboras evitan las altas temperaturas siendo activos durante la noche y pasan el día enterrados en la arena. Su método de caza consiste en enterrarse esperando a que pase una presa, ahorrando así el máximo de energía. Se cree que sus escamas supraoculares en forma de cuerno les sirven para evitar que la arena cubra sus ojos cuando están enterradas.

10680524213_5584c4ddb8_o
Foto de Tambako The Jaguar de una víbora cornuda del Sahara (Cerastes vipera), especie del Norte de África y la Península del Sinaí.

CRIATURAS ESPINOSAS

En diferentes desiertos del mundo encontramos reptiles que tienen el cuerpo recubierto de espinas. Esto, no solo les proporciona cierta protección contra los depredadores, sino que además los camufla en un ambiente donde abundan las plantas espinosas. Dos de estos animales son miembros del suborden Iguania: el diablo espinoso y los lagartos cornudos.

thorny_-_christopher_watson
Foto de un diablo espinoso (Moloch horridus) por Christopher Watson.

El diablo espinoso (Moloch horridus) es un agámido que vive en desiertos arenosos de Australia. Este lagarto presenta espinas por todo el cuerpo que lo hacen difícil de tragar para sus depredadores. También presenta una protuberancia detrás de la cabeza que actúa como almacén de grasa. Cuando se siente amenazado, esconde su cabeza auténtica entre las patas y muestra la protuberancia del cuello como una cabeza falsa. Probablemente la adaptación más interesante de este animal es el sistema de pequeños canales que presenta entre las escamas, los cuales recogen toda agua que entra en contacto con la piel y la conducen directamente a la boca.

Los lagartos cornudos (género Phrynosoma, conocidos también como “sapos cornudos”) son iguánidos que se encuentran en diferentes hábitats áridos de América del Norte. De forma similar al diablo espinoso, sus cuerpos recubiertos de espinas los hacen difíciles de tragar para los depredadores. Además, al ser atrapados hinchan su cuerpo para dificultarles aún más la tarea. Finalmente, algunas especies como el lagarto cornudo de Texas (Phrynosoma cornutum) son conocidos por su capacidad de autohemorragia: cuando se ven acorralados pueden eyectar un chorro de sangre apestosa del ojo que ahuyenta a la mayoría de depredadores.

federal_horned_toad_pic_crop
Foto del U.S. Fish & Wildlife Service de un lagarto cornudo de Texas (Phrynosoma cornutum).

Como podéis ver, en los desiertos podemos encontrar reptiles con algunas de las adaptaciones más ingeniosas (y asquerosas) del mundo. Estos son sólo unos pocos ejemplos de la increíble diversidad de saurios que encontramos por los desiertos del mundo, los cuales sólo procuran sobrevivir a las duras condiciones de estos ambientes tan extremos. Aunque a veces, sólo hace falta evitar quemarse los pies con la arena.

Vídeo de BBCWorldwide de un lagarto hocico de pala (Zeros anchietae) haciendo la “danza termal” para disminuir el contacto con la arena caliente.

REFERENCIAS

Se han consultado las siguientes fuentes durante la elaboración de esta entrada:

difusio-castella

Desert reptiles

Deserts are some of the most extreme habitats on the planet. The Sahara, the Gobi and the Sonora are some examples of warm deserts where the high temperatures and the lack of water pose a great challenge to animals that live in them. Reptiles are one of the animal groups that present the most incredible adaptations for life in deserts. In this entry we’ll explain the difficulties that desert reptiles must face in order to survive, and we’ll introduce you to different species of snakes and lizards that in the deserts have found their home.

REPTILES IN THE DESERT

The characteristic which unites all deserts is the scarce precipitation as, unlike most people think, not all deserts present high temperatures (there are also cold deserts, like the Arctic and the Antarctic, both in danger because of the climate change). Reptiles thrive better in warm deserts than in cold deserts, because the low temperatures would not allow them to develop their life activity.

aavikko
Map by Vzb83 of the warm deserts, both arid and semiarid, of the world.

Warm deserts not always have extremely high temperatures. While during the day temperatures may rise up to 45°C, when the sun goes down temperatures fall below freezing point, creating daily oscillations of up to 22°C. The different desert reptiles, being poikilotherms and ectotherms, use different behavioural strategies in order to avoid overheating during the day and to keep their body heat during the night (for example, climbing to elevated areas or sleeping in burrows).

