Arxiu d'etiquetes: tortugues

La realitat de les mutacions

Recordeu les tortugues ninja? En Leonardo, Raphael, Michelangelo i Donatello eren quatre tortugues que van patir una mutació al ser banyades amb un líquid radioactiu. Per sort o per desgràcia, una mutació no ens pot convertir en tortugues ninja, però sí que pot tenir altres efectes. A continuació us explico què són les mutacions.

QUÈ SÓN LES MUTACIONS?

El nostre cos és com una gran fàbrica en la que les nostres cèl·lules són els treballadors. Aquestes, gràcies a la seva maquinària interna, fan que la fàbrica segueixi endavant amb els menors problemes possibles. El funcionament constant de les nostres cèl·lules les 24 hores del dia durant els 365 dies de l’any, provoca que, a vegades, es produeixin errors en la seva maquinària. Això genera imperfeccions en el codi genètic, les quals generalment passen desapercebudes. Sí que és cert que les cèl·lules fan tot el possible per arreglar els errors produïts, però a vegades són inevitables i condueixen a la generació de malalties o, inclús, a la mort de la cèl·lula si aquesta es veu desbordada i no pot superar les adversitats.

Així doncs, les mutacions són aquests petits errors, és a dir, canvis estables i heretables que alteren la seqüència de l’ADN. Aquest fet fa que s’introdueixin noves variants gèniques a la població, generant diversitat genètica.

Generalment, les mutacions acostumen a ser eliminades, però ocasionalment algunes poden tenir èxit i escapar-se dels mecanismes de reparació de l’ADN de les nostres cèl·lules. No obstant, només es mantenen estables i heretables en l’ADN si afecten a un tipus de cèl·lules, les cèl·lules germinals.

Els organismes que ens reproduïm sexualment tenim dos tipus de cèl·lules: germinals i somàtiques. Mentre que les primeres transmeten la informació genètica de pares a fills, les cèl·lules somàtiques formen el cos de l’organisme. Degut a que la informació de les cèl·lules germinals, que són les que donen lloc a gàmetes (espermatozoides i oòcits) passa de generació en generació, aquestes han d’estar protegides contra els diferents canvis genètics per poder salvaguardar cada individu.

Degut a que la majoria de les mutacions són perjudicials, cap espècie pot permetre que s’acumulin mutacions en gran número en les seves cèl·lules germinals. És per això que no totes les mutacions queden fixades a la població, sinó que moltes d’aquestes variants solen ser eliminades. Ocasionalment algunes sí que es poden incorporar a tots els individus de l’espècie.

La taxa de mutació és la freqüència en la que es produeixen noves mutacions en un gen. Cada espècie té una taxa de mutació pròpia, modulada per la selecció natural. Això implica que cada espècie es pot enfrontar diferent als canvis produïts per l’ambient.

Les taxes de mutació espontànies són molt baixes, de l’ordre de 10-5-10-6 per gen i generació. D’aquesta manera, les mutacions no produeixen canvis ràpids en la població.

EL PAPER DE LA SELECCIÓ NATURAL

Canvis de nucleòtids en les cèl·lules somàtiques poden donar lloc a cèl·lules variants o mutants, algunes de les quals, a través a de la selecció natural, aconsegueixen ser més avantatjoses respecte a les seves companyes i proliferen molt ràpid. Com a resultat, en el cas extrem, es produeix el càncer, és a dir, una proliferació cel·lular descontrolada. Algunes de les cèl·lules del cos comencen a dividir-se sense aturar-se i es disseminen als teixits del voltant, procés conegut com a metàstasi.

Però la millor manera d’entendre el paper de la selecció natural de la qual en parlava el naturista Charles Darwin és amb l’exemple de les papallones del bedoll (Biston betularia). A Anglaterra habiten dos tipus de papallones, les de color gris clar i les de color gris fosc (Figura 1). Les primeres acostumaven a ser les més comuns, però entre els anys 1848 i 1898 es van invertir els papers i les papallones de color gris es van imposar.

biston
Figura 1. Papallones del bedoll (Biston betularia) de color gris clar i gris fosc (Font: TorruBlog)

Aquest canvi es va produir al mateix temps que les ciutats es van tornar més industrials, en les quals el carbó es va convertir en el combustible principal per a les plantes elèctriques. El sutge d’aquesta roca va tenyir de gris fosc el cel, el sòl i els edificis de les ciutats. També es van veure afectats els troncs dels arbres, on es camuflaven les papallones del bedoll.

