Arxiu d'etiquetes: urodela

Metamorphosis and amphibian larvae

The word amphibian comes from ancient Greek words “amphi”, which means “both” and “bios”, which means “life”. Even if the word amphibious is an adjective used to describe animals that can live both on land and water, in the case of amphibians it also refers to both life stages through which these animals go through, as amphibians are born in an aquatic larval stage and become adults via a process of metamorphosis. In this new entry we’ll explain how metamorphosis works at a hormonal level, which anatomical changes occur during this period and the differences of this process among the different lissamphibian orders.


Metamorphosis is present in the three lissamphibian orders. This process was already present in the first terrestrial tetrapods, which had to lay their eggs in water. Yet not all extant species present external metamorphosis, as some of them hatch as diminutive adults (as 20% of anuran species). In these species metamorphosis happens equally inside the egg before hatching, what’s called internal metamorphosis.

Red-eyed tree frog eggs (Agalychnis callydryas) just before hatching, by Geoff Gallice.

As a general rule, lissamphibians lay their eggs in water. In most species, aquatic larvae will hatch from gelatinous eggs, even if their morphology varies a lot between different species. Yet larvae of all lissamphibians present a set of common characteristics:

  • External gills, thanks to which they can breathe underwater.
  • Absence of eyelids and retinal pigments associated with sight outside of water.
  • Presence of a lateral line (or equivalent), sensorial organ characteristic of fish which allow them to sense vibrations underwater.
  • Thinner skin.
  • Subaquatic anatomic adaptations.
Photo of a fire salamander (Salamandra salamandra) in which the external gills and the pisciform looks of the larva can be appreciated, by David López.

During metamorphosis, most structures useful during the larval stage are reabsorbed through apoptosis, a controlled cell death process. In many cases this process is highly conditioned by various environmental factors such as population density, food availability and the presence of certain chemical substances in water.


At the hormonal level, metamorphosis is characterized by the interaction between two kinds of hormones: thyroid hormones and prolactin. While the thyroid hormones as thyroxin (secreted by the thyroid gland) stimulate the metamorphosis process, prolactin (secreted by the pituitary gland or hypophysis) inhibits it. The concentration of these two hormones (regulated by the Hypothalamus→Hyphophysis→Thyroid) is what controls the different stages of metamorphosis.

Scheme by Mikael Häggström of the hypothalamus (green), hypophysis or pituitary (red), thyroid (blue) axis in human beings and the release of thyroid hormones.


This is the larval growth stage, and it lasts around the first 20 days of life (depending on the species). This stage is characterized by a low secretion of thyroidal hormones and by a high concentration of prolactin that inhibits the metamorphosis process. This is due to the fact that the hypothalamus→hypophysis system is still not mature.


It’s a period of reduced growth with slow morphological changes, due to the rise of thyroxin concentration in blood caused by the growth of the thyroid gland. Also, the hypothalamus→hypophysis axis starts developing, which will trigger even more the rise of the thyroxin concentration and will lower the prolactin, giving way to great morphological changes.


It’s the point in which the hyothalamus→hypophysis→thyroid axis is at its maximum capacity and it is when great morphological changes happen in the larva, which will end up becoming a miniature adult. Finally, thyroxin levels will start to be restored by a negative feedback system of the thyroxin over the hypothalamus and the hypophysis.

Scheme from Brown & Cai 2007, about the general levels of thyroid hormones during the different metamorphosis’ stages.


During the metamorphosis process, larvae will go through a set of anatomical changes that will allow them to acquire their adult form. Some changes common to most species are the acquisition of eyelids and new retinal pigments, the reabsorption of the gills and the loss of the lateral line. Other morphological changes vary among the different orders. For example in caecilians (order Apoda) larvae already look like miniature adults but with external gills. Also, most caecilians present internal metamorphosis and the hatchlings have no trace of gills.

Photo from Blog do Nurof-UFC of a caecilian egg, inside which we can see the larva with gills.

In urodeles (order Urodela), the external metamorphic changes aren’t that spectacular either. Larvae are pretty similar to adults, as their limbs develop quickly, although they present external filamentous gills, have no eyelids and present a largely-developed caudal fin. Even their carnivorous diet is similar to that of the adult’s. Yet the great diversity of salamanders and newts gives as a result a great variety of life cycles; from viviparous species that give live birth, to neotenic species that keep larval characteristics through their adult stage.

Photo by David Alvarez of the viviparous birth of a fire salamander (Salamandra salamandra), and photo by Faldrian of an axolotl (Ambystoma mexicanum) a neotenic species.

Frogs and toads (order Anura) are the group in which metamorphic changes are more dramatic. The anuran larva is so different that it’s called a tadpole, which differentiates from the adult both by its looks and its physiology and behaviour. Even if tadpoles are born with external gills, these are soon covered by skin folds that form a gill chamber. Also, tadpoles have a round, limbless body and a long, vertically-flattened tail, which allows them to swim swiftly in water.

Photo by J. J. Harrison of a southern brown tree frog tadpole (Litoria ewingii).

One of the main differences between adult and larval anurans is their diet. While adult frogs and toads are predators, tadpoles are herbivorous larvae, feeding by filtering suspended vegetal particles or by scraping off algae from rocks using a series of keratinous “teeth” present in some species. This is reflected in their spirally-shaped and extremely long digestive system in order to allow them to digest large quantities of vegetal matter. Tadpoles are tireless eating machines, with some filter-feeding species being able to filter eight times their body volume of water per minute.

Photo by Denise Stanley of a tadpole, in which we can see both the keratinous “teeth”, and the spiral-shaped intestine.

After metamorphosis, tadpoles will reabsorb their gills and tail, their digestive system will shorten, and will develop limbs and lungs, becoming small amphibians prepared for a life on land.

Recently metamorphosed spiny toad (Bufo spinosus) by David López.

As we have seen, the metamorphosis process varies greatly among the different species of each order. This process results in the fact that that most lissamphibians spend a part of their lives in water and the other on land, a representative fact of the transition of the first tetrapods from the aquatic to the terrestrial medium. Also, the great diversity of ecological niches occupied by both the adults and the larvae of the different species and the wide array of environmental factors that affect the metamorphosis process, make lissamphibians great bioindicators of an ecosystem’s health.


The following sources have been consulted during the elaboration of this entry:


Metamorfosis y larvas de anfibios

La palabra anfibio proviene del griego antiguo “amphi”, que significa “ambos” y “bios”, que significa “vida”. Aunque el término anfibio es un adjetivo que sirve para describir a animales que viven tanto en tierra como en el agua, en el caso de los anfibios además hace referencia a las dos etapas vitales por las que pasan, y es que los anfibios nacen en un estado larvario acuático y se convierten en individuos adultos mediante la metamorfosis. En esta entrada os explicaremos cómo funciona la metamorfosis a nivel hormonal, qué cambios anatómicos se dan y las diferencias de dicho proceso entre los diferentes órdenes de lisanfibios.


La metamorfosis está presente en los tres órdenes actuales de lisanfibios. Este proceso ya ocurría en los primeros tetrápodos terrestres, los cuáles debían poner sus huevos en el agua. Aun así, no todas las especies actuales presentan metamorfosis externa, ya que algunas nacen como adultos en miniatura (como el 20% de especies de anuros). En estas especies, la metamorfosis se da igualmente en el interior del huevo antes de nacer, lo que se conoce como metamorfosis interna.

Huevos de rana verde de ojos rojos (Agalychnis callydryas) justo antes de eclosionar, por Geoff Gallice.

Como norma general, los lisanfibios ponen sus huevos en el agua. En la gran mayoría de especies, de los huevos gelatinosos nacerán larvas acuáticas, aunque su morfología varía mucho entre las diferentes especies. Aun así, las larvas de todos los lisanfibios presentan una serie de características comunes:

  • Branquias externas, mediante las cuales respiran bajo el agua.
  • Ausencia de párpados y de pigmentos retinianos asociados a la visión fuera del agua.
  • Presencia de la línea lateral (o equivalente), órgano sensorial característico de los peces que les permite percibir las vibraciones del agua.
  • Piel menos gruesa.
  • Adaptaciones anatómicas a la vida subacuática.
Foto de salamandra común (Salamandra salamandra) en la que se aprecian las branquias externas y el aspecto pisciforme de la larva, por David López.

Durante la metamorfosis, muchas estructuras que son útiles durante el estado larvario serán reabsorbidas mediante la apoptosis, un proceso de muerte celular controlada. En muchos casos este proceso está altamente condicionado por varios factores ambientales como la densidad de población, la disponibilidad de alimento y la presencia de ciertas sustancias químicas en el agua.


A nivel hormonal, la metamorfosis se caracteriza por la interacción de dos tipos de hormonas diferentes: las hormonas tiroideas y la prolactina. Mientras que las hormonas tiroideas, como la tiroxina (segregadas por la glándula tiroides), estimulan el proceso de metamorfosis, la prolactina (segregada por la glándula pituitaria o hipófisis) la inhibe. La concentración de estas dos hormonas (regulada por el eje Hipotálamo→Hipófisis→Tiroides) es lo que controla las diferentes fases de la metamorfosis.

Esquema de Mikael Häggström del eje hipotálamo (verde), hipófisis o pituitaria (rojo), tiroides (azul) en seres humanos y la liberación de hormonas tiroideas.


Es la fase de crecimiento de la larva, y dura alrededor de los primeros 20 días de vida (dependiendo de la especie). Esta fase se caracteriza por una baja secreción de hormonas tiroideas y por una alta concentración de prolactina, que inhibe el proceso de metamorfosis. Esto se debe a que el sistema hipotálamo→hipofisario aún es inmaduro.


Es un período de crecimiento reducido con cambios morfológicos lentos, debidos al aumento en la concentración de tiroxina en sangre a causa del crecimiento de la glándula tiroides. Además, comienza a desarrollarse el eje hipotálamo→hipofisario, el cual hará aumentar aún más la concentración de tiroxina y disminuirá la de prolactina, abriendo paso a grandes cambios morfológicos.


Es el momento en el que el eje hipotálamo→hipófisis→tiroides se encuentra en su máximo rendimiento y se dan grandes cambios morfológicos en la larva, la cual se acabará convirtiendo en un adulto en miniatura. Finalmente, los niveles de tiroxina se empezarán a restablecer por un sistema de retroalimentación negativa de ésta sobre el hipotálamo y la hipófisis.

Esquema extraído de Brown & Cai 2007, sobre los niveles generales de hormonas tiroideas durante las diferentes etapas de la metamorfosis.


A lo largo del proceso de metamorfosis, las larvas sufrirán una serie de cambios anatómicos que les permitirán adquirir la forma adulta. Algunos cambios comunes a la mayoría de especies son la adquisición de párpados y nuevos pigmentos retinales, la reabsorción de las branquias y la pérdida de la línea lateral. Otros cambios morfológicos varían entre los diferentes órdenes. Por ejemplo en las cecilias (orden Apoda) las larvas se parecen a adultos en miniatura pero con branquias externas. Además, la mayoría de cecilias presentan metamorfosis interna y al nacer ya no tienen ningún rastro de las branquias.