The Namaqua chameleon (Chamaleo namaquensis) regulates its body heat changing its colouration. During sunrise it is black in colour in order to absorb as much radiation of the sun and activate its metabolism. When temperatures become higher, it turns white to reflect solar radiation. Video from BBC.

As we have already stated, the main characteristic of any desert is the lack of water. Generally, in a desert, it rains less than 250 mm of water a year. The scaly and impervious skin of reptiles prevents the loss of water, and their faeces contain uric acid which, compared to urea, is much less soluble in water, allowing them to retain more liquids. Most desert reptiles extract the water they need from their food and some drink water from the dew.

Both the extreme temperatures and the shortage of precipitations make the desert a place with very few living beings. Vegetation is scarce and animals are usually small and secretive. This lack of resources causes desert reptiles to be usually smaller than their cousins from more benevolent environments. Also, these saurians usually exploit any available food resource, although they think twice before wasting their precious energy to get their next meal.

SAND SNAKES

In many sandy deserts we can find various species of snakes (and legless lizards) that have adapted to a life among the dunes. Many of these ophidians share a locomotion method called “sidewinding”, in which they raise their head and neck from the ground and move them laterally while the rest of the body stays on the ground. When they place their head on the ground again they raise their body, making these snakes move laterally in a 45° angle. This method of locomotion makes these snakes move more efficiently in an unstable terrain. It also reduces the contact of their body with an extremely hot substrate, as the body of these ophidians only touches the ground in two points at a time.

As we can see in this video from RoyalPanthera, sidewinding allows desert snakes to move minimizing the contact with the hot terrain.

Many desert ophidians bury themselves in the sand both to avoid sun exposure and to blend in and catch their prey unaware. This has made many desert-dwelling snakes very sensitive to vibrations generated by their prey as it moves through the sand. In addition some species present an overly developed rostral scale (the scale at the tip of their snout), being much thicker in order to aid during excavation in sandy soils.

heterodon_nasicus2
An example of this are the North American snakes of the Heterodon genus, also known as hog-nosed snakes, as they present an elevated rostral scale giving their snout a characteristic shape. Photo of Heterodon nasicus by Dawson.

The horned vipers of the Cerastes genus also present various characteristics that facilitate life in the deserts. These vipers evade high temperatures becoming active at night and they spend the day buried in the sand. Their hunting method consists in burying themselves waiting for a prey to pass by, this way saving most of their energy. It is believed that their horn-shaped supraocular scales cover their eyes when they are buried in order to protect them from the sand.

10680524213_5584c4ddb8_o
Photo by Tambako The Jaguar of a Sahara sand viper (Cerastes vipera), a species from North Africa and the Sinai Peninsula.

SPINY CRITTERS

In different deserts of the world we find reptiles with their bodies covered in spines. This not only provides them with certain protection against predators, but is also helps them blend in in a habitat with plenty of thorny plants. Two of these animals are members of the Iguania suborder: the thorny devil and the horned lizards.

thorny_-_christopher_watson
Photo of a thorny devil (Moloch horridus) by Christopher Watson.

The thorny devil (Moloch horridus) is an agamid that lives in the Australian sandy deserts. This lizard presents spines all over its body, making it difficult for its predators to swallow. It also has a protuberance behind its head that acts as a fat storage.  When it feels threatened, it hides its real head between its legs and it exposes its neck protuberance as a decoy head. Probably, the most interesting adaptation of this animal is the system of small grooves among its scales, which collect any water that contacts its skin and conducts it directly to its mouth.

Horned lizards (Phrynosoma genus, affectionately called “horny toads”) are iguanids which are found in different arid habitats of North America. Similarly to the thorny devil, their body is covered in spines making them hard to eat for their predators. Also, when they are caught, they inflate their bodies to make the task even more difficult. Finally, some species like the Texas horned lizard (Phrynosoma cornutum) are known for their autohaemorrhagic abilities: when they feel cornered they squirt a stream of stinky blood from their eyes which scares away most predators.

federal_horned_toad_pic_crop
Photo from the U.S. Fish & Wildlife Service of a Texan horned lizard (Phrynosoma cornutum).