La conseqüència d’aquest fet va ser que les papallones de color gris clar no podien amagar-se dels seus depredadors, en canvi, les que eren de color gris fosc van trobar una sortida amb èxit camuflant-se bé en els troncs pintats. Amb el canvi de color del seu amagatall tenien més oportunitats de sobreviure i reproduir-se (Vídeo 1).

Vídeo 1. Papallones del bedoll i la industrialització (en anglès) (Font: YouTube)

Aquest és un exemple clar de com els canvis en l’entorn influeixen en la variabilitat de les freqüències gèniques, que varien en resposta a nous factors en el medi ambient.

TIPUS DE MUTACIONS

No existeix un sol tipus de mutació, sinó que hi ha varis tipus de mutacions que poden afecta la seqüència d’ADN i conseqüentment el codi genètic. No obstant, no totes les mutacions tenen el mateix efecte.

Les mutacions acostumen a classificar-se per nivells mutacionals. Aquests nivells es basen en la quantitat de material hereditari afectat per la mutació i van pujant de rang segons el número de gens implicats. Si la mutació només afecta a un gen parlem de mutació gènica, mentre que si afecta a un segment cromosòmic que inclou varis gens ens referim a mutació cromosòmica. Quan la mutació afecta al genoma, afectant a cromosomes complets per excés o per defecte, ens referim a mutació genòmica.

Un exemple de mutació puntual el trobem en la fibrosi quística, una malaltia genètica hereditària que produeix una alteració en la secreció de mucositats, afectant al sistema respiratori i digestiu. Una mutació puntual afecta el gen que codifica per a la proteïna CFTR. Les persones afectades reben de tots dos progenitors el gen defectuós que, al no tenir cap còpia del gen bona, la proteïna no serà funcional. El resultat és que les secrecions produïdes per l’organisme humà són més espesses del que és habitual, produint una acumulació en les vies respiratòries.

REFERÈNCIES

  • Ramos, M. et al. El código genético, el secreto de la vida (2017) RBA Libros
  • Alberts, B. et al. Biología molecular de la célula (2010). Editorial Omega, 5a edición
  • Cooper, G.M., Hausman R.E. La Célula (2009). Editorial Marbán, 5a edición
  • Bioinformática UAB
  • Webs UCM
  • Foto portada: Cine Premiere

MireiaRamos-catala2

Com afecten la temperatura i l’escalfament global al sexe dels rèptils?

En la majoria d’animals el sexe d’un individu queda determinat en el moment de la fecundació; quan l’òvul i l’espermatozou es fusionen queda fixat si aquell animal serà un mascle o una femella. Tanmateix, en molts grups de rèptils la determinació sexual ve determinada posteriorment durant la incubació, i el factor que la determina és la temperatura a la qual s’incuben els ous. En els rèptils això fa que, l’ambient jugui un paper crucial en determinar la proporció de mascles i femelles que sortiran d’una posta i que per tant, aquests animals siguin molt susceptibles a alteracions en la temperatura causades per exemple, per l’escalfament global.

DETERMINACIÓ SEXUAL: DSG VS DST

En la majoria d’espècies animals, la diferenciació sexual (el desenvolupament de ovaris o testicles) ve determinada genèticament (DSG). En aquests casos, el sexe d’un individu ve determinat per un cromosoma, un gen o un al·lel concret que provocarà la diferenciació cap a un sexe o un altre. Entre els vertebrats, existeixen dos tipus principals de DSG, el sistema XX/XY en mamífers (en que XX és una femella i XY és un mascle) i el ZW/ZZ en aus i alguns peixos (ZW correspon a una femella i ZZ a un mascle).

Types_of_sex_determinationExemples de diferents tipus de determinació sexual genètica en vertebrats i invertebrats, per CFCF.