Foto de Blog do Nurof-UFC del huevo de una Cecilia, dentro del cual vemos a la larva branquiada.

En los urodelos (orden Urodela), los cambios metamórficos externos tampoco son muy espectaculares. Las larvas se parecen bastante a los adultos ya que sus extremidades se desarrollan temprano, aunque tienen branquias externas filamentosas, no tienen párpados y la aleta caudal está más desarrollada. Incluso su dieta es carnívora como la de los adultos. Aun así, la gran diversidad de salamandras y tritones hace que los ciclos vitales de las diferentes especies varíen mucho, desde especies vivíparas que paren a crías vivas, hasta especies neoténicas que mantienen características larvarias durante la vida adulta.

Foto de David Álvarez del parto vivíparo de una salamandra común (Salamandra salamandra), y foto de Faldrian de un ajolote (Ambystoma mexicanum), una especie neoténica.

Las ranas y los sapos (orden Anura) son el grupo en el que los cambios metamórficos son más dramáticos. La larva de los anuros es tan distinta que se llama renacuajo, el cual se diferencia del adulto tanto en el aspecto como en la fisiología y el comportamiento. Aunque los renacuajos nacen con branquias externas, éstas quedan cubiertas a los pocos días por unos pliegues de piel que forman una cámara branquial. Además los renacuajos tienen un cuerpo redondeado y sin patas y una cola larga y comprimida que les permite nadar velozmente en el agua.

Foto de J. J. Harrison de un renacuajo de rana arborícola parda meridional (Litoria ewingii).

Una de las principales diferencias entre los anuros adultos y los larvarios es la dieta. Mientras que las ranas y los sapos adultos son depredadores, los renacuajos son larvas herbívoras, alimentándose o bien filtrando partículas vegetales suspendidas en el agua, o bien raspando las algas pegadas a las rocas con un conjunto de “dientes” córneos que presentan algunas especies. Esto se refleja en su aparato digestivo en forma de espiral y extremadamente largo a fin de poder digerir las grandes cantidades de materia vegetal de la que se alimentan. Los renacuajos son máquinas de comer incansables, con algunas especies filtradoras siendo capaces de filtrar hasta ocho veces su volumen corporal de agua por minuto.

Foto de Denise Stanley de un renacuajo, donde vemos tanto los “dientes” córneos, como el intestino en forma de espiral.

Tras la metamorfosis, los renacuajos reabsorberán las branquias y la cola, reducirán la longitud de su aparato digestivo, desarrollarán las patas y los pulmones, convirtiéndose en metamórficos preparados para la vida en tierra.

Sapo espinoso justo después de la metamorfosis (Bufo spinosus) de David López.

Como hemos visto, el proceso de metamorfosis varía mucho entre las diferentes especies de cada orden. Este proceso hace que la mayoría de lisanfibios pasen parte de sus vidas en el agua y parte en tierra, hecho representativo de la transición de los primeros tetrápodos del medio acuático al medio terrestre. Además, la gran diversidad de nichos ecológicos que ocupan tanto los adultos como las larvas de las diferentes especies y el amplio abanico de factores ambientales que afectan al proceso de metamorfosis, hacen de los lisanfibios grandes bioindicadores del estado de salud de los ecosistemas.


Se han consultado las siguientes fuentes durante la elaboración de esta entrada:


Metamorfosi i larves d’amfibis

La paraula amfibi prové del grec antic “amphi”, que vol dir “ambdós” i “bios”, que vol dir “vida”. Tot i que el terme amfibi és un adjectiu que serveix per descriure a animals que poden viure tant a terra com a l’aigua, en el cas dels amfibis a més, fa referencia a les dues etapes vitals per les que passen, i és que els amfibis neixen en un estat larvari aquàtic i esdevenen individus adults mitjançant la metamorfosi. En aquesta entrada us explicarem com funciona la metamorfosi a nivell hormonal, quins canvis anatòmics es donen i les diferències d’aquest procés entre els diferents ordres de lissamfibis.


La metamorfosi es troba present en els tres ordres de lissamfibis. Aquest procés ja es donava en els primers tetràpodes terrestres, els quals havien de pondre els ous a l’aigua. Tanmateix, no totes les espècies actuals presenten metamorfosi externa, ja que algunes neixen com adults en miniatura (com el 20% d’espècies d’anurs). En aquestes espècies la metamorfosi es dóna igualment a l’interior de l’ou abans de néixer, el que es coneix com metamorfosi interna.

Ous de granota verda d’ulls vermells (Agalychnis callydryas) just abans d’eclosionar, per Geoff Gallice.

Com a norma general, els lissamfibis ponen els seus ous a l’aigua. En la gran majoria d’espècies, dels ous gelatinosos naixeran larves aquàtiques, tot i que la seva morfología varia molt entre les diferents espècies. Tot i així, les larves de tots els lissamfibis presenten un seguit de característiques comunes:

  • Brànquies externes, mitjançant les quals respiren sota l’aigua.
  • Absència de parpelles i de pigments retinals associats a la visió fora de l’aigua.
  • Presència de la línia lateral (o equivalent), òrgan sensorial característic dels peixos que els permet percebre les vibracions de l’aigua.
  • Pell menys gruixuda.
  • Adaptacions anatòmiques a la vida subaquàtica.
Foto de salamandra comuna (Salamandra salamandra) on s’aprecien les brànquies externes i l’aspecte pisciforme de la larva, per David López.

Durant la metamorfosi, moltes estructures que són útils durant l’estat larvari seran reabsorbides mitjançant l’apoptosi, un procés de mort cel·lular controlada. En molts casos aquest procés està altament condicionat per varis factors ambientals com la densitat de població, la disponibilitat d’aliment i la presència de certes substàncies químiques a l’aigua.


A nivell hormonal, la metamorfosi es caracteritza per la interacción de dos tipus d’hormones diferents: les hormones tiroïdals i la prolactina. Mentre que les hormones tiroïdals, com la tiroxina (segregades per la glàndula tiroide), estimulen el procés de metamorfosi, la prolactina (segregada per la glàndula pituïtària o hipòfisi) l’inhibeix. La concentració d’aquestes dues hormones (regulada per l’eix Hipotàlem→Hipòfisi→Tiroide) és el que controla les diferents fases de la metamorfosi.

Esquema de Mikael Häggström de l’eix hipotàlem (verd), hipòfisi o pituïtària (vermell), tiroide (blau) en éssers humans i l’alliberació d’hormones tiroïdals.


És la fase de creixement de la larva, i dura al voltant dels 20 primers dies de vida (depenent de l’espècie). Aquesta fase es caracteritza per una baixa secreció d’hormones tiroïdals i per una alta concentració de prolactina, que inhibeix el procés de metamorfosi. Això es dèu a que el sistema hipotàlem→hipofisari encara és immadur.


És un període de creixement reduït amb canvis morfològics lents, deguts a l’augment en la concentració de tiroxina en sang a causa del creixement de la glándula tiroides. A més, comença a desenvolupar-se l’eix hipotàlem→hipofisari, el qual farà augmentar encara més la concentració de tiroxina i disminuirà la de prolactina, obrint pas a grans canvis morfològics.


És el moment en el que l’eix hipotàlem→hipòfisi→tiroides es troba al màxim rendiment i es dónen grans canvis morfològics en la larva, la qual s’acabarà convertint en un adult en miniatura. Finalment, els nivells de tiroxina es començaran a reestablir per un sistema de retroalimentació negativa d’aquesta sobre l’hipotàlem i l’hipòfisi.

Esquema extret de Brown & Cai 2007, sobre els nivells generals d’hormones tiroïdals durant les diferents etapes de la metamorfosi.


Al llarg del procés de metamorfosi, les larves patiran un seguit de canvis anatòmics que els permetran adquirir la forma adulta. Alguns canvis comuns a la majoria d’espècies són l’adquisició de parpelles i nous pigments retinals, la reabsorció de les brànquies i la pèrdua de la línia lateral. Altres canvis morfològics varien entre els diferents ordres. Per exemple en les cecílies (ordre Apoda) les larves s’assemblen a adults en miniatura però amb brànquies externes. A més, la majoria de cecílies presenten metamorfosi interna i al néixer ja no tenen cap rastre de les brànquies.

Foto de Blog do Nurof-UFC de l’ou d’una cecília, dins del qual veiem a la larva branquiada.

En els urodels (ordre Urodela), els canvis metamòrfics externs tampoc són gaire espectaculars. Les larves s’assemblen força als adults a que les seves extremitats es desenvolupen als pocs dies, tot i que tenen brànquies externes filamentoses, no tenen parpelles i la aleta caudal està més desenvolupada. Fins i tot la seva dieta és carnívora com la dels adults. Tanmateix,  la gran diversitat de salamandres i tritons fa que els cicles vitals de les diferents espècies varïin molt; des d’espècies vivípares que pareixen a cries vives, fins a espècies neotèniques que mantenen característiques larvàries durant la vida adulta.

Foto de David Álvarez del part vivípar d’una salamandra comuna (Salamandra salamandra), i foto de Faldrian d’un axolot (Ambystoma mexicanum) una espècie neotènica.

Les granotes i els gripaus (ordre Anura) són el grup en el que els canvis metamòrfics són més dramàtics. La larva dels anurs és tant diferent que s’anomena capgròs, el qual es diferencia de l’adult tant en l’aspecte com en la fisiologia i el comportament. Tot i que els capgrossos nexien amb brànquies externes, aquestes queden cobertes als pocs dies per uns plecs de pell que formen una cambra branquial. A més els capgrossos tenen un cos arrodonit i sense potes i una cua llarga i comprimida que els permet nedar veloçment a l’aigua.

Foto de J. J. Harrison d’un capgròs de granota arborícola bruna del sud (Litoria ewingii).

Una de les principals diferència entre els anurs adults i els larvaris és la dieta. Mentre que les granotes i els gripaus adults són depredadors, els capgrossos són larves herbívores, alimentant-se o bé filtrant partícules vegetals suspeses a l’aigua, o bé raspant les algues enganxades a les roques amb un seguit de “dents” còrnies que presenten algunes espècies. Això es reflecteix en el seu aparell digestiu en forma d’espiral i extremadament llarg per tal de poder digerir les grans quantitats de materia vegetal de la que s’alimenten. Els capgrossos són màquines de menjar incansables, amb algunes espècies filtradores essent capaces de filtrar fins a vuit vegades el seu volum corporal d’aigua per minut.

Foto de Denise Stanley d’un capgròs, on veiem tant les “dents” còrnies, com l’intestí en forma d’espiral.

Després de la metamorfosi, els capgrossos reabsorbiran les brànquies i la cua, reduiran la llargada de l’aparell digestiu, desenvoluparan les potes i els pulmons, convertint-se en metamòrfics preparats per la vida a terra.

Gripau espinós just després de la metamorfosi (Bufo spinosus) per David López.

Com hem vist, el procés de la metamorfosi varia molt entre les diferents espècies de cada ordre. Aquest procés fa que la majoria de lissamfibis passin part de les seves vides a l’aigua i part a la terra, fet representatiu de la transició dels primers tetràpodes del medi aquàtic al medi terrestre. A més, la gran diversitat de nínxols ecològics que ocupen tant els adults com les larves de les diferents espècies i l’ampli ventall de factors ambientals que afecten al procés de metamorfosi, converteixen als lissamfibis en grans bioindicadors de l’estat de salut dels ecosistemes.