As you have seen, in the deserts we can find reptiles with some of the most inventive (and disturbing) adaptations of the world. These are only a few examples of the astonishing diversity of squamates that are found in the deserts of the world, which only seek to survive the harsh conditions of these extreme environments. Sometimes, it’s just a matter to avoid burning your feet with the hot sand.

Video from BBCWorldwide of a shovel snouted lizard (Zeros anchietae) making the “thermal dance” in order to diminish the contact with the hot sand.

REFERENCES

The following sources have been consulted during the elaboration of this entry:

difusio-angles

Com afecten la temperatura i l’escalfament global al sexe dels rèptils?

En la majoria d’animals el sexe d’un individu queda determinat en el moment de la fecundació; quan l’òvul i l’espermatozou es fusionen queda fixat si aquell animal serà un mascle o una femella. Tanmateix, en molts grups de rèptils la determinació sexual ve determinada posteriorment durant la incubació, i el factor que la determina és la temperatura a la qual s’incuben els ous. En els rèptils això fa que, l’ambient jugui un paper crucial en determinar la proporció de mascles i femelles que sortiran d’una posta i que per tant, aquests animals siguin molt susceptibles a alteracions en la temperatura causades per exemple, per l’escalfament global.

DETERMINACIÓ SEXUAL: DSG VS DST

En la majoria d’espècies animals, la diferenciació sexual (el desenvolupament de ovaris o testicles) ve determinada genèticament (DSG). En aquests casos, el sexe d’un individu ve determinat per un cromosoma, un gen o un al·lel concret que provocarà la diferenciació cap a un sexe o un altre. Entre els vertebrats, existeixen dos tipus principals de DSG, el sistema XX/XY en mamífers (en que XX és una femella i XY és un mascle) i el ZW/ZZ en aus i alguns peixos (ZW correspon a una femella i ZZ a un mascle).

Types_of_sex_determinationExemples de diferents tipus de determinació sexual genètica en vertebrats i invertebrats, per CFCF.

En el cas dels rèptils, existeix una gran varietat de mecanismes de determinació sexual. Alguns presenten models de DSG; moltes serps segueixen el sistema ZW/ZZ i alguns llangardaixos el XX/XY. Tanmateix, en molts grups el sexe de la descendència ve determinat principalment per la temperatura d’incubació de l’ou (DST), fent que l’ambient jugui un paper molt important en la proporció de mascles i femelles que trobem en una població.

Eastern_Bearded_Dragon_defenceEl drac barbut de l’est (Pogona barbata) és un exemple de rèptil amb DSG, però al qual també li afecta la temperatura d’incubació. Foto de Trent Townsend.

Tot i així, els mecanismes de determinació sexual genètic i de temperatura no són excloents. Els rèptils amb DST tenen una base genètica per a la diferenciació ovàrica o testicular que ve regulada per la temperatura. Igualment, s’ha observat que en rèptils amb DSG, com ara el drac barbut australià (Pogona barbata), les altes temperatures durant la incubació fan que individus que genèticament són mascles (cromosomes ZZ) es desenvolupin funcionalment com a femelles. Això demostra que en els rèptils, no existeix una divisió estricta entre la DSG i la DST.

TEMPERATURA I SEXE

El període d’incubació durant el qual es determina el sexe d’un individu s’anomena període d’incubació crític i normalment correspon al segon terç del període d’incubació, durant el qual la temperatura s’ha de mantenir constant. Aquest període d’incubació crític sol durar entre 7 i 15 dies, segons l’espècie. Després d’aquest període, el sexe de l’individu normalment no es pot revertir (mecanisme de tot o res).

Audobon Zoo, New Orleans, Louisiana
Cria de dragó de komodo (Varanus komodoensis) eclosionant. Foto de Frank Peters.

La temperatura durant el període d’incubació crític altera la funció de l’aromatasa, hormona que converteix els andrògens (hormones masculinitzadores) en estrògens (hormones feminitzadores). A temperatures que donen mascles, l’activitat de l’aromatasa s’inhibeix, mentre que a temperatures que donen femelles l’activitat de l’aromatasa es manté.