En el cas dels rèptils, existeix una gran varietat de mecanismes de determinació sexual. Alguns presenten models de DSG; moltes serps segueixen el sistema ZW/ZZ i alguns llangardaixos el XX/XY. Tanmateix, en molts grups el sexe de la descendència ve determinat principalment per la temperatura d’incubació de l’ou (DST), fent que l’ambient jugui un paper molt important en la proporció de mascles i femelles que trobem en una població.

Eastern_Bearded_Dragon_defenceEl drac barbut de l’est (Pogona barbata) és un exemple de rèptil amb DSG, però al qual també li afecta la temperatura d’incubació. Foto de Trent Townsend.

Tot i així, els mecanismes de determinació sexual genètic i de temperatura no són excloents. Els rèptils amb DST tenen una base genètica per a la diferenciació ovàrica o testicular que ve regulada per la temperatura. Igualment, s’ha observat que en rèptils amb DSG, com ara el drac barbut australià (Pogona barbata), les altes temperatures durant la incubació fan que individus que genèticament són mascles (cromosomes ZZ) es desenvolupin funcionalment com a femelles. Això demostra que en els rèptils, no existeix una divisió estricta entre la DSG i la DST.

TEMPERATURA I SEXE

El període d’incubació durant el qual es determina el sexe d’un individu s’anomena període d’incubació crític i normalment correspon al segon terç del període d’incubació, durant el qual la temperatura s’ha de mantenir constant. Aquest període d’incubació crític sol durar entre 7 i 15 dies, segons l’espècie. Després d’aquest període, el sexe de l’individu normalment no es pot revertir (mecanisme de tot o res).

Audobon Zoo, New Orleans, Louisiana
Cria de dragó de komodo (Varanus komodoensis) eclosionant. Foto de Frank Peters.

La temperatura durant el període d’incubació crític altera la funció de l’aromatasa, hormona que converteix els andrògens (hormones masculinitzadores) en estrògens (hormones feminitzadores). A temperatures que donen mascles, l’activitat de l’aromatasa s’inhibeix, mentre que a temperatures que donen femelles l’activitat de l’aromatasa es manté.

AromatassssssaGràfics de l’activitat de l’aromatasa respecte les hormones gonadals en embrions de tortuga d’estany (Emys orbicularis) a 25oC (mascles) i a 30oC (femelles) durant el període d’incubació crític, tret de Pieau et al. 1999.

La DST la trobem en tots els grups de rèptils excepte en les serps (que segueixen el sistema ZW/ZZ). En llangardaixos i tortugues hi trobem tant determinació sexual genètica com per temperatura, mentre que en les tuatares i els crocodilians el sexe es determina exclusivament per la temperatura. Actualment, es coneixen diferents models de determinació sexual per temperatura.

MODEL I

Aquest model és el més senzill, en el que temperatures d’incubació més altes donen lloc a un sexe i temperatures d’incubació més baixes donen lloc a l’altre. Temperatures intermèdies solen donar individus d’ambdós sexes i, molt rarament, a individus intersexes. Aquest model està dividit en:

  • Model Ia DST: en el que ous incubats a temperatures altes donen alts percentatges de femelles i ous a temperatures baixes donen alts percentatges de mascles. Aquest es troba present en moltes espècies de tortugues.
Emys_orbicularis_portraitFoto d’una tortuga d’estany (Emys orbicularis), espècie que segueix el model Ia DST; a 25oC o menys d’incubació només neixen mascles, mentre que a 30oC o més només neixen femelles. Foto de Francesco Canu.
  • Model Ib DST: on passa el contrari; les altes temperatures donen mascles i les baixes temperatures donen femelles. Aquest es dona en alguns llangardaixos amb DST i les tuatares.
TuataraEl tuatara (Sphenodon punctatus) és un dels rèptils que segueixen el model Ib DST; la temperatura límit es troba entre 21-22oC, per sobre de la qual naixeran mascles i per sota de la qual naixeran femelles.

MODEL II

Aquest model és una mica més complex que l’anterior. En aquest, els embrions incubats a temperatures extremes (molt altes o molt baixes) es diferenciaran a un sexe, mentre que els que siguin incubats a temperatures intermèdies, es diferenciaran al sexe contrari.