S’han consultat les següents fonts durant l’elaboració d’aquesta entrada:


How to breathe without lungs, lissamphibian style

Even though most terrestrial vertebrates depend on lungs for breathing, lissamphibians also present cutaneous respiration, they breathe through their skin. Even if this may seem a handicap, because they must always keep their skin moist enough, in this entry we’ll see the many benefits that cutaneous respiration gives them and how in some groups, it has completely replaced pulmonary respiration.


Terrestrial vertebrates use lungs to perform gas exchange. While our aquatic ancestors breathed using gills, these are of no use on land, as gravity would collapse them and cause them to lose their form. As lungs are found inside the body, they can keep their form in a habitat with much higher gravity. Both gills and lungs have highly branched structures to increase their diffusion surface, and this way facilitate gas exchange (in a larger surface there’s more exchange).

Giant_Mudskipper_(Periophthalmodon_schlosseri)_(15184970133)Specimen of giant mudskipper (Periophthalmodon schlosseri), a fish from southeast Asia which is able to get out of water due, in part, to cutaneous respiration. Photo by Bernard Dupont.

We can find a third form of gas exchange in vertebrates. Even if it’s not as widespread as gills or lungs, cutaneous respiration is found in several groups of animals, such as lunged fish and some marine reptiles (turtles and sea snakes). Yet the lissamphibians are the group that has brought their specialization in cutaneous respiration to the ultimate level.


Present day lissamphibians are the group of tetrapods with the highest diversity of breathing strategies. Apart from cutaneous respiration present in all species, most lissamphibians are born in an aquatic larval stage with gills. After metamorphosis they develop lungs to breathe on land.

The larvae of urodeles and apods present external, filamentous and highly branched gills which allow them to breathe underwater. These must be constantly moved for gas exchange to occur. Some neotenic salamanders maintain their gills during adulthood. On the other hand, anuran tadpoles present internal gills covered by gill pouches.

Salamander_larva_closeupPortrait of a salamander larva in which the branched filamentous gills can be appreciated. Photo by Brian Gratwicke.

Most terrestrial lissamphibians present a pair of simple lungs with few ramifications and large alveoli. These have a low gas diffusion rate compared with amniote’s lungs. Also, while amniotes ventilate their lungs using the expansion of the thoracic cavity and the diaphragm, lissamphibians must force the air to their lungs using a buccal-pump system.

Four_stroke_buccal_pumpingScheme of the system of pulmonary respiration of lissamphibians. In the buccal-pump system, the buccal cavity is filled with air and then, elevating the mouth floor, this air is forced to the lungs. Image by Mokele.

Apart from gill and pulmonary breathing, lissamphibians take oxygen to their blood by cutaneous respiration. The skin of lissamphibians is very thin and has a high concentration of capillaries (it’s got a great number of blood vessels). As a result, it has a great capacity of diffusion of gas molecules, allowing cutaneous respiration using a countercurrent system.

600px-ExchangerflowModified scheme of a countercurrent exchange system. In this, deoxygenated blood (with CO2) circulates in the opposite direction that air does (full of O2) and between both fluids the gas interchange happens, in an attempt to equalize the concentration of both gases. Modified image by Joe.

Lissamphibian skin is different from that of amniotes in that it doesn’t present scales, feathers or fur. This makes lissamphibian skin much more permeable to both gases and water (which makes them great bioindicators of the health of their environment, as their skin takes up many different kinds of soluble substances). That’s why lissamphibians must keep their skin relatively moist for the gas exchange to take place.

KammolchmaennchenMale northern crested newt (Triturus cristatus) in its nuptial phase. Its wide tail crests increase the surface of skin also increasing gas diffusion. Photo by Rainer Theuer.

Lissamphibians live constantly in a delicate equilibrium in which the skin must be kept moist enough to allow gas exchange, but not too permeable as to lose water, dehydrate and die. They acheive this living in wet environments, or creating layers of moist skin to create an aqueous ambient around them.

Bombay_caecilianPhoto of a Bombay caecilian (Ichthyophis bombayensis) a lissamphibian which lives in swamps and other humid habitats. Photo by Uajith.

Many lissamphibians present a large quantity of skin, which increase the respiratory surface. Some examples are the vascular papillae of the hairy frog (Trichobatrachus robustus), the skin folds of the frogs of the Telmatobius genus or the wide caudal fins of many newts.

TrichobatrachusGreenDrawing of the hairy frog (Trichobatrachus robustus) where the papillae which gives it its name can be seen. Image extracted from Proceedings of the Zoological Society of London (1901).

Even though most frogs get most of their oxygen from their lungs during summer, during the colder months (when their metabolism is slower) many species hibernate at the bottom of frozen lakes, conducting their gas exchange solely through their skin.

6887057816_d68fccf4f4_oMany subarctic lissamphibians hibernate underwater, using their skin to extract oxygen from water and expel carbon dioxide from blood. Photo by Ano Lobb.

Adult urodeles present a much higher diversity of breathing strategies, and among them there is one family that is the only group of terrestrial vertebrates that has no trace of lungs.


Inside the suborder of the salamandroideans we find the Plethodontidae family. These animals are popularly called lungless salamanders because, as their name implies, they have no lungs and depend exclusively on their skin to conduct gas exchange.

Kaldari_Batrachoseps_attenuatus_02California slender salamander (Batrachoseps attenuatus) photographed by Kaldari. This is a perfect example of the long and thin bodies of plethodontids which facilitate gas diffusion.

These urodeles are distributed mainly through the Americas, with some species in the island of Sardinia and the Korean Peninsula. The most surprising fact about plethodontids is that, like most salamandroids, they are mainly terrestrial animals and do not present an aquatic larval stage. Even though some species present gills during their embryonic development, these are lost before hatching and lungs are never developed.

Northern_red_salamander_(Pseudotriton_ruber)Photo of a red salamander (Pseudotriton ruber) a plethodontid endemic from the Atlantic coast of the USA. Photo by Leif Van Laar.

It is believed that this family evolved in fast-flowing mountain streams. The presence of lungs would have made them float too much, and this would have made moving much more difficult in such habitats. The cold waters of alpine rivers are rich in oxygen, making cutaneous respiration more than enough for these small animals.

Video by Verticalground100 in which we can see some plethodontid species.

A thin and vascularized skin (facilitates diffusion) and the evolution of long and slender bodies (facilitates the transport of O2 through all the body) made lungs useless for plethodontids. Currently, lungless salamander are the most numerous of all urodele families, and they represent more than half the animal biomass in many North American ecosystems. Also, they are much more active than most lissamphibians, with highly developed nervous and sensory systems, being voracious predators of arthropods and other invertebrates.

3679651745_d678454a1b_oOzark zigzag salamander (Plethodon angusticlavius) a curious lungless salamander common in the state of Missouri. Image by Marshal Hedin.

As you can see lissamphibian cutaneous respiration allows them to make things few tetrapods are able to do. Passing a whole winter underwater and living on land without lungs are some of the incredible feats reserved to a small group of animals. Maybe lissamphibians still depend on the aquatic medium to survive, but as we have seen, they are far from being slow or primitive, as they present some of the most impressive physiological adaptations found on the animal kingdom.


The next sources have been consulted during the elaboration of this entry:


Cómo respirar sin pulmones, al estilo lisanfibio

Aunque la mayoría de vertebrados terrestres dependemos de los pulmones para realizar el intercambio de gases, los lisanfibios además presentan respiración cutánea, respiran a través de la piel. Aunque esto puede parecer una desventaja, ya que deben mantener la piel relativamente húmeda, en esta entrada veremos las ventajas que les confiere la respiración cutánea y cómo en algunos grupos, ésta ha sustituido completamente la respiración pulmonar.


Los vertebrados terrestres utilizan los pulmones para realizar el intercambio de gases. Aunque nuestros antepasados acuáticos respiraban mediante branquias, éstas no sirven en el medio terrestre, ya que la gravedad haría que se colapsaran y perdiesen su estructura. Los pulmones, al encontrarse en el interior del cuerpo, pueden mantener su estructura en un ambiente con mayor gravedad. Tanto branquias como pulmones presentan estructuras muy ramificadas para aumentar la superficie de difusión y así, favorecer el intercambio de gases (a mayor superficie, más intercambio).

Giant_Mudskipper_(Periophthalmodon_schlosseri)_(15184970133)Espécimen de saltador del barro gigante (Periophthalmodon schlosseri), un pez del sudeste asiático que puede salir del agua gracias en parte, a la respiración cutánea. Foto de Bernard Dupont.

Aun así, entre los vertebrados existe una tercera forma de intercambio de gases. Aunque no está tan extendida como las branquias o los pulmones, la respiración cutánea la encontramos en varios grupos de animales, como los peces pulmonados y algunos reptiles marinos (tortugas y serpientes marinas). Aun así, los lisanfibios son el grupo que ha llevado la especialización en la respiración cutánea al extremo.


Los lisanfibios actuales son el grupo de tetrápodos que presentan mayor diversidad de estrategias respiratorias. Aparte de la respiración cutánea presente en todas las especies, la mayoría de lisanfibios nacen en un estado larvario acuático con branquias, y después de la metamorfosis, desarrollan pulmones para respirar en tierra firme.

Las larvas de los urodelos y los ápodos presentan branquias externas filamentosas y muy ramificadas que les permiten respirar bajo el agua. Éstas han de estar en movimiento constante para que haya intercambio de gases. Algunas especies de salamandras neoténicas mantienen las branquias durante la edad adulta. En cambio, los renacuajos de los anuros presentan branquias internas cubiertas por sacos branquiales.

Salamander_larva_closeupRetrato de una larva de salamandra en la que se aprecian les branquias ramificadas y filamentosas. Foto de Brian Gratwicke.

La mayoría de lisanfibios terrestres presentan un par de pulmones simples con pocas ramificaciones y grandes alveolos. Éstos tienen una baja tasa de difusión de gases comparados con los pulmones amniotas. Además, mientras que los amniotas ventilamos los pulmones mediante la expansión de la caja torácica y el diafragma, los lisanfibios han de forzar el aire a los pulmones mediante un sistema de bomba bucal.

Four_stroke_buccal_pumpingEsquema del sistema de respiración pulmonar de los lisanfibios. En el sistema de bomba bucal, la cavidad bucal se llena de aire y después se eleva el suelo de la boca para forzar el aire hacia los pulmones. Imagen de Mokele.

Además de la respiración branquial o pulmonar, los lisanfibios oxigenan la sangre por respiración cutánea. La piel de los lisanfibios es muy delgada y está muy capilarizada (tienen una gran cantidad de vasos sanguíneos). Esto hace que ésta tenga una gran capacidad de difusión de moléculas gaseosas, permitiéndoles la respiración cutánea mediante un sistema contracorriente.

600px-ExchangerflowEsquema modificado de un sistema de intercambio contracorriente. En éste, la sangre desoxigenada (con CO2) circula en dirección contraria al aire (cargado de O2) y entre los dos fluidos se da un intercambio de gases en un intento de igualar la concentración de ambos gases. Imagen modificada de Joe.