AromatassssssaGràfics de l’activitat de l’aromatasa respecte les hormones gonadals en embrions de tortuga d’estany (Emys orbicularis) a 25oC (mascles) i a 30oC (femelles) durant el període d’incubació crític, tret de Pieau et al. 1999.

La DST la trobem en tots els grups de rèptils excepte en les serps (que segueixen el sistema ZW/ZZ). En llangardaixos i tortugues hi trobem tant determinació sexual genètica com per temperatura, mentre que en les tuatares i els crocodilians el sexe es determina exclusivament per la temperatura. Actualment, es coneixen diferents models de determinació sexual per temperatura.

MODEL I

Aquest model és el més senzill, en el que temperatures d’incubació més altes donen lloc a un sexe i temperatures d’incubació més baixes donen lloc a l’altre. Temperatures intermèdies solen donar individus d’ambdós sexes i, molt rarament, a individus intersexes. Aquest model està dividit en:

  • Model Ia DST: en el que ous incubats a temperatures altes donen alts percentatges de femelles i ous a temperatures baixes donen alts percentatges de mascles. Aquest es troba present en moltes espècies de tortugues.
Emys_orbicularis_portraitFoto d’una tortuga d’estany (Emys orbicularis), espècie que segueix el model Ia DST; a 25oC o menys d’incubació només neixen mascles, mentre que a 30oC o més només neixen femelles. Foto de Francesco Canu.
  • Model Ib DST: on passa el contrari; les altes temperatures donen mascles i les baixes temperatures donen femelles. Aquest es dona en alguns llangardaixos amb DST i les tuatares.
TuataraEl tuatara (Sphenodon punctatus) és un dels rèptils que segueixen el model Ib DST; la temperatura límit es troba entre 21-22oC, per sobre de la qual naixeran mascles i per sota de la qual naixeran femelles.

MODEL II

Aquest model és una mica més complex que l’anterior. En aquest, els embrions incubats a temperatures extremes (molt altes o molt baixes) es diferenciaran a un sexe, mentre que els que siguin incubats a temperatures intermèdies, es diferenciaran al sexe contrari.

CrocnestFoto d’al·ligàtors del Mississippí (Alligator mississippiensis) de diferents edats. Aquests rèptils segueixen el model II DST; a uns 34oC neixen mascles, i a temperatures per sobre i per sota, neixen femelles.

Aquest model es dóna en els crocodilians, en algunes tortugues i en molts llangardaixos. Estudis filogenètics recents, indiquen que aquest és el model de DST ancestral dels rèptils. Hi ha qui argumenta, que tots els casos de DST són de model II, però que en la naturalesa mai s’arriba als dos extrems de temperatura, tot i que això encara està per demostrar.

SEXE DETERMINAT PER TEMPERATURA: AVANTATGES I INCONVENIENTS

Avui dia encara no s’entén del tot els avantatges evolutius de la determinació sexual per temperatura. El cas dels rèptils és molt curiós, ja que aus, mamífers i amfibis determinen el sexe genèticament en la majoria de casos, mentre que en els rèptils hi trobem una mica de tot.

Actualment, s’estan realitzant estudis per comprovar si algunes temperatures afavoreixen la salut dels mascles i algunes altres la de les femelles. En un d’aquests estudis, s’observà que les tortugues mossegadores incubades a temperatures intermèdies (que produïen tant mascles com femelles) eren més actives que les incubades a temperatures que donaven un sol sexe, fent que fossin més vulnerables a l’atac de depredadors que es guien visualment. Tot i així, en l’actualitat no hi ha proves suficients que indiquin fins a on es podrien aplicar aquests descobriments. És possible que els rèptils amb DST siguin capaços de manipular el sexe de la seva descendència, alterant la proporció d’hormones sexuals en base a la temperatura del lloc de nidificació.

Snapping_turtle_eggs_mdPosta de tortuga mossegadora (Chelydra serpentina), un queloni americà d’aigua dolça. Foto de Moondigger.

El que és més fàcil de predir són els inconvenients que comporta la DST. Qualsevol canvi que es produeixi en la temperatura de les àrees de nidificació pot afectar negativament a la població d’una espècie determinada. Si es tala un bosc on abans hi havia ombra o es construeixen edificis en una zona prèviament assolellada, canviaran els microclimes de les postes d’ous de qualsevol rèptil que nidifiqui allà.