CrocnestFoto d’al·ligàtors del Mississippí (Alligator mississippiensis) de diferents edats. Aquests rèptils segueixen el model II DST; a uns 34oC neixen mascles, i a temperatures per sobre i per sota, neixen femelles.

Aquest model es dóna en els crocodilians, en algunes tortugues i en molts llangardaixos. Estudis filogenètics recents, indiquen que aquest és el model de DST ancestral dels rèptils. Hi ha qui argumenta, que tots els casos de DST són de model II, però que en la naturalesa mai s’arriba als dos extrems de temperatura, tot i que això encara està per demostrar.

SEXE DETERMINAT PER TEMPERATURA: AVANTATGES I INCONVENIENTS

Avui dia encara no s’entén del tot els avantatges evolutius de la determinació sexual per temperatura. El cas dels rèptils és molt curiós, ja que aus, mamífers i amfibis determinen el sexe genèticament en la majoria de casos, mentre que en els rèptils hi trobem una mica de tot.

Actualment, s’estan realitzant estudis per comprovar si algunes temperatures afavoreixen la salut dels mascles i algunes altres la de les femelles. En un d’aquests estudis, s’observà que les tortugues mossegadores incubades a temperatures intermèdies (que produïen tant mascles com femelles) eren més actives que les incubades a temperatures que donaven un sol sexe, fent que fossin més vulnerables a l’atac de depredadors que es guien visualment. Tot i així, en l’actualitat no hi ha proves suficients que indiquin fins a on es podrien aplicar aquests descobriments. És possible que els rèptils amb DST siguin capaços de manipular el sexe de la seva descendència, alterant la proporció d’hormones sexuals en base a la temperatura del lloc de nidificació.

Snapping_turtle_eggs_mdPosta de tortuga mossegadora (Chelydra serpentina), un queloni americà d’aigua dolça. Foto de Moondigger.

El que és més fàcil de predir són els inconvenients que comporta la DST. Qualsevol canvi que es produeixi en la temperatura de les àrees de nidificació pot afectar negativament a la població d’una espècie determinada. Si es tala un bosc on abans hi havia ombra o es construeixen edificis en una zona prèviament assolellada, canviaran els microclimes de les postes d’ous de qualsevol rèptil que nidifiqui allà.

El canvi global, o canvi climàtic, representa una amenaça addicional per als rèptils amb DST. L’augment de la temperatura mitja del planeta i les fluctuacions de temperatura d’un any a l’altre, afecten al nombre de mascles i femelles que neixen d’algunes espècies de rèptils. Aquest fenomen s’ha observat, per exemple, en les tortugues pintades (Chrysemys picta), en les quals s’ha predit que un augment de 4oC en la temperatura del seu hàbitat provocaria l’extinció de l’espècie, ja que només naixerien femelles.

baby-painted-turtle-chrysemys-pictaCria de tortuga pintada (Chrysemys picta), espècie en la que temperatures d’incubació d’entre 23-27oC donen mascles i temperatures per sobre o per sota donen femelles (model II). Foto de Cava Zachary.

REFERÈNCIES

Durant l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

Difusió-català

Com salvar a les tortugues marines del palangre?

Aquesta setmana, en aquest article es parla de com podem salvar a les tortugues marines del palangre, doncs moltes espècies de tortugues marines estan en perill degut a la seva captura accidental. 

INTRODUCCIÓ

La tortuga babaua (Caretta caretta) i la llaüt (Dermochelys coriacea) són les espècies de tortuga marina que més es capturen amb el palangre de superfície (Gilman et al. 2006), però també es capturen la resta de tortugues marines (Polovina et al. 2003). Tot i que les captures accidentals d’aquestes espècies són rares, el conjunt mundial té un efecte molt important (Lewison et al. 2004). Aquí ens centrarem en les mesures per reduir la captura accidental en la tortuga babaua per l’extensa bibliografia disponible.

Caretta_Caretta_by_kailorTortuga babaua (Caretta caretta) (Foto extreta de DeviantArt).