La piel de los lisanfibios difiere de la de los amniotas en que no presenta escamas, plumas ni pelo. Esto hace que la piel de los anfibios sea muy permeable tanto a los gases como al agua (lo que les convierte en grandes bioindicadores de los ambientes en los que viven, yq que sus pieles absorben muchos tipos de sustancias solubles). Por eso los lisanfibios han de mantener la piel relativamente húmeda para que el intercambio se pueda llevar a cabo.

KammolchmaennchenMacho de tritón crestado (Triturus cristatus) en la fase nupcial. Las anchas crestas de la cola incrementan la superficie de piel aumentando la difusión de gases. Foto de Rainer Theuer.

Los lisanfibios viven constantemente en un delicado equilibrio en el que la piel se ha de mantener suficientemente húmeda para permitir el intercambio de gases, pero no tan permeable como para que pierdan agua, se deshidraten y mueran. Esto lo consiguen viviendo en ambientes húmedos, o bien creando capas de piel húmeda externas para crear un ambiente acuoso a su alrededor.

Bombay_caecilianFoto de una cecília de Bombay (Ichthyophis bombayensis) un lisanfibio que vive en lodazales y otros hábitats húmedos. Foto de Uajith.

Muchos lisanfibios presentan gran cantidad de piel, cosa que aumenta la superficie respiratoria. Algunos ejemplos son, las papilas vasculares de la rana peluda (Trichobatrachus robustus), los pliegues de piel de las ranas del géneros Telmatobius o las anchas aletas caudales de muchos tritones.

TrichobatrachusGreenDibujo de la rana peluda (Trichobatrachus robustus) en el que se ven las papilas que le dan nombre. Imagen extraída de Proceedings of the Zoological Society of London (1901).

Aunque la mayoría de ranas obtiene gran parte del oxígeno por los pulmones durante el verano, durante las épocas más frías (cuando su metabolismo se ralentiza) muchas especies hibernan en el fondo de lagos helados, realizando el intercambio de gases exclusivamente por vía cutánea.

6887057816_d68fccf4f4_oMuchos lisanfibios de zonas subárticas hibernan bajo el agua, utilizando la piel para extraer oxígeno del agua y expulsar el dióxido de carbono de la sangre. Foto de Ano Lobb.

Los urodelos adultos presentan mucha más diversidad de estrategias respiratorias y además, dentro de éstos encontramos uno de los únicos grupos de vertebrados terrestres que no presentan ningún rastro de pulmones.


Dentro del suborden de los salamandroideos encontramos la familia Plethodontidae. Estos animales son conocidos popularmente como salamandras apulmonadas ya que, como su nombre indica, no tienen pulmones y dependen exclusivamente de la piel para realizar el intercambio de gases.

Kaldari_Batrachoseps_attenuatus_02Salamandra esbelta de California (Batrachoseps attenuatus) fotografiada por Kaldari. Esta es un perfecto ejemplo de los cuerpos largos y delgados de los pletodóntidos, que les facilita la difusión de gases.

Estos urodelos se encuentran distribuidos principalmente por las Américas, con algunas especies en la isla de Cerdeña y la Península de Corea. Lo más sorprendente es que los pletodóntidos, como la mayoría de salamandroideos, son animales principalmente terrestres y no presentan fase larvaria acuática. Aunque algunas especies presenten branquias durante el estado embrionario, éstas se pierden antes de nacer y los pulmones no se llegan a desarrollar.

Northern_red_salamander_(Pseudotriton_ruber)Foto de salamandra roja (Pseudotriton ruber) un pletodóntido endémico de la costa atlántica de los Estados Unidos. Foto de Leif Van Laar.

Se cree que esta familia evolucionó en ríos de alta montaña con fuertes corrientes. La presencia de pulmones los hubiera hecho flotar demasiado, cosa que les hubiese dificultado el movimiento en estos hábitats. Las aguas frías de los ríos alpinos son ricas en oxígeno, haciendo que la respiración cutánea fuese suficiente para estos pequeños animales.

Vídeo de Verticalground100 donde se nos muestran algunas especies de pletodóntidos.

Una piel fina y vascularizada (facilita la difusión) y la evolución de cuerpos largos y delgados (facilita el transporte de O2 por todo el cuerpo) hicieron que los pulmones resultaran inútiles para los pletodóntidos.  Actualmente las salamandras apulmonadas son la familia de urodelos más numerosa, y representan más de la mitad de la biomasa animal en muchos ecosistemas norteamericanos. Además, son más activos que la mayoría de lisanfibios, con sistemas nerviosos y sensoriales muy desarrollados, siendo depredadores voraces de artrópodos y otros invertebrados.

3679651745_d678454a1b_oSalamandra zig-zag de Ozark (Plethodon angusticlavius) una curiosa salamandra apulmonada típica del estado de Missouri. Imagen de Marshal Hedin.

Como veis, la respiración cutánea de los lisanfibios les permite hacer cosas que pocos tetrápodos pueden hacer. Pasar todo un invierno sumergidos y vivir en tierra firme sin pulmones son gestas increíbles reservadas a un pequeño grupo de animales. Puede que los lisanfibios aún dependan del medio acuático para sobrevivir, pero como hemos visto, poco tienen de lentos y primitivos, ya que presentan algunas de las adaptaciones fisiológicas más impresionantes del reino animal.


Se han utilizado las siguientes fuentes para la elaboración de esta entrada:


Com respirar sense pulmons, a l’estil lissamfibi

Tot i que la majoria de vertebrats terrestres depenem dels pulmons per realitzar l’intercanvi de gasos, els lissamfibis presenten a més respiració cutània, respiren a través de la pell. Tot i que això pot semblar un desavantatge, ja que han de mantindre la pell relativament humida, en aquesta entrada veurem els avantatges que els confereix la respiració cutània i com en alguns grups, aquesta ha substituït completament la respiració pulmonar.


Els vertebrats terrestres utilitzem els pulmons per a realitzar l’intercanvi de gasos. Tot i que els nostres avantpassats aquàtics respiraven mitjançant brànquies, aquestes no serveixen en el medi terrestre, ja que la gravetat faria que es colapséssin i perdessin la seva estructura. Els pulmons, com que es troben a l’interior del cos, poden mantindre la seva estructura en un ambient amb força més gravetat. Tant les brànquies com els pulmons presenten estructures molt ramificades per augmentar la superfície de difusió i així, afavorir l’intercanvi de gasos (a major superfície, més intercanvi).

Giant_Mudskipper_(Periophthalmodon_schlosseri)_(15184970133)Espècimen de saltador del fang gegant (Periophthalmodon schlosseri), un peix del sud-est asiàtic que pot sortir de l’aigua gràcies en part, a la respiració cutània. Foto de Bernard Dupont.

Tanmateix, entre els vertebrats existeix una tercera forma d’intercanvi de gasos. Tot i que no està tant extesa com les brànquies o els pulmons, la respiració cutània la trobem en varis grups d’animals, com els peixos pulmonats i alguns rèptils marins (tortugues i serps marines). Tanmateix, els lissamfibis són el grup que ha dut l’especialització en la respiració cutània a l’extrem.


Els lissamfibis actuals són el grup de tetràpodes que presenten major diversitat d’estratègies respiratòries. A part de la respiració cutània present en totes les espècies, la majoria de lissamfibis neixen en un estat larvari aquàtic amb brànquies i després de la metamorfosi, desenvolupen pulmons per a respirar a terra ferma.

Les larves dels urodels i els àpodes presenten brànquies externes filamentoses i molt ramificades que els permeten respirar sota l’aigua. Aquestes han d’estar en moviment constant per a que hi hagi intercanvi de gasos. Algunes espècies de salamandres neotèniques mantenen les brànquies durant l’edat adulta. En canvi, els capgrossos dels anurs presenten brànquies internes cobertes per sacs branquials.

Salamander_larva_closeupRetrat d’una larva de salamandra en la que s’aprecien les brànquies ramificades i filamentoses. Foto de Brian Gratwicke.

La majoria de lissamfibis terrestres presenten un parell de pulmons simples amb poques ramificacions i grans alveols. Aquests tenen una baixa taxa de difusió de gasos comparats amb els pulmons dels amniotes. A més, mentres que els amniotes ventilem els pulmons mitjançant l’expansió de la caixa torácica i el diafragma, els lissamfibis han de forçar l’aire als pulmons mitjançant un sistema de bomba bucal.

Four_stroke_buccal_pumpingEsquema del sistema de respiració pulmonar dels lissamfibis. En el sistema de bomba bucal, la cavitat bucal s’omple d’aire i després s’eleva el terra de la boca per forçar l’aire cap als pulmons. Imatge de Mokele.

A més de la respiració branquial o pulmonar, els lissamfibis oxigenen la sang per respiració cutània. La pell dels lissamfibis és molt prima i està molt capil·laritzada (tenen una gran quantiat de vasos sanguinis). Això fa que aquesta tingui una gran capacitat de difusió de molècules gasoses, permetent-los la respiració cutània mitjançant un sistema contracorrent.

600px-ExchangerflowEsquema modificat d’un sistema d’intercanvi contracorrent. En aquest, la sang desoxigenada (amb CO2) circula en direcció contrària a l’aire (carregat d’O2) i entre els dos fluids es dóna un intercanvi de gasos en un intent d’igualar la concentració dels dos gasos. Imatge modificada de Joe.

La pell dels lissamfibis difereix de la dels amniotes en que no presenta escates, plomes o pèl. Això fa que la pell dels lissamfibis sigui molt permeable tant pels gasos com per l’aigua (cosa que els converteix en grans bioindicadors dels ambients on viuen, ja que la seva pell absorbeix molts tipus de substàncies solubles). Per això els lissamfibis han de mantenir la pell relativament humida per a que l’intercanvi es pugui dur a terme.

KammolchmaennchenMascle de tritó crestat (Triturus cristatus) en la fase nupcial. Les amples crestes de la cua incrementen la superfície de pell augmentant la difusió de gasos. Foto de Rainer Theuer.

Els lissamfibis viuen constantment en un delicat equilibri en el que la pell s’ha de mantindre suficientment humida per a permetre l’intercanvi de gasos, però no tant permeable com per a que perdin aigua, es deshidratin i morin. Això ho aconsegueixen vivint en ambients humits, o bé creant capes de pell humida externes per a crear un ambient aquós al seu voltant.

Bombay_caecilianFoto d’una cecília de Bombai (Ichthyophis bombayensis) un lissamfibi que viu en fangars i altres hàbitats humits. Foto de Uajith.

Molts lissamfibis presenten una gran quantitat de pell, cosa que augmenta la superfície respiratòria. Alguns exemples són, les papil·les vasculars de la granota peluda (Trichobatrachus robustus), els plecs de pell de les granotes del gènere Telmatobius o les amples aletes caudals de molts tritons.

TrichobatrachusGreenDibuix de la granota peluda (Trichobatrachus robustus) on es veuen les papil·les que li dónen el nom. Imatge extreta de Proceedings of the Zoological Society of London (1901).