El canvi global, o canvi climàtic, representa una amenaça addicional per als rèptils amb DST. L’augment de la temperatura mitja del planeta i les fluctuacions de temperatura d’un any a l’altre, afecten al nombre de mascles i femelles que neixen d’algunes espècies de rèptils. Aquest fenomen s’ha observat, per exemple, en les tortugues pintades (Chrysemys picta), en les quals s’ha predit que un augment de 4oC en la temperatura del seu hàbitat provocaria l’extinció de l’espècie, ja que només naixerien femelles.

baby-painted-turtle-chrysemys-pictaCria de tortuga pintada (Chrysemys picta), espècie en la que temperatures d’incubació d’entre 23-27oC donen mascles i temperatures per sobre o per sota donen femelles (model II). Foto de Cava Zachary.

REFERÈNCIES

Durant l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

Difusió-català

Les plantes i el canvi climàtic

Des de fa uns quants anys hem sentit parlar del canvi climàtic. Avui dia ja és una evidència i també una preocupació. No només ens afecta a nosaltres, als humans, sinó que també a tota la vida. S’ha parlat bastant de l’escalfament global, però potser no s’ha fet tanta transmissió del que succeeix amb la vegetació. Són moltes coses les que es veuen afectades pel canvi climàtic i la vegetació també n’és una d’elles. A més, els canvis produïts en aquesta també ens afecten a nosaltres. Però, quins són aquests canvis?, com els pot regular la vegetació? I, com podem ajudar a mitigar-los a través d’aquesta?

CANVIS EN LA VEGETACIÓ

Distribució dels biomes

En general, degut al canvi climàtic s’espera un increment de les precipitacions a algunes parts del planeta, mentre que en d’altres s’espera un descens. També es denota un increment global de la temperatura. Això comporta un desplaçament en la localització dels biomes, les grans unitats de vegetació (per exemple: selves, boscos tropicals, tundres, etc.).

biomes
Triangle dels biomes segons altitud, latitud i humitat (Imatge de Peter Halasaz).

Per una altra banda, existeix una tendència al augment de la distribució de les espècies en els rangs septentrionals (latituds altes) i un detriment en regions meridionals (latituds baixes). Això porta greus problemes associats; el canvi en la distribució de les espècies afecta a la seva conservació i la seva genètica. En conseqüència, les poblacions situades als marges meridionals, que han estat considerades molt importants per a la conservació a llarg termini de la diversitat genètica i pel seu potencial evolutiu, es veuen en perill per aquesta pèrdua. I, en canvi, els rangs septentrionals es veurien afectats per l’arribada d’altres espècies competidores que podrien desplaçar a les presents, essent doncs invasores.

Distribució de les espècies

Dins l’escenari del canvi climàtic, les espècies tenen una certa capacitat per reajustar la seva distribució i per adaptar-se a aquest.

Però, quin tipus d’espècies podrien estar responent més ràpidament a aquest canvi? Es dedueix que aquelles amb un cicle de vida més ràpid i una capacitat de dispersió major seran les que mostrin una major adaptació i responguin millor. Això podria comportar una pèrdua de les plantes amb ritmes més lents.

Galactites tomentosa
La calcida blanca (Galactites tomentosa) una planta de cicle ràpid i amb gran dispersió (Imatge de Ghislain118).

Un factor que facilita el reajustament en la distribució és la presència de corredors naturals: aquests són parts del territori geogràfic que permeten la connectivitat i desplaçament d’espècies d’un lloc a un altre. Són importants per evitar que aquestes quedis aïllades i puguin desplaçar-se cap a noves regions.

Un altre factor és el gradient altitudinal, aquest proporciona molts refugis per a les espècies, facilita la presència de corredors i permet la redistribució de les espècies en altitud. Per tant, en aquells territoris on hi hagi més rang altitudinal es veurà afavorida la conservació.

En resum, la capacitat de les espècies per fer front al canvi climàtic depèn de les característiques pròpies de l’espècie i les del territori. I, per contra, la vulnerabilitat de les espècies al canvi climàtic es produeix quan la velocitat que aquestes presenten per poder desplaçar la seva distribució o adaptar-se és menor a la velocitat del canvi climàtic.