EL PALANGRE

El palangre és un art de pesca consistent en una línia principal de la que pengen els hams amb l’esquer. És un dels sistemes de pesca més antics que es coneixen. La linia principal pot mesurar entre uns quants centenars de metres fins a 50-60 km, amb una distància entre hams que va des d’un metre fins als 50 m. Tot i ser considerada com la pesca més selectiva que existeix, ja que depenent de l’esquer i la mida de l’ham utilitzats s’aconsegueix pescar un tipus de peix o un altre, no està exempt de captures accidentals, entre les quals hi trobem aus marines i tortugues marines.

longline-fishing-animationLa pesca de palangre, tot i ser molt selectiva, captura tortugues marines (Foto de Sea Turtle Conservancy).

COM SALVAR A LES TORTUGUES MARINES DEL PALANGRE?

Reducció del temps de pesca

La reducció del temps en que el palangre està a l’aigua és efectiu en la babaua, però no en la llaüt (Watson et al. 2005), però inviable econòmicament per la reducció de les captures de les espècies objectiu.

Canvi d’hams 

Les modificacions en els hams són les més efectives. Els hams més amples redueixen la captura de tortugues i la proporció de les que s’empassen els hams sense comprometre la viabilitat comercial en el peix espasa a l’Atlàntic Nord (Gilman et al. 2006), però no és així en altres pesqueries. La forma determina la posició on s’uneix: els hams circulars ho fan a la mandíbula o la boca i els hams en J ho fan internament. El canvi a hams circulars redueix les captures i la mortalitat després de l’alliberament (retardada) en la tortuga babaua perquè tendeixen a ser capturades quan mosseguen l’esquer i aquest s’enganxa més externament i és més fàcil que es puguin alliberar (Gilman et al. 2006; Bolten i Bjorndal 2005; Watson et al. 2003). El canvi en la forma és efectiu en certes pesqueries i àrees, com ara en el peix espasa (mantenint-se les captures (Piovano et al. 2009)) i en la tintorera a les Açores (Bolten i Bjorndal 2005). Per tant, els hams circulars no redueixen les captures de les espècies objectiu i suposen una inversió baixa, però dificulten la seva extracció per part dels pescadors i solen ser més dèbils respecte els hams en J (Gilman et al. 2006). Així, l’aplicació d’hams circulars en la pesca del peix espasa al Mediterrani i a l’Atlàntic Nord-oest pot representar una tècnica senzilla i barata per disminuir les captures de tortugues (Piovano et al. 2009; Watson et al. 2005; Gilman et al. 2006, 2007). La mortalitat directa pels hams és baixa, doncs el 80% de les alliberades estan vives, però la mortalitat retardada depèn molt de la posició de l’ham (Camiñas i Valeiras 2001).

bas09_n02_ac_01Tipus d'hams. (A) Ham circular i (B) Ham en J (Foto extreta de Cicmar).

Canvi d’esquer

L’esquer és un altre factor important. Quan és peix, es redueix molt la captura de tortugues babaues respecte de si és calamars, a la vegada que augmenten les captures de peix espasa quan és l’objectiu (Watson et al. 2005), perquè se’l mengen en petites mossegades fins que el treuen de l’ham i evita que se l’empassin, mentre que el calamars és més resistent i se l’empassen sencer (Watson et al. 2003, 2004). Al Mediterrani i a l’Atlàntic Nordoest, utilitzar verat  manté les captures de peix espasa a la vegada que es redueixen les captures de tortugues babaues (Alessandro i Antonello 2010; Watson et al. 2005; Gilman et al. 2006, 2007), tot i que disminueixen les captures de tonyina vermella (Rueda et al. 2006; Rueda i Sagaraminaga 2008). Utilitzar diferents colors d’esquer no sembla ser una bona mesura ja que no eviten les captures (Swimmer et al. 2005; Watson et al. 2002).

Canvi de la profunditat de pesca i de la distància de la costa

Com que les tortugues babaues solen bussejar per sobre els 40 m, màxim fins a 100 metres (Polovina et al. 2003), col·locar el palangre per sota de la profunditat de més abundància redueix la seva captura (Rueda i Sagarminaga 2008), però  també redueix les de l’espècie objectiu segons les pesqueries (Gilman et al. 2006) i si queden atrapades no poden sortir a superfície i moren afogades, de manera que la mortalitat directa augmenta. Segons els pescadors, els hams més propers a les boies capturen més tortugues perquè estan a menys profunditat (Watson et al. 2002), de manera que aquestes línies secundàries haurien de ser més llargues. Les captures de tortugues també depenen de la distància a la costa (Báez et al. 2007), de manera que hauria de fer-se més enllà de les 35 milles nàutiques i no afectaria les captures de peix espasa (Alessandro i Antonello 2010).