Tot i que la majoria de granotes obtenen gran part de l’oxigen pels pulmons durant l’estiu, durant les èpoques més fredes (quan el seu metabolisme es ralenteix) moltes espècies hivernen al fons de llacs glaçats, realitzant l’intercanvi de gasos exclusivament per via cutània.

6887057816_d68fccf4f4_oMolts lissamfibis de zones subàrtiques hivernen sota l’aigua, utilitzant la pell per extreure oxigen de l’aigua i expulsar diòxid de carboni de la sang. Foto de Ano Lobb.

Els urodels adults presenten molta més diversitat d’estratègies respiratòries i a més, hi trobem un dels únics grups de vertebrats terrestres que no presenten cap rastre de pulmons.


Dintre del subordre dels salamandroideus hi trobem la familia Plethodontidae. Aquests animals són coneguts popularment com a salamandres apulmonades ja que, com el seu nom indica, no tenen pulmons i depenen exclusivament de la pell per a realitzar l’intercanvi de gasos.

Kaldari_Batrachoseps_attenuatus_02Salamandra esvelta de Califòrnia (Batrachoseps attenuatus) fotografiada per Kaldari. Aquesta és un perfecte exemple dels cossos allargats i prims dels pletodòntids, que els facilita la difusió de gasos.

Aquests urodels es troben distribuïts principalment per les Amèriques, amb algunes espècies a l’illa de Sardenya i a la Península de Corea. El més sorprenent és que els pletodòntids, com la majoria de salamandroideus, són animals principalment terrestres i no presenten fase larvària aquàtica. Tot i que algunes espècies presenten brànquies durant l’estat embrionàri, aquests les perden abans de néixer i els pulmons mai s’arriben a desenvolupar.

Northern_red_salamander_(Pseudotriton_ruber)Foto de salamandra vermella (Pseudotriton ruber) un pletodòntid endèmic de la costa atlántica dels Estats Units. Foto de Leif Van Laar.

Es creu que aquesta familia va evolucionar en rius d’alta muntanya amb fortes corrents. La presència de pulmons els hauria fet flotar massa, cosa que els hagués dificultat el moviment en aquests hàbitats. Les aigües fredes dels rius alpins són riques en oxigen, fent que la respiració cutània fós suficient per aquests petits animals.

Vídeo de Verticalground100 on se’ns mostren algunes espècies de pletodòntids.

Una pell fina i vascularitzada (facilita la difusió) i l’evolució de cossos llargs i prims (facilita el transport d’O2 per tot el cos) va fer que els pulmons resultéssin inútils pels pletodòntids. Actualment les salamandres apulmonades són la família d’urodels més nombrosa, i representen més de la meitat de la biomassa animal en molts ecosistemes nord-americans. A més, són més actius que la majoria de lissamfibis, amb sistemes nerviosos i sensorials molt desenvolupats, sent depredadors voraços d’artròpodes i altres invertebrats.

3679651745_d678454a1b_oSalamandra zig-zag de Ozark (Plethodon angusticlavius) una curiosa salamandra apulmonada típica de l’estat de Missouri. Imatge de Marshal Hedin.

Com veieu la respiració cutània dels lissamfibis els permet fer coses que pocs tetràpodes poden fer. Passar tot un hivern submergits i viure a terra ferma sense pulmons són gestes increïbles reservades a un petit grup d’animals. Potser els lissamfibis encara depenen dels medi aquàtic per a sobreviure, però com hem vist, poca cosa tenen de lents i primitius, ja que presenten algunes de les adaptacions fisiològiques més impressionants del regne animal.


S’han utilitzat les següents fonts per a l’elaboració d’aquesta entrada:


Regeneració d’extremitats, de l’axolot a l’ésser humà

La regeneració de parts del cos perdudes o danyades en els animals es coneix des de fa bastants segles. El 1740 el naturalista Abraham Trembley va observar a un petit cnidari que podia regenerar el seu cap si li tallaven, per això el va anomenar Hydra, fent referència al monstre de la mitologia grega que podia regenerar els seus múltiples caps si li tallaven. Posteriorment, es va descobrir que hi havíen moltes altres espècies animals amb capacitats regeneratives. En aquesta entrada parlarem sobre aquests animals.

Regeneració al regne animal

La regeneració de parts del cos està molt més extesa entre els diferents grups d’invertebrats que de vertebrats. Aquest procés pot ser bidireccional, en el que els dos troços de l’animal regeneren les parts que els falten per a generar dos animals (com a l’hidra, les planàries, els cucs i les estrelles de mar), o unidireccional, en la que l’animal perd una extremitat però només la regenera sense que es formin dos animals (artròpodes, moluscs i vertebrats). Entre els vertebrats, peixos i amfibis són els que presenten més capacitats regeneratives, tot i que molts llangardaixos i alguns mamífers poden regenerar la cua.

ch14f01Imatge de Matthew McClements sobre la regeneració bidireccional en planàries, hidres i estrelles de mar. Extret de Wolbert's Principles of Development.

La regeneració es pot donar de dues maneres diferents:

  • Regeneració sense proliferació cel·lular activa o “morphalaxis”. En aquest tipus, la part del cos que falta és recreada principalment mitjançant la remodelació de cèl·lules preexistens. Això és el que passa en la Hydra, en la que les parts perdudes es regeneren sense la creació de material nou. Per tant, si es secciona una hidra per la meitat, obtindrem dues versions més petites de la hidra original.
Vídeo d'un experiment on s'ha seccionat una Hydra en diferents trossos. Vídeo de Apnea.
  • Regeneració amb proliferació cel·lular o “epimorfosis”. En aquest, la part perduda es regenera mitjançant proliferació cel·luar o sigui, que es crea “de nou”. Aquesta en la majoria de casos es produeix mitjançant la formació d’una estructura especialitzada anomenada blastema, massa de cèl·lules mare sense diferenciar que apareix en fenòmens de regeneració cel·lular.

Quasi tots els grups d’animals amb capacitats regeneratives presenten regeneració amb formació de blastema. Tot i així, l’orígen de les cèl·lules mare del blastema varia segons el grup. Mentre que les planàries presenten cèl·lules mare pluripotents (que poden diferenciar-se a qualsevol tipus cel·lular) repartides per tot el cos, els vertebrats presenten cèl·lules dels teixits on es forma el blastema.

Entre els vertebrats terrestres, les sargantanes i els urodels són els que mostren més habilitats regeneratives. A continuació veurem com ho aconsegueixen i les aplicacions que això té a la medicina actual.

Cues prescindibles

Quan ets un petit animal que està sent perseguit per un gat o un altre depredador, probablement et surti més rentable perdre la teva preciada cua a perdre la vida. Alguns vertebrats terrestres han evolucionat seguint aquesta filosofia, i ells mateixos poden desprendre’s de la seva cua voluntàriament mitjançant un procés anomenat autotomia caudal. Això els permet fugir dels seus depredadors, els quals s’entretenen amb la cua perduda que segueix movent-se.

 Vídeo on es veu com algunes sargantanes com aquest vanzosaure de cua vermella (Vanzosaura rubricauda) tenen cues de colors vius per atraure l'atenció dels depredadors. Vídeo de Jonnytropics.

L’autotomia o autoamputació, es defineix com un comportament en el que l’animal es desprèn d’una o vàries parts del cos. L’autotomia caudal la trobem en moltes espècies de rèptils i en dues espècies de ratolins espinosos del gènere Acomys. Entre els rèptils, trobem autotomia caudal en els lacèrtids, els dragons, els escíncids i les tuatares.

Acomys.cahirinus.cahirinus.6872Foto d'un ratolí espinós del Caire (Acomys cahirinus), un mamífer que és capaç de desprendre's de la seva cua i regenerar-la. Foto de Olaf Leillinger.

En els rèptils, la fractura de la cua es dóna en zones concretes de les vèrtebres caudals que estàn debilitades de per sí. L’autotomia es pot donar de dues formes diferents: l’autotomia intravertebral, en la que les vèrtebres del centre de la cua tenen plans de fractura transversals preparats per trencar-se si es presionen suficient, i l’autotomia intervertebral, en la qual la cua es trenca entre les vèrtebres per constricció muscular.

0001-3765-aabc-201520130298-gf03Model tridimensional de els plans de fractura de la cua d'un llangardaix i la regeneració post-autotomia d'un tub cartilaginós. Imatge extreta de Joana D. C. G. de Amorim et al.

L’autotomia caudal permet fugir a l’animal, però li sortirà car. Molts rèptils utilitzen la cua com a reservori de greixos i perdre aquest magatzem d’energia sol ser perjudicial per l’animal. Per això es sap que molts llangardaixos, un cop ha desaparegut l’amenaça, buscan la seva cua perduda i se la mengen, per almenys recuperar l’energia que teníen acumulada en forma de greix. A més, regenerar una cua nova és un procés costós energèticament.

DSCN9467Foto d'una sargantana iberoprovençal (Podarcis liolepis) que ha perdut la cua. Foto de David López Bosch.

La regeneració de la cua dels rèptiles difereix de la d’amfibis i peixos en que no es forma el blastema, i que en lloc de regenerar-se realment les vèrtebres caudals, es forma un tub de cartílag. La nova cua no és tan mòbil i sol ser més curta que l’original, i sol regenerar-se completament al cap d’unes setmanes. La majoria de llangardaixos poden regenerar la cua vàries vegades, però alguns com el vidriol (Anguis fragilis) només poden fer-ho un cop. En ocasions, la cua original no es trenca del tot però s’activen els mecanismes de regeneració, cosa que pot fer que ens poguem trobar alguna sargantana o algún dragó amb més d’una cua.

056 (2)Detall de la cua d'un dragó comú (Tarentola mauritanica) que ha regenerat la cua sense acabar de perdre la cua original. Foto de Rafael Rodríguez.

Urodels, els reis de la regeneració

De tots els tetràpodes, els amfibis són els que presenten les majors capacitats regeneratives. Durant la fase larvària de la majoria d’espècies, tant la cua com les extremitats (si les presenten) poden ser regenerades si les perden. La comunitat científica creu que això es deu a que en els amfibis el desenvolupament de les extremitats i altres òrgans es retrassen fins al moment de la metamorfosi. Tot i així, les granotes i els gripaus (anurs) només conserven els seus poders regeneratius durant la fase de capgròs, perdent-los al arribar a l’edat adulta.

Wood_frog_tadpoleCapgròs de granota de bosc (Rana sylvatica) que, com en tots els amfibis, posposa el desenvolupament de les extremitats fins al moment de la metamorfosi. Foto de Brian Gratwicke.

En canvi, moltes salamandres i tritons (urodels) conserven els seus poders regeneratius durant tota la vida. Encara que moltes espècies presenten autotomia caudal, a diferència de les sargantanes, els urodels regeneren completament, no només la cua, sinó pràcticament qualsevol teixit corporal perdut. De totes les espècies conegudes, l’axolot (Ambystoma mexicanum), un amfibi neotènic que arriba a l’edat adulta sense patir cap metamorfosi, ha servit com a organisme model per a l’estudi de la formació del blastema que precedeix a la regeneració.

 Vídeo on es parla del axolot, aquest curiós amfibi que està en greu perill d'extinció. Vídeo de Zoomin.TV Animals.