A nivell intern

El canvi climàtic també afecta a la planta com a organisme, ja que li produeix canvis al seu metabolisme i a la seva fenologia (ritmes periòdics o estacionals de la planta).

Un dels factors que porta a aquest canvi climàtic és l’increment de la concentració de diòxid de carboni (CO2) a l’atmosfera. Això podria produir un fenomen de fertilització de la vegetació. Amb l’augment de COa l’atmosfera s’incrementa també la captació d’aquest per les plantes, augmentat així la fotosíntesi i permetent una major assimilació. Però, no és tot avantatges, perquè per això es produeix una pèrdua d’aigua important, degut a que els estomes (estructura que permeten l’intercanvi de gasos i la transpiració) romanen oberts molt temps per incorporar aquest CO2. Per tant, hi ha efectes contraposats i la fertilització dependrà de la planta en sí, com també del clima local. Molts estudis han demostrat que diverses plantes reaccionen diferent a aquest increment de CO2, ja que el compost afecta a varis processos fisiològics i per tant les respostes no són úniques . Per tant, ens trobem amb un factor que altera el metabolisme de les plantes i que no es pot predir com seran els seus efectes sobre elles. A més, aquest efecte fertilitzat està limitat per la quantitat de nutrients presents i sense ells la producció es frena.

fotosíntesi
Procés de fotosíntesi (Imatge de At09kg).

Per un altre costat, no hem d’oblidar que el canvi climàtic també altera el règim estacional (les estacions de l’any) i que això afecta al ritme de la vegetació, a la seva fenologia. Això pot comportar repercussions inclús a escala global; per exemple, podria produir un desajust en la producció de plantes cultivades per a l’alimentació.

PLANTES COM A REGUALADORES DEL CLIMA

Encara que no es pot parlar de les plantes com a reguladores del clima global, esta clar que hi ha una relació entre el clima i la vegetació. Però, aquesta relació és un tant complicada perquè la vegetació té tan efectes d’escalfament com de refredament del clima.

La vegetació disminueix l’albedo; els colors foscos absorbeixen més la radiació solar i per tant menys llum solar es reflecteix cap al exterior. A més. al ser organismes amb superfície rugosa s’augmenta l’absorció. En conseqüència, si hi ha més vegetació, la temperatura local (calor transferida) augmenta més.

Però, per altra banda, al augmentar la vegetació hi ha més evapotranspiració (conjunt de l’evaporació d’aigua d’una superfície i la transpiració a través de la planta). De manera que el calor es consumeix en passar l’aigua líquida a forma gasosa, el que comporta un refredament. A més, l’evapotranspiració també ajuda augmentar les precipitacions locals.

Biophysical effects of landcover
Efectes biofísics de diferents usos del sòl i la seva acció sobre el clima local (Imatge de Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Per tant, és un efecte ambigu i en determinats entorns pesa més l’efecte de refredament, mentre que en altres té més rellevància el d’escalfament.

MITIGACIÓ

Avui dia hi ha varies propostes per reduir el canvi climàtic, però com poden ajudar les plantes?

Les comunitats vegetals poden actuar com a embornals, reserves de carboni, ja que a través de l’assimilació de COajuden a compensar les emissions. Un maneig adequat dels ecosistemes agraris i dels boscos pot ajudar a la captació i emmagatzematge del carboni. Per altra banda, si s’aconsegueix reduir la desforestació i augmentar la protecció d’habitats naturals i boscos, es reduirien les emissions i s’estimularia aquest efecte embornal. Tot i així, existeix el risc de que aquests embornals es puguin convertir en fonts d’emissió; per exemple, degut a un incendi.

Finalment, presentar els biocombustibles: aquests, a diferència dels combustibles fòssils (com el petroli), són recursos renovables, ja que es tracta de cultius de plantes destinats al ús de combustible. Encara que no aconsegueixen retirar CO2 de l’atmosfera ni redueixen emissions de carboni, eviten l’increment d’aquest a l’atmosfera. Per aquest motiu no arribarien a ser una tècnica del tot mitigadora, però mantenen el balanç d’emissió i captació neutre. El problema és que poden generar efectes colaterals a nivell social i ambiental, com l’increment de preus d’altres cultius o la desforestació per a instaurar aquests cultius, cosa que no hauria de succeir.