Eliminació de les barres de llum

Les barres de llum haurien d’estar prohibides perquè les atrau molt (Alessandro i Antonello 2010).

Canvi d’àrees de pesca

Com que les tortugues marines s’agreguen en àrees, la captura d’una tortuga augmenta molt la probabilitat de capturar-ne més. Per això una bona mesura seria la comunicació entre les diferents embarcacions i desplaçar-se una certa distància (100 km, per exemple) durant un període de temps (una setmana, per exemple) per evitar capturar-ne més (Gilman et al. 2007). Aquesta mesura seria molt efectiva, però suposa una despesa de combustible addicional i la reducció del temps de pesca degut als desplaçaments. També es podrien tancar aquestes àrees estacionalment o permanentment, tot i  que és inviable econòmicament, a més que pot fer concentrar l’esforç pesquer en altres àrees on hi poden haver altres problemes i genera polèmiques amb els pescadors.

Seguiment de la temperatura de l’aigua

Com que la taxa de captura de babaues augmenta a temperatures per sobre els 22ºC, mentre que la captura de peix espasa augmenta a temperatures inferiors als 20ºC, seria indicat pescar en aigües de menys de 20ºC (Watson et al. 2005). De tota manera, en aquest cas seria important controlar la pressió sobre el peix espasa.

Observadors pesquers

Una bona eina de gestió és la presència d’observadors a bord de les embarcacions, com en la flota de palangre de peix espasa a Hawaii (Gilman et al. 2007), els quals enregistren el nombre d’aparells de pesca disponibles, els dies de pesca, la posició de pesca i el nombre de tortugues capturades (Álvarez de Quevedo et al. 2010).

JPE_TurtleUna bona eina de gestió és la presència d'observadors a bord de les embarcacions (Foto extreta de Journal of Applied Ecology).

COM S’HAN D’ALLIBERAR LES TORTUGUES ATRAPADES?

Les bones pràctiques dels pescadors per alliberar les tortugues són fonamentals: han de treure els hams de les tortugues amb un aparell indicat i si no el poden treure han de tallar el fil el màxim proper a l’ull de l’ham. Un cop enganxades, tallar totalment la línia secundària del palangre disminueix la seva mortalitat ja que la seva presència, per curta que sigui, pot afectar als intestins (Casale et al. 2007).

Activists Free a TurtlePer alliberar a les tortugues cal tallar el fil de tal manera que quedi el més curt possible (Foto extreta de Greenpeace).

CONCLUSIÓ

L’efectivitat i la viabilitat comercial de les estratègies per evitar la captura de tortugues babaua depèn de la pesqueria, de la mida de la tortuga, l’objectiu de pesca i altres diferències entre flotes (Gilman et al. 2006, 2007). La combinació d’hams circulars i peix com a esquer és molt efectiu en reduir les captures de babaues sense afectar les captures de l’espècie objectiu. Aquestes modificacions, junt a eines per treure els hams i els fils de les tortugues, redueixen les captures accidentals i la mortalitat post-alliberament.