La regeneració que es dóna en les salamandres té fases genèticament similars a les que pateixen la resta de vertebrats al desenvolupar els diferents teixits i òrgans durant el desenvolupament embrionari. En l’axolot (i en la resta d’urodels) la regeneració després de l’amputació d’una extremitat passa per tres fases diferents:

  • Curació de la ferida: Durant la primera hora després de l’amputació, cèl·lules epidèrmiques migren a la zona de la ferida. El tancament de la ferida es produeix més o menys a les dues hores i hi intervenen els mateixos mecanismes que en la resta de vertebrats. Tot i així, la regeneració completa de la pell es retrassa fins al final de la regeneració.
  • Desdiferenciació: Aquesta segona fase comença a les 24 hores de l’amputació i és quan es forma el blastema. Aquest està format per cèl·lules dels teixits especialitzats de la zona d’amputació que perden les seves característiques (obtenen la capacitat de proliferar i diferenciar-se de nou), i de cèl·lules derivades del teixit connectiu que migren a la zona d’amputació. Quan aquestes cèl·lules de diferent origen s’acumulen i formen el blastema, s’inicia la proliferació cel·lular.
  • Remodelació: Per a l’inici de la tercera fase, és imprescindible la formació d’un blastema amb cèl·lules de diversos orígens. Un cop format el blastema de cèl·lules desdiferenciades, la formació de la nova extremitat segueix el mateix patró que en les extremitats de qualsevol vertebrat durant el desenvolupament embrionari (fins i tot hi intervenen els mateixos gens).
A_Stages_of_zebrafish_caudal_fin_regeneration_as_longitudinal_sections.Esquema de la formació del blastema en el peix zebra (Danio rerio) un altre organisme model. Imatge de Kyle A. Gurley i Alejandro Sánchez Alvarado.

Recentment s’han trobat fòssils de diversos grups de tetràpodes primitius que presenten rastres de regeneració. S’han trobat proves de regeneració d’extremitats en fòssils de temnospòndils (Apateon, Micromelerpeton i Sclerocephalus) i de lepospòndils (Microbrachis i Hyloplesion). Aquesta àmplia gamma de gèneres de tetràpodes basals que presenten regeneració i el fet de que molts peixos també la presentin, ha portat a molts científics a plantejar-se si els primers grups de tetràpodes primitius presentaven regeneració i aquesta es va perdre en els avantpassats dels amniotes (rèptils, aus i mamífers).

Foto d'un axolot, per LoKiLeCh.

Tot i així, es creu que la informació genètica de formació del blastema podria trobar-se en l’ADN dels amniotes tot i que estaria en estat latent. De les tres fases del procés de regeneració, l’única que és exclusiva dels urodels és la fase de desdiferenciació, ja que la fase de curació és igual a la cicatrització en la resta de vertebrats i la de remodelació és igual a la formació de extremitats durant l’embriogènesi. Actualment s’estan portant a terme multitud d’estudis sobre com reactivar els gens latents que promouen la formació del blastema en altres vertebrats, com per exemple els éssers humans.

Alguns òrgans humans com el ronyó i el fetge ja tenen certa capacitat de regeneració, però gràcies a l’investigació amb cèl·lules mare en animals com les salamandres i les sargantanes, actualment és possible regenerar dits, genitals i parts de la bufeta, el cor i els pulmons. Com hem vist, els diferents animals capaços de regenerar membres seccionats amaguen el secret que podria salvar a milers de persones. Recordem això la pròxima vegada que escoltem que centenars d’espècies d’amfibis i rèptiles es troben en perill per culpa de la mà de l’home.



Per a l’elaboració d’aquesta entrada s’han utilitzat les següents fonts:

Limb regeneration, from the axolotl to human beings

The regeneration of lost or damaged body parts in animals is known from many centuries ago. In 1740 the naturalist Abraham Trembley observed a small cnidarian that could regenerate its head if it was cut off, so he called it Hydra, in reference to the monster from Greek mythology that could grow back its multiple heads if they were cut off. Afterwards, it was discovered that there were many other species of animals with regenerative abilities. In this entry we’ll talk about these animals.

Regeneration in the animal kingdom

Regeneration of body parts is more widespread between the different groups of invertebrates than it is between the vertebrates. This process can be bidirectional, in which both parts of the animal regenerate their missing parts to form two animals (just like the hydra, planarians, earthworms and starfishes) or unidirectional, in which the animal loses an extremity but it just regenerates, without forming two animals (arthropods, molluscs and vertebrates). In vertebrates, fishes and amphibians are the ones that present the greatest regenerative capacities, although many lizards and some mammals are able to regrow their tails.

ch14f01Image by Matthew McClements about bidirectional regeneration in planarians, hydras and seastars. Extracted from Wolbert's Principles of Development.

Regeneration can be done by two different ways:

  • Regeneration without active cellular proliferation or “morphallaxis”. In this type, the absent body part is regrown through remodelling of pre-existing cells. This is what happens in the Hydra, in which lost body parts are regenerated without the creation of new material. So, if a hydra is cut in half, we’ll obtain two smaller versions of the original hydra.
Video about an experiment in which an Hydra has been cut in different pieces. Video by Apnea.
  • Regeneration with cellular proliferation or “epimorphosis”. In this type, the lost part is regenerated via cellular proliferation, it is “newly created”. In most cases, it happens through the formation of a specialized structure called blastema, a mass of undifferentiated cells which appears during phenomena of cellular regeneration.

Almost all groups of animals with regenerative capacities present regeneration with blastema formation. Yet the origin of the blastemal stem cells varies between groups. While planarians present pluripotent (that can differentiate to any kind of cell type) stem cells all along their bodies, vertebrates have specific cells in each type of tissue (cartilage, muscle, skin…) that only regenerate cells of the tissue they come from.

In land vertebrates, lizards and urodeles are the ones that present the most powerful regenerative abilities. Down below we’ll see how they regenerate and the applications it has in modern human medicine.

Expendable tails

When you are a small animal that is being chased by a cat or any other predator, it probably is better for you to lose your precious tail than to lose your life. Some terrestrial vertebrates have evolved following this philosophy, and they are able to shed off their tails voluntarily through a process called caudal autotomy. This allows them to escape from their predators, which are entertained with the still moving lost tail.

 Video in which we can see how some lizards like this red-tailed vanzosaur (Vanzosaura rubricauda) have brightly coloured tails to attract the attention of predators. Video by Jonnytropics.

Autotomy or self-amputation, is defined as a behaviour in which the animal can shed off one or more body parts. Caudal autotomy is found in many species of reptiles and in two species of spiny mouse of the genus Acomys. In reptiles we can find caudal autotomy in lacertids, geckos, skinks and tuataras.

Acomys.cahirinus.cahirinus.6872Foto of a Cairo spiny mouse (Acomys cahirinus), a mammal which is able to shed and regrow its tail. Photo by Olaf Leillinger.

In reptiles, the fracture of the tail happens in specific areas of the caudal vertebras which are naturally weakened. The autotomy may happen in two different ways: intravertebral autotomy, in which the vertebra at the centre of the tail have transversal fracture planes prepared to break if they are pressed hard enough, and intervertebral autotomy, where the tail breaks between vertebras by muscular constriction.

0001-3765-aabc-201520130298-gf03Tridimensional model of the fracture planes on the tail of a lizard and the regeneration post-autotomy of a cartilaginous tube. Image extracted from Joana D. C. G. de Amorim et al.

Caudal autotomy allows the animal to escape, but it isn’t without cost. Many reptiles use their tails as a reserve of fat and losing this energy store is usually detrimental for the animal. That’s why many lizards, once the threat has disappeared, look for their lost tail and eat it, to at least regain the energy it had as fat. In addition, regenerating a new tail requires a great expenditure of energy.

DSCN9467Photo of a Catalonian wall lizard (Podarcis liolepis) that has shed its tail. Photo by David López Bosch.

The regeneration of the tail in reptiles differs from that of amphibians and fishes in that it happens without the formation of a blastema and instead of an actual regeneration of the caudal vertebras, it forms a cartilaginous tube along it. The new tail is stiffer and shorter than the original one, and it usually regenerates whole some weeks after the amputation. Most lizards can regenerate their tails multiple times, but some species like the slow worm (Anguis fragilis) can only do it once. Sometimes, the original tail isn’t completely broken but the regeneration mechanisms are activated, which can lead to lizards and geckos with more than one tail.

056 (2)Detail of the tail of a common wall gecko (Tarentola mauritanica) which has regenerated the tail without losing its original tail. Photo by Rafael Rodríguez.

Urodeles, the kings of regeneration

Of all tetrapods, amphibians are the ones that present the more astonishing regenerative capacities. During the larval stage of most species, both the tail and the limbs (if they have them) can be regenerated after its loss. The scientific community thinks that this is due to the fact that in amphibians the development of limbs and other organs is delayed until the moment of metamorphosis. Yet, frogs and toads (anurans) only maintain their regenerative powers during their tadpole stage, losing them when reaching adulthood.

Wood_frog_tadpoleWood frog tadpole (Rana sylvatica) which, like all amphibians, delays the development of its legs up to the moment of metamorphosis. Photo by Brian Gratwicke.

Instead, many salamanders and newts (urodeles) conserve their regenerative powers their whole life. Even if many species present caudal autotomy, unlike lizards urodeles are able to completely regenerate, not only their tails, but practically any kind of lost body tissue. Of all known species, the axolotl (Ambystoma mexicanum), a neotenic amphibian which reaches adulthood without undergoing metamorphosis, has served as a model organism for the study of the formation of the blastema that precedes regeneration.

 Video about the axolotl, this curious amphibian which is greatly endangered. Video by Zoomin.TV Animals.

Regeneration as it happens in salamanders has stages genetically similar to the ones that occur during the development of the different body tissues and organs during the embryonic development of the rest of vertebrates. In the axolotl (and in the rest of urodeles) regeneration of a limb after amputation goes through three different stages:

  • Wound healing: During the first hour after the amputation, epidermal cells migrate to the wound. The closing of the wound usually completes two hours later with the same mechanisms as in the rest of vertebrates. Yet, the complete regeneration of the skin is delayed up until the end of the regeneration.
  • Dedifferentiation: This second phase, in which the blastema is formed, starts 24 hours after amputation. This is composed both of cells from the specialized tissues of the amputated zone which lose their characteristics (they obtain the capacity to proliferate and differentiate again) and cells derived from the connective tissue that migrate to the amputation zone. When these cells of different origins accumulate and form the blastema, the cellular proliferation starts.
  • Remodelling: For the third stage to start, the formation of the blastema is required. Once the blastema is formed by different dedifferentiated cells, the formation of the new limb follows the same pattern as any kind of vertebrate follows during embryonic development (it even has de same genes intervening).
A_Stages_of_zebrafish_caudal_fin_regeneration_as_longitudinal_sections.Diagram about the formation of the blastema in a zebrafish (Danio rerio) another model organism. Image from Kyle A. Gurley i Alejandro Sánchez Alvarado.