800px-Canaviais_Sao_Paulo_01_2008_06
Cultiu de canya de sucre (Saccharum officinarum) a Brasil per produir biocombustible (Imatge de Mariordo).

Difusió-català

REFERÈNCIES

Las plantas y el cambio climático

Desde hace unos cuantos años hemos oído hablar del cambio climático. Hoy en día ya es una evidencia y también una preocupación. No solo nos afecta a nosotros, a los humanos, sino también a toda la vida. Se ha hablado bastante del calentamiento global, pero quizá no se haya hecho tanta transmisión de lo que sucede con la vegetación. Son muchas cosas las que se ven afectadas por el cambio climático y la vegetación también es una de ellas. Además, los cambios producidos en esta también nos afectan a nosotros. Pero, ¿cuáles son estos cambios?, ¿cómo los puede regular la vegetación? Y, ¿cómo podemos ayudar a mitigarlos a través de esta?

CAMBIOS EN LA VEGETACIÓN

Distribución de los biomas

En general, debido al cambio climático se espera un incremento de las precipitaciones en algunas partes del planeta, mientras que en otras se espera un descenso. También se denota un incremento global de la temperatura. Esto conlleva a un desplazamiento en la localización de los biomas, las grandes unidades de vegetación (por ejemplo: selvas, bosques tropicales, tundras, etc.).

biomes
Triangulo de los biomas según altitud, latitud y humedad (Imagen de Peter Halasaz).

Por otro lado, existe una tendencia al aumento de la distribución de especies en los rangos septentrionales (altas latitudes) y un detrimento en regiones meridionales (baja latitud). Esto conlleva graves problemas asociados; el cambio en la distribución de las especies afecta a su conservación y a su diversidad genética. En consecuencia, las poblaciones situadas en los márgenes meridionales, que han estado consideradas muy importantes para la conservación a largo plazo de la diversidad genética y por su potencial evolutivo, se ven en peligro por esta perdida. Y, en cambio, los rangos septentrionales se verían afectados por la llegada de otras especies competidoras que podrían desplazar a las ya presentes, siendo pues invasoras.

Distribución de las especies

Dentro del escenario del cambio climático, las especies tienen una cierta capacidad para reajustar su distribución y para adaptarse a este.

Pero, ¿qué tipo de especies podrían estar respondiendo más rápidamente a este cambio? Se deduce que aquellas con un ciclo de vida más rápido y una capacidad de dispersión mayor serán las que muestren mayor adaptación y respondan mejor. Esto podría conllevar a una pérdida de las plantas con ritmos más lentos.

Galactites tomentosa
La cardota (Galactites tomentosa) una planta de ciclo rápido y con gran dispersión (Imagen de Ghislain118).

Un factor que facilita el reajuste en la distribución es la presencia de corredores naturales: estos son partes del territorio geográfico que permiten la conectividad y desplazamiento de especies de un lado a otro. Son importantes para evitar que estas queden aisladas y puedan desplazarse hacia nuevas regiones.

Otro factor es el gradiente altitudinal, el cual proporciona muchos refugios para las especies, facilita la presencia de corredores y permite la redistribución de las especies en altitud. Por lo tanto, en aquellos territorios dónde haya mayor rango altitudinal se verá favorecida la conservación.

En resumen, la capacidad de las especies para hacer frente al cambio climático depende de las características propias de la especie y de las del territorio. Y, por el contrario, la vulnerabilidad de las especies al cambio climático se produce cuando la velocidad que estas presentan para poder desplazar su distribución o adaptarse es menor a la velocidad del cambio climático.

A nivel interno

El cambio climático también afecta a la planta como organismo, ya que le produce cambios en su metabolismo y en su fenología (ritmos periódicos o estacionales de la planta).