REFERÈNCIES

  • Alessandro L,  Antonello S (2010) An overview of loggerhead sea turtle (Caretta caretta) bycatch and technical mitigation measures in Mediterranean Sea. Rev. Fish Biol. Fisheries 20: 141-161
  • Álvarez de Quevedo I, Cardona L, De Haro A, Pubill E, Aguilar A (2010) Sources of bycatch of loggerhead sea turtles in the western Mediterranean other than drifting longlines. ICES Journal of Marine Science, 67: 000-000
  • Báez JC, Real R, García-Soto C, De la Serna JM, Macías D, Camiñas JA (2007) Loggerhead sea turtle bycatch depends on distance to the coast, independent of fishing effort: implications for conservation and fisheries management. Mar Ecol Prog Ser 338:249–256
  • Bolten A, Bjorndal K (2005) Experiment to evaluate gear modification on rates of sea turtle bycatch in the swordfish longline fishery in the Azores – Phase 4. Final Project Report submitted to the National Marine Fisheries Service. Archie Carr Center for Sea Turtle Research, University of Florida, Gainesville, Florida, USA.
  • Camiñas JA, Valeiras J (2001) Marine turtles, mammals and sea birds captured incidentally by the Spanish surface longline fisheries in the Mediterranean Sea. Rapp Comm Int Mer Medit 36:248
  • Casale P, Freggi D, Rocco M (2007) Mortality induced by drifting longline hooks and branchlines in loggerhead sea turtles, estimated through observation in captivity. Aquatic Conserv: Mar Freshw Ecosyst doi: 10.1002/acq. 894
  • Gilman E, Kobayashi D, Swenarton T, Brothers N, Dalzell P, Kinan-Kelly I (2007) Reducing sea turtle interactions in the Hawaii-based longline swordfish fishery. Biol Cons 139:19–28
  • Gilman E, Zollet E, Beverly S, Nakano H, Davis K, Shiode D, Dalzell P, Kinan I (2006) Reducing sea turtle bycatch in pelagic longline fisheries. Fish Fish 7:2–23
  • Lewison RL, Freeman SA, Crowder LB (2004) Quantifying the effects of fisheries on threatened species: the impact of pelagic longlines on loggerhead and leatherback sea turtles. Ecol Lett 7(3):221–231
  • Piovano S, Swimmer Y, Giacoma C (2009) Are circle hooks effective in reducing incidental captures of loggerhead sea turtles in a Mediterranean longline fishery? Aquatic conservation: marine and freshwater ecosystems. Published online in Wiley InterScience
  • Polovina JJ, Howell EA, Parker DM, Balazs GH (2003) Dive depth distribution of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) turtles in the central North Pacific: Might deep longline sets catch fewer turtles? Fish Bull (Wash DC) 101:189–193
  • Rueda L, Sagarminaga R (2008) Reducing bycatch of loggerhead sea turtles in the southwest Mediterranean via collaborative research with fishermen. Poster presented to the 28th international sea turtle symposium Loreto, Baja California Sur, Mexico, 19–26 January 2008
  • Rueda L, Sagarminaga RJ, Báez JC, Camiñas JA, Eckert SA, Boggs C (2006) Testing mackerel bait as a possible bycatch mitigation measure for the Spanish Mediterranean swordfish longlining fleet. In: Frick M, Panagopoulou A, Rees A, Williams K (eds) Book of abstracts of the 26th annual symposium on sea turtle biology and conservation. Island of Crete, Greece, 3–8 April 2006
  • Swimmer Y, Arauz R, Higgins B, McNaughton L, McCracken M, Ballestero J, Brill R (2005) Food color and marine turtle feeding behaviour: Can blue bait reduce turtle bycatch in commercial fisheries? Mar Ecol Prog Ser 295: 273–278
  • Watson J, Foster D, Epperly S, Shah A (2002) Experiments in the Western Atlantic Northeast Distant Waters to Evaluate Sea Turtle Mitigation Measures in the Pelagic Longline Fishery. Report on Experiments Conducted in 2001. US National Marine Fisheries Service, Pascagoula, MS, USA
  • Watson JW, Epperly SP, Shah AK, Foster DG (2005) Fishing methods to reduce sea turtle mortality associated with pelagic longlines. Can J Fish Aquat Sci 62:965–981
  • Watson JW, Foster DG, Epperly S, Shah A (2004) Experiments in the western Atlantic Northeast Distant Waters to evaluate sea turtle mitigation measures in the pelagic longline fishery. Report on experiments conducted in 2001, pp 135
  • Watson JW, Hataway BD, Bergmann CE (2003) Effect of hook size on ingestion of hooks by loggerhead sea turtles. Report of NOAA National Maritime Fisheries Service, Pascagoula, MS, USA

Si t’ha agradat aquest article, si us plau comparteix-lo a les xarxes socials per a fer-ne difusió,  doncs l’objectiu del blog, al cap i a la fi, és divulgar la ciència i que arribi al màxim de gent possible.

 Aquesta publicació està sota una llicencia Creative Commons:
Llicència Creative Commons

Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.