Recently fossils have been found from many different groups of primitive tetrapods which present signs of regeneration. Proof has also been found of limb regeneration in temnospondyl (Apateon, Micromelerpeton and Sclerocephalus) and lepospondyl (Microbrachis and Hyloplesion) fossils. This wide variety of basal tetrapod genera presenting regeneration and the fact that many fish also present it, has led many scientists to consider if the different groups of primitive tetrapods had the ability to regenerate, and if it was lost in the ancestors of amniotes (reptiles, birds and mammals).

Photo of an axolotl, by LoKiLeCh.

However, it is believed that the genetic information that forms the blastema could still be found in the DNA of amniotes but in a latent state. Of the three stages of the regeneration process, the only one exclusive to urodeles is the dedifferentiation stage, as the healing stage is the same as in the rest of vertebrates and the remodelling stage is like the one during embryogenesis. Currently many studies are being carried out on the way to reactivate the latent genes that promote the formation of the blastema in other vertebrates, such as humans.

Some human organs like the kidneys and the liver already have some degree of regenerative capacities, but thanks to investigation with stem cells in animals like salamanders and lizards currently it is able to regenerate fingers, toes, genitals and parts of the bladder, the heart and the lungs. As we have seen, the different animals able to regenerate amputated limbs hold the secret that could save thousands of people. Remember this the next time you hear that hundreds of species of amphibians and reptiles are endangered because of human beings.



During the writing of this entry the following sources have been consulted:

Regeneración de extremidades, del ajolote al ser humano

La regeneración de partes del cuerpo perdidas o dañadas en los animales es conocida desde hace varios siglos. En 1740 el naturalista Abraham Trembley observó a un pequeño cnidario que podía regenerar su cabeza si se la cortaban, por lo que lo llamó Hydra, en referencia al monstruo de la mitología griega que podía regenerar sus múltiples cabezas si se las cortaban. Posteriormente, se descubrió que había muchas otras especies animales con capacidades regenerativas. En esta entrada hablaremos sobre estos animales.

Regeneración en el reino animal

La regeneración de partes del cuerpo está mucho más extendida entre los diferentes grupos de invertebrados que de vertebrados. Este proceso puede ser bidireccional, en el que ambos trozos del animal regeneran las partes que les faltan para generar dos animales (cómo en la hidra, las planarias, los gusanos y las estrellas de mar), o unidireccional, en el que el animal pierde una extremidad pero solo la regenera sin que se formen dos animales (artrópodos, moluscos y vertebrados). Entre los vertebrados, peces y anfibios son los que presentan mayores capacidades regenerativas, aunque muchos lagartos y algunos mamíferos pueden regenerar sus colas.

ch14f01Imagen de Matthew McClements sobre la regeneración bidireccional en planàrias, hidras y estrellas de mar. Extraído de Wolbert's Principles of Development.

La regeneración se puede dar de dos maneras distintas:

  • Regeneración sin proliferación celular activa o “morphalaxis”. En este modo, la parte del cuerpo ausente es recreada principalmente mediante la remodelación de células preexistentes. Esto es lo que ocurre en la Hydra, en la que las partes perdidas se regeneran sin la creación de material nuevo. Por lo tanto, si se secciona una hidra por la mitad, obtendremos dos versiones más pequeñas de la hidra original.
Vídeo de un experimento en el que se ha seccionado una Hydra en diferentes trozos. Vídeo de Apnea.
  • Regeneración con proliferación celular o “epimorfosis”. En éste, la parte perdida se regenera mediante proliferación celular o sea, que se crea “de nuevo”. Ésta en la mayoría de casos se produce mediante la formación de una estructura especializada llamada blastema, masa de células madre sin diferenciar que aparece en fenómenos de regeneración celular.

Casi todos los grupos de animales con capacidades regenerativas presentan regeneración con formación de blastema. Aun así, el origen de las células madre del blastema varía según el grupo. Mientras que las planarias presentan células madre pluripotentes (que pueden diferenciarse a cualquier tipo celular) repartidas por todo el cuerpo, los vertebrados presentan células específicas en cada tipo de tejido (cartílago, músculo, piel…) que sólo generaran células de los tejidos donde se encuentre el blastema.

Entre los vertebrados terrestres, las lagartijas y los urodelos son los que muestran mayores habilidades regenerativas. A continuación veremos cómo lo consiguen y las aplicaciones que esto tiene en la medicina actual.

Colas prescindibles

Cuando eres un pequeño animal que está siendo perseguido por un gato u otro depredador, probablemente te salga más rentable perder tu preciada cola a perder tu vida. Algunos vertebrados terrestres han evolucionado siguiendo esta filosofía, y ellos mismos pueden desprenderse de su cola voluntariamente mediante un proceso llamado autotomía caudal. Esto les permite huir de sus depredadores, los cuáles se entretienen con la cola perdida que sigue moviéndose.

 Vídeo en el que se vé cómo algunas lagartijas como este vanzosaurio de cola roja (Vanzosaura rubricauda) tienen colas de colores brillantes para atraer la antención de los depredadores. Vídeo de Jonnytropics.

La autotomía o autoamputación, se define como un comportamiento en el que el animal se desprende de una o varias partes del cuerpo. La autotomía caudal la encontramos en muchas especies de reptiles y en dos especies de ratones espinosos del género Acomys. Entre los reptiles, encontramos autotomía caudal en los lacértidos, los geckos, los escincos o eslizones y en los tuataras.

Acomys.cahirinus.cahirinus.6872Foto de un ratón espinoso del Cairo (Acomys cahirinus), un mamífero que es capaz de desprenderse de su cola y regenerarla. Foto de Olaf Leillinger.

En los reptiles, la fractura de la cola se da en zonas concretas de las vértebras caudales que de por sí están debilitadas. La autotomía se puede dar de dos formas distintas: la autotomía intravertebral, en la que las vértebras del centro de la cola tienen planos de fractura transversales preparados para romperse si se les aplica suficiente presión, y la autotomía intervertebral, en la cual la cola se rompe entre las vértebras por constricción muscular.

0001-3765-aabc-201520130298-gf03Modelo tridimensional de los planos de fractura de la cola de un lagarto y la regeneración post-autotomía de un tubo cartilaginoso. Imagen extraída de Joana D. C. G. de Amorim et al.

La autotomía caudal permite huir al animal, pero le saldrá caro. Muchos reptiles utilizan la cola como reservorio de grasas y perder este almacén de energía suele ser perjudicial para el animal. Por eso se sabe que muchos lagartos, una vez ha desaparecido la amenaza, buscan su cola perdida y se la comen, para al menos recuperar la energía que tenían acumulada en forma de grasa. Además, regenerar una nueva cola es un proceso costoso energéticamente.

DSCN9467Foto de una lagartija parda (Podarcis liolepis) que ha perdido la cola. Foto de David López Bosch.

La regeneración de la cola en los reptiles difiere de la de anfibios y peces en que no se forma el blastema, y en que en vez de regenerarse realmente las vértebras caudales, se forma un tubo de cartílago. La nueva cola no es tan móvil y suele ser más corta que la original, y suele regenerarse completamente al cabo de unas semanas. La mayoría de lagartos pueden regenerar la cola varias veces, pero algunos cómo el lución (Anguis fragilis) sólo pueden hacerlo una vez. En ocasiones, la cola original no se rompe del todo pero se activan los mecanismos de regeneración, cosa que puede dar a que nos podamos encontrar a lagartijas y salamanquesas con más de una cola.

056 (2)Detalle de la cola de una salamanquesa común (Tarentola mauritanica) que ha regenerado la cola sin acabar de perder la cola original. Foto de Rafael Rodríguez.

Urodelos, los reyes de la regeneración

De todos los tetrápodos, los anfibios son los que presentan las mayores capacidades regenerativas. Durante la fase larvaria de la mayoría de especies, tanto la cola como las extremidades (si las presentan) pueden ser regeneradas tras su pérdida. La comunidad científica cree que esto se debe a que en los anfibios el desarrollo de las extremidades y otros órganos se retrasan hasta el momento de la metamorfosis. Aun así, ranas y sapos (anuros) sólo conservan sus poderes regenerativos durante su fase de renacuajo, perdiéndolos al llegar a la edad adulta.

Wood_frog_tadpoleRenacuajo de rana de bosque (Rana sylvatica) que, cómo en todos los anfibios, pospone el desarrollo de las extremidades hasta el momento de la metamorfosis. Foto de Brian Gratwicke.

En cambio, muchas salamandras y tritones (urodelos) conservan sus poderes regenerativos durante toda su vida. Aunque muchas especies presentan autotomía caudal, a diferencia de las lagartijas, los urodelos regeneran completamente, no sólo la cola, sino prácticamente cualquier tejido corporal perdido. De todas las especies conocidas, el ajolote (Ambystoma mexicanum), un anfibio neoténico que llega a la edad adulta sin sufrir metamorfosis, ha servido como organismo modelo para el estudio de la formación del blastema que precede a la regeneración.

 Vídeo en el que se habla del ajolote, este curiosos anfibio que se encuentra en grave peligro de extinción. Vídeo de Zoomin.TV Animals.

La regeneración que se da en las salamandras tiene fases genéticamente similares a las que sufren el resto de vertebrados al desarrollar los distintos tejidos y órganos durante el desarrollo embrionario. En el ajolote (y en el resto de urodelos) la regeneración después de la amputación de una extremidad pasa por tres fases distintas:

  • Curación de la herida: Durante la primera hora tras la amputación, células epidérmicas migran a la zona de la herida. El cierre de la herida se produce más o menos a las dos horas e intervienen los mismos mecanismos que en el resto de vertebrados. Aun así, la regeneración completa de la piel se retrasa hasta el final de la regeneración.
  • Desdiferenciación: Esta segunda fase comienza a las 24 horas de la amputación y es cuando se forma el blastema. Éste está compuesto por células de los tejidos especializados de la zona de amputación que pierden sus características (obtienen la capacidad de proliferar y diferenciarse de nuevo), y de células derivadas del tejido conectivo que migran a la zona de amputación. Cuando estas células de diferente origen se acumulan y forman el blastema, se inicia la proliferación celular.
  • Remodelación: Para el inicio de la tercera fase, es imprescindible la formación de un blastema con células de diversos orígenes. Una vez formado el blastema de células desdiferenciadas, la formación de la nueva extremidad sigue el mismo patrón que el de las extremidades de cualquier vertebrado durante el desarrollo embrionario (incluso intervienen los mismos genes).
A_Stages_of_zebrafish_caudal_fin_regeneration_as_longitudinal_sections.Esquema de la formación del blastema en el pez zebra (Danio rerio) otro organismo modelo. Imagen de Kyle A. Gurley i Alejandro Sánchez Alvarado.

Recientemente se han encontrado fósiles de diversos grupos de tetrápodos primitivos que presentan rastros de regeneración. Se han encontrado pruebas de regeneración de extremidades en fósiles de temnospóndilos (Apateon, Micromelerpeton y Sclerocephalus) y de lepospóndilos (Microbrachis y Hyloplesion). Esta amplia gama de géneros de tetrápodos basales que presentan regeneración y el hecho de que muchos peces también la presenten, ha llevado a muchos científicos a plantearse si los diferentes grupos de tetrápodos primitivos presentaban capacidad de regeneración y ésta se perdió en los antepasados de los amniotas (reptiles, aves y mamíferos).