Uno de los efectos que empujan a este cambio climático es el incremento de la concentración de dióxido de carbono (CO2) en la atmosfera. Esto podría producir un fenómeno de fertilización de la vegetación. Con el aumento de CO2 en la atmosfera se incrementa también la captación de este por las plantas, aumentando así la fotosíntesis y permitiendo una mayor asimilación. Esto, pero, no son todo ventajas, porque para ello se produce una pérdida de agua importante, debido a que los estomas (estructuras que permiten el intercambio de gases y la transpiración) permanecen largo tiempo abiertos para incorporar este CO2. Por lo tanto, hay efectos contrapuestos y la fertilización dependerá de la planta en sí, como también del clima de ese lugar. Muchos estudios han demostrado que diversas plantas reaccionan diferente a este incremento del CO2, ya que el compuesto afecta a varios procesos fisiológicos y por lo tanto las respuestas no son únicas. Por lo tanto, nos encontramos con un factor que altera el metabolismo de las plantas y que no se puede predecir cómo serán sus efectos sobre ellas. Además, este efecto fertilizante está limitado por la cantidad de nutrientes presentes y sin ellos la producción se frena.

fotosíntesi
Proceso de fotosíntesis (Imagen de At09kg).

Por otro lado, no debemos olvidar que el cambio climático también altera el régimen estacional (las estaciones del año) y que esto afecta al ritmo de la vegetación, a su fenología. Esto puede tener repercusiones incluso a escala global; por ejemplo, podría producir un desajuste en la producción de plantas cultivadas para la alimentación.

PLANTAS COMO REGULADORAS DEL CLIMA

Aunque no se puede hablar de las plantas como reguladoras del clima global, está claro que hay una relación entre el clima y la vegetación. Sin embargo, esta relación es un tanto complicada porque la vegetación tiene tanto efectos de enfriamiento como de calentamiento del clima.

La vegetación disminuye el albedo; los colores oscuros absorben más la radiación solar y por lo tanto se refleja menos luz solar hacía el exterior. Además, al ser organismos de superficie rugosa se aumenta la absorción. En consecuencia, cuanta más vegetación, la temperatura local (calor transferido) aumenta más.

Pero, por otro lado, al aumentar la vegetación hay más evapotranspiración (conjunto de la evaporación de agua de una superficie y la transpiración a través de la plantas). De manera que el calor se gasta en pasar el agua líquida a gaseosa, lo que conlleva a un enfriamiento. Además, la evapotranspiración también ayuda aumentar las precipitaciones locales.

Biophysical effects of landcover
Efectos biofísicos de diferentes usos del suelo y su acción sobre el clima local. (Imagen de Jackson et al. 2008. Environmental Research Letters.3: article 0440066).

Por lo tanto es un efecto ambiguo y en determinados ambientes pesa más el efecto de enfriamiento, mientras que en otros tiene más relevancia el de calentamiento.

MITIGACIÓN

Hoy en día hay varias propuestas para reducir el cambio climático, pero ¿cómo pueden ayudar las plantas?

Las comunidades vegetales pueden actuar como sumideros, reservas de carbono, ya que a través de la asimilación de COayudan a compensar las emisiones. Un manejo adecuado de los ecosistemas agrarios y los bosques puede ayudar a la captación y almacenamiento del carbono. Por otro lado, si se lograra reducir la deforestación y aumentar la protección de hábitats naturales y bosques, se reducirían las emisiones y se estimularía este efecto sumidero. Aun así, existe el riesgo de que estos sumideros puedan convertirse en fuentes de emisión; por ejemplo, debido a incendios.

Finalmente, presentar los biocombustibles: estos, a diferencia de los combustibles fósiles (como el petróleo), son recursos renovables, ya que se trata de cultivos de plantas destinados al uso como combustibles. Aunque no logran retirar CO2 de la atmosfera ni reducen emisiones de carbono, evitan el incremento de este en la atmosfera. Por este motivo no llegaría a ser una medida del todo mitigadora, pero mantienen el balance de emisión y captación neutro. El problema es que pueden generar efectos colaterales a nivel social y ambiental, como el incremento de precios de otros cultivos o la deforestación para instaurar estos cultivos, cosa que no debería suceder.

800px-Canaviais_Sao_Paulo_01_2008_06
Cultivo de caña de azucar (Saccharum officinarum) en Brasil para producir biocombustible (Imagen de Mariordo).

Difusió-castellà

REFERENCIAS