Foto de un ajolote, por LoKiLeCh.

Aun así, se cree que la información genética de formación del blastema podría encontrarse en el ADN de los amniotas aunque estaría en estado latente. De las tres fases del proceso de regeneración, la única que es exclusiva de los urodelos es la fase de desdiferenciación, ya que la fase de curación es igual a la cicatrización en el resto de vertebrados y la de remodelación es igual a la formación de extremidades durante la embriogénesis. Actualmente se están llevando a cabo multitud de estudios sobre cómo reactivar los genes latentes que promueven la formación del blastema en otros vertebrados, como por ejemplo los seres humanos.

Algunos órganos humanos como el riñón y el hígado ya tienen cierta capacidad de regeneración, pero gracias a la investigación con células madre en animales como las salamandras y las lagartijas, actualmente es posible regenerar dedos, genitales y partes de la vejiga, el corazón y los pulmones. Como hemos visto, los diferentes animales capaces de regenerar miembros seccionados encierran el secreto que podría salvar a miles de personas. Recordemos esto la próxima vez que oigamos que cientos de especies de anfibios y reptiles se encuentran en peligro por culpa de la mano del hombre.



Para la elaboración de esta entrada se han utilizado las siguientes fuentes:

Frogs, toads and newts: the last amphibians

With about 7000 living species, amphibians currently occupy almost all the habitats on Earth. While in the last entry we explained the origin of the first tetrapods and how those gave rise to the different groups of primitive amphibians, in this entry we will explain in more detail the characteristics of current amphibians, the so-called lissamphibians.


The term “Lissamphibia” (“smooth amphibian”) is used to name current amphibians and it’s useful to tell them apart from the rest of fossil amphibians, while the term Amphibia (“double life” referring to the aquatic larval stage of most species), is used to name all tetrapods except the amniotes (reptiles, birds and mammals).

Most authors consider lissamphibians a monophyletic group (a group which includes all the descendants of a common ancestor) which includes the different groups of modern amphibians. The main characteristics of this group are:

Dermal characteristics

  • Smooth, scaleless, permeable skin that allows gas exchange (both pulmonary and cutaneous respiration) and the absorption of water (most amphibians usually do not need to drink water). This makes them susceptible to skin infections like the one from the Batrachocytrium dendrobatidis fungus.
FrogSkinSection through frog skin by Jon Houseman. A: Mucous gland, B: Chromophore, C: Granular poison gland, D: Connective tissue, E: Stratum corneum, F: Transition zone, G: Epidermis, and H: Dermis.
  • Two types of skin glands: mucous (the majority, to maintain humidity) and granular (less numerous, secrete toxins of different intensity).

Skeletal characteristics

  • Pedicellate and bicuspid teeth.
teethPhoto of pedicellate teeth, in which the crown and base are made of dentine and are separated by a narrow layer of uncalcified dentine.
  • A pair of occipital condyles.
  • Short, stiff ribs not encircling the body.
  • Four digits on the front limbs and five digits on the hind limbs.
10050622254_8cffbfb0e4_oSkeleton of giant salamander in which we can see some of the characteristics of lissamphibians. Photo by Graham Smith.

Auditory characteristics

  • Papilla amphibiorum, a group of specialized cells in the inner ear which allow them to hear low frequency sounds.
  • Stapes-operculum complex which are in contact with the auditory capsule, improve reception of aerial and seismic waves.

Other characteristics

  • Fat bodies associated with gonads.
  • Presence of green rods in the visual cells (these allow the perception of more colours).
  • Presence of a muscle elevator of the eye (called levator bulbi).
  • Forced-pump ventilation system (their short ribs do not allow pulmonary ventilation, so they pump the air through their mouth).
Two_stroke_buccal_pumpingExplicative diagram about buccal ventilation in lissamphibians, by Mokele.


Nowadays only three living amphibian orders persist: the order Salientia or Anura (which includes frogs and toads), the order Caudata or Urodela (salamanders and newts) and the order Gymnophiona or Apoda (caecilians). The second name of each order refers to the current species and their recent ancestors, while the first name refers to the whole order since the separation of each order.

There are two hypotheses regarding the relationships between the three orders. The most accepted both by anatomic and molecular analyses is that Salientia and Caudata are grouped together into the clade Batrachia, while the other one is that Caudata and Gymnophiona together form the clade Procera.

Batrachia proceraTwo hypothetical evolutionary trees by Marcello Ruta & Michael I. Coates (2007), showing the Batrachia and Procera hypotheses on the relationships between Salientia (S), Caudata (C) and Gymnophiona (G).

Currently there are three groups of hypotheses of the origin of lissamphibians: the temnospondyl hypotheses, the lepospondyl hypotheses and the polyphyletic hypotheses.

Temnospondyls are the main candidates to be the ancestors of lissamphibians, as they share many characteristics, such as the presence of pedicellated, bicuspid teeth, and short, stiff ribs. Authors defending these theories say that lissamphibians suffered during their evolution a process known as paedomorphosis (retention during the development of juvenile characteristics), this way explaining why temnospondyls reached such large sizes while lissamphibians are much smaller and usually have lighter and less ossified cranial structures.

temnospondyliDrawings from Marcello Ruta & Michael I. Coates (2007) of skeletons belonging to Celteden ibericus (left, a lissamphibian) and Apateon pedestris (right, a temnospondyl) to show similitudes in skeletal structure.

Hypotheses regarding a lepospondyl origin for lissamphibians do not have such a strong support as the temnospondyl hypotheses. However, recently some statistical studies combining anatomic and molecular data have given some support to these hypotheses.

Nevertheless, there is a third group of hypotheses we must consider, the ones that say that lissamphibians are a polyphyletic group (with different origins for the different orders). According to one of these theories, frogs and salamanders (clade Batrachia) would have a temnospondyl origin, while caecilians (order Gymnophiona or Apoda) would have originated from lepospondyl ancestors, many of which had already suffered a limb reduction process.

 Lissamphibian_phylogenyModified outline of the three different hypotheses regarding the origins of the lissamphibians; 1. Lepospondyl origin, 2. Temnospondyl origin, 3. Polyphyletic origin.

Still, most authors support a monophyletic and temnospondyl origin for lissamphibians, but alternative hypotheses shouldn’t be discarded.


With up to 4750 species, frogs and toads form the most diverse lissamphibian order. The first known Salientia is Triadobatrachus, which, despite having a tail, already presented some typical characteristics of modern frogs, such as a short spine with few vertebras and the hind limbs longer than the front limbs.

TriadobatrachusInterpretation by Pavel Riha, of the ancient Salientia, Triadobatrachus massinoti.

The anatomy of modern anurans is unique among the animal kingdom. Their skeleton seems totally dedicated to allow these animals to jump (even though many species move simply by walking). Some of their characteristics are:

  • A short and stiff trunk (less than 12 vertebras), an especially long pelvic girdle and the vertebras of their posterior end (that in other amphibians form the tail) are reduced and fused forming the urostyle.
  • Long hind limbs, with the tibia and fibula fused together (to aid in impulse during jumping) and short and strong front limbs (to resist the impact on the landing).
3888291918_f779053a0a_oPhoto of a pig frog (Rana grylio), a typical american anuran.

Also, of all current amphibians frogs are the ones with the most developed hearing apparatus and vocal organ. Males, usually present specialized structures to amplify sound during the mating season.

Litoria_chloris_callingRed eyed tree frog (Litoria chloris) showing the vocal sac, used to amplify the sound of its calls.

Size in anurans varies from 3 kg in weight and 35 centimetres in length of the goliath frog (Conraua goliath) to the 7, 7 millimeters long recently discovered Paedophryne amanuensis, currently the smallest known vertebrate.

Paratype_of_Paedophryne_amauensis_(LSUMZ_95004)Photo from Rittmeyer EN, Allison A, Gründler MC, Thompson DK, Austin CC (2012)  of Paedophryne amanuensis, the smallest known vertebrate in the world on a US dime.

With such a diversity, vital strategies of anurans vary greatly and it’s difficult to generalize on their reproductive biology, even though most show indirect development (born as tadpoles and passing through a metamorphosis process) and they mate and lay their eggs in an aquatic medium.

BufoBufoTadpolesTadpoles of common toad (Bufo bufo) from northern Germany by Christian Fischer.


The urodeles or caudates are the order of lissamphibians which externally most resemble primitive amphibians. This group includes salamanders and newts, most of which have a long body, a well-developed tail and four relatively short legs. Most urodeles are terrestrial and are distributed mainly in the northern hemisphere, with a few species inhabiting the tropics.

Salamandra_TigrePhoto of an eastern tiger salamander (Ambystoma tigrinum) from the House of Sciences, Corunna - Spain. Taken by Carla Isabel Ribeiro.

Most species present internal fertilization and are oviparous. Most also present indirect development (larvae, metamorphosis, adult), and the larvae usually resemble miniaturized adults with external, ramified gills. Various groups of salamanders suffer neoteny phenomenon, in which individuals, even though sexually developing into adults, externally keep larval characteristics.

Joung_and_very_large_larva_of_Salamandra_infraimmaculata,_Ein_Kamon,_IsraelYoung and very large larvae of near eastern fire salamander (Salamandra infraimmaculata), Ein Kamon, Israel. Photo by Ab-Schetui.

Currently, urodeles are classified into three suborders: the Sirenoidea, the Cryptobranchoidea and the Salamandroidea. Sirenoideans are urodeles with both specialized and primitive characteristics, such as the loss of hind limbs and the presence of external gills. Cryptobranchoideans are large primitive salamanders (up to 160 centimetres) which present external fertilization, while salamandroideans are the most numerous group of urodeles (with more than 500 species) and the most diverse, with most species being terrestrial and having internal fertilization using packs of sperm called spermatophores.

20090924201238!P_striatus_USGSPhoto of a northern dwarf siren (Pseudobranchus striatus) a sirenoidean from the United States.


The most ancient known member of the order Gymnophiona is Eocaecilia micropodia, an amphibian about 15 centimetres long with a considerably long body, a short tail and really small limbs.

Eocaecilia_BWRestoration by Nobu Tamura of Eocaecilia micropodia an ancient Gymnophiona from the early Jurassic.

Current caecilians (order Apoda) have completely lost any trace of limbs, girdles or tail, due to their adaptation to a subterranean lifestyle. That’s why they also suffered a process of cranial hardening and their eyes are extremely reduced. They also present a series of segmentary rings all along their bodies, which make them look somewhat like earthworms.

Ichthyophis kohtaoensis, ca 12Yellow-striped caecilian (Ichthyophis kohtaoensis) from Thailand, by Kerry Matz.

There are currently about 200 species of caecilians divided into 10 families. Their size varies from about 7 centimetres in the species Idiocranium russelli from Cameroon, to up to 1,5 meters of Caecilia thompsoni from Colombia. They present a pantropical distribution, internal fertilization and a great variation in their development (there are viviparous and oviparous species and some which endure metamorphosis while some have direct development).

KONICA MINOLTA DIGITAL CAMERAPhoto of Gymnopis multiplicata an american caecilian. Photo by Teague O'Mara.


The following sources have been consulted in the elaboration of this entry: