Arxiu d'etiquetes: urodelo

Genitales animales: anfibios, reptiles y mamíferos

Después de la primera entrega sobre los genitales de aves y peces, cerramos capítulo sobre las curiosidades de los penes, vaginas y demás órganos reproductores de anfibios, reptiles y mamíferos.

GENITALES EN ANFIBIOS

Como ya vimos en el artículo anterior, la cloaca es el orificio donde confluyen los aparatos digestivo, reproductor  y excretor. Todos los anfibios poseen cloaca, así como los reptiles, aves y algunos peces (tiburones y rayas) y mamíferos. Las larvas de los anfibios se caracterizan por sufrir una gran transformación conocida como metamorfosis.

No te pierdas el exitoso artículo sobre anfibios ladrones de esperma.

ANUROS

De reproducción externa, el apareamiento de muchos anuros se produce en el agua. En los anuros (anfibios sin cola, como las ranas) el macho, de menor tamaño que la hembra, se agarra a la hembra firmemente. Este abrazo se denomina amplexo. Las contracciones de la hembra al expulsar los huevos estimulan al macho para rociarlos de esperma en el mismo momento que son expulsados. Los huevos quedan unidos por una masa gelatinosa que adquiere diferentes formas según la especie.

Amplexo de Litoria xanthomera. Foto: Rainforest harley

Las ranas macho del género Ascaphus tienen una pseudocola que no es más que una extensión de la cloaca. Esto les ayuda a evitar pérdidas de esperma en las aguas de gran corriente donde viven, al depositar el esperma dentro de la cloaca de la hembra. Son pues los únicos anuros con fertilización interna.

Rana con cola (Ascaphus truei). Foto: Mokele

URODELOS

Casi todos los urodelos (anfibios con cola, como salamandras y tritones) presentan fecundación interna. El macho se sitúa delante la hembra y libera unos sacos (espermatóforos) que contienen los espermatozoides. La hembra camina sobre uno de ellos, lo recoge con los labios de la cloaca y los situa en la espermateca, una cavidad donde los espermatozoides esperan a que los huevos pasen por la cloaca para irlos fecundando. La hembra pone los huevos fecundados uno a uno pegándolos en plantas acuáticas, excepto en algunas especies de salamandra, en las que la hembra los retiene y nacen larvas vivas (ovoviviparismo).

Espermatóforos de salamandra (Ambystoma sp.). Foto: Placeuvm

ÁPODOS

Los ápodos o cecilias son anfibios sin patas con fecundación interna, pero a diferencia de los anuros se produce inseminación interna.  Esto es posible gracias a una pseudo-falo (phallodeum) que tienen los machos, que insertan en la cloaca de la hembra durante dos o tres horas.

Phallodeum de una cecilia. Foto cedida por: Danté Fenolio

En las especies ovíparas (25%), los huevos son custodiados por la madre, el resto de especies son ovovivíparas (75%). En algunas especies ovovivíparas las crías ya nacen metamorfoseadas, en otras como larva. Durante su estancia en el interior de la madre, se alimentan de células del oviducto, que raspan con sus dientes especiales. En el caso de la especie ovípara Boulengerula taitana, las larvas se alimentan de la piel de la madre lo que les permite crecer 10 veces su tamaño en una semana.

GENITALES EN REPTILES

REPTILES ESCAMOSOS

Los reptiles escamosos (orden Squamata), es decir, lagartos, serpientes y anfisbenas (culebrillas ciegas) poseen el pene dividido en dos: es lo que se conoce como hemipene. Se mantiene guardado en el interior de la cola y sale al exterior durante la cópula gracias a los tejidos eréctiles. A pesar de ser doble, durante la cópula sólo introducen en la hembra una de las partes, aunque pueden hacerlo alternativamente. Los extremos pueden ser lisos o presentar púas o estructuras para asegurar el agarre a la cloaca de la hembra.

Lagartija vivípara (Zootoca vivipara) con los hemipenes a la vista. Foto: Charlesjsharp

 

TORTUGAS

En algunas tortugas marinas, la cloaca conserva la capacidad de intercambio gaseoso, en otras palabras, de respirar. El agua pasa lentamente por ella, lo que permite recoger el oxígeno y llevarlo hasta los pulmones.

Las tortugas macho poseen un pene simple que está plegado en dos en la cloaca, dentro de la cola, por lo que la cola de los machos es más gruesa y larga que la de las hembras. Durante la erección, se llena de fluido, se despliega y sale al exterior, alcanzando un tamaño comparativamente bastante grande.

Pene de tortuga mediterránea (Testudo hermanni). Fuente

COCODRILOS

Los cocodrilos tienen un pene rígido (siempre en erección) escondido dentro del cuerpo que, sale disparado como un resorte al exterior en el momento de la cópula y se oculta de nuevo a la misma velocidad. Según este estudio, el tejido fibroso y colágeno del pene permitiría la no existencia de erección y de tumescencia en el aligator americano.

En este vídeo se puede observar cómo emerge el pene de un aligator americano durante su disección, al tocar el nervio pélvico.

 

GENITALES EN MAMÍFEROS

MAMÍFEROS MONOTREMAS

Los monotremas son los mamíferos más primitivos, con algunas características reptilianas, como la puesta de huevos y la presencia de cloaca. Ornitorrincos y equidnas son los representantes más conocidos.

El pene de los monotremas tiene 4 cabezas, aunque no todas pueden funcionar simultáneamente. Se usa sólo la mitad, es decir, dos cabezas cada vez. En el caso del ornitorrinco sólo funciona el lado izquierdo, ya que la hembra sólo tiene funcional el ovario izquierdo.

Pene de equidna. Fuente

MAMÍFEROS MARSUPIALES

Los marsupiales son aquellos mamíferos en los que la cría termina su desarrollo en el marsupio, una especie de bolsa que poseen las hembras donde se encuentran las mamas. Los más conocidos son los canguros, koalas, zarigüeyas y el extinto tilacino.

Generalmente las hembras tienen dos vaginas, que encajan con los penes bifurcados de los machos, que se retraen dentro del cuerpo en forma de S cuando están en reposo. Los penes de los marsupiales, a diferencia de algunos placentarios, no poseen ningún hueso en su interior.

Pene de zarigüeya. Foto: Ellen Rathbone

En el caso de los canguros, las hembras poseen tres vaginas (que se unen en una sola abertura al exterior) y dos úteros. Las dos vaginas laterales conducen el esperma hacia los úteros y la central es por donde desciende la cría durante el parto.

Sistema reproductor de las hembras marsupiales. Foto: National Geographic

MAMÍFEROS PLACENTARIOS

HUESO PENEANO Y ERECCIÓN

En los mamíferos placentarios, como los humanos, la cría se desarrolla en el útero y es nutrido mediante la placenta. Muchos machos de placentarios presentan un hueso peneano o báculo. Este hueso permitiría la cópula aunque no haya erección.

Hueso peneano de perro. La flecha señala la ubicación del surco uretral. Foto: Didier Descouens

Algunos placentarios han perdido el báculo: es el caso de los humanos, hienas, équidos (caballos, cebras…) y lagomorfos (conejos, liebres…). En ellos, la erección es posible gracias al llenado de sangre de los cuerpos cavernosos.

DELFINES

En el caso de los delfines, su pene es prensil y sensorial. La punta es giratoria y no es raro verlos palpar el fondo marino con su pene. Esto ha dado lugar a falsos mitos como que los delfines siempre están excitados e intentan copular con cualquier cosa que se les ponga por delante. Esta capacidad táctil también les permitiría estrechar lazos sociales entre ellos, incluso entre machos. Este comportamiento también lo observamos en las orcas.

La vagina de los delfines está llena de pliegues y recovecos para dificultar el acceso del esperma hasta el óvulo, ya sea de machos rivales o de machos con los que la hembra no deseaba aparearse. Si quieres ver cómo encaja el pene en la intrincada vagina del delfín clica aquí.

HIENAS

A simple vista podríamos confundir una hiena macho con una hembra. Las hienas moteadas (Crocuta crocuta) hembra, tienen una larga vagina que se extiende en un clítoris externo del mismo tamaño que el pene masculino. Las crías pues, tienen que atravesar este largo canal al nacer, que sufre grandes desgarros en los primeros partos y en ocasiones las crías mueren por no poder atravesarlo. Además, los labios vaginales también son grandes y llenos de grasa, lo que podría llegar a recordar a unos testículos.

Genitales de la hiena moteada. Fuente: Quora

REFERENCIAS

Mireia Querol Rovira

 

 

Anuncis

Metamorfosis y larvas de anfibios

La palabra anfibio proviene del griego antiguo “amphi”, que significa “ambos” y “bios”, que significa “vida”. Aunque el término anfibio es un adjetivo que sirve para describir a animales que viven tanto en tierra como en el agua, en el caso de los anfibios además hace referencia a las dos etapas vitales por las que pasan, y es que los anfibios nacen en un estado larvario acuático y se convierten en individuos adultos mediante la metamorfosis. En esta entrada os explicaremos cómo funciona la metamorfosis a nivel hormonal, qué cambios anatómicos se dan y las diferencias de dicho proceso entre los diferentes órdenes de lisanfibios.

METAMORFOSIS LISANFIBIA

La metamorfosis está presente en los tres órdenes actuales de lisanfibios. Este proceso ya ocurría en los primeros tetrápodos terrestres, los cuáles debían poner sus huevos en el agua. Aun así, no todas las especies actuales presentan metamorfosis externa, ya que algunas nacen como adultos en miniatura (como el 20% de especies de anuros). En estas especies, la metamorfosis se da igualmente en el interior del huevo antes de nacer, lo que se conoce como metamorfosis interna.

tadpoles_-_agalychnis_callidryas_cutted-min
Huevos de rana verde de ojos rojos (Agalychnis callydryas) justo antes de eclosionar, por Geoff Gallice.

Como norma general, los lisanfibios ponen sus huevos en el agua. En la gran mayoría de especies, de los huevos gelatinosos nacerán larvas acuáticas, aunque su morfología varía mucho entre las diferentes especies. Aun así, las larvas de todos los lisanfibios presentan una serie de características comunes:

  • Branquias externas, mediante las cuales respiran bajo el agua.
  • Ausencia de párpados y de pigmentos retinianos asociados a la visión fuera del agua.
  • Presencia de la línea lateral (o equivalente), órgano sensorial característico de los peces que les permite percibir las vibraciones del agua.
  • Piel menos gruesa.
  • Adaptaciones anatómicas a la vida subacuática.
dsc_0061-nef-min
Foto de salamandra común (Salamandra salamandra) en la que se aprecian las branquias externas y el aspecto pisciforme de la larva, por David López.

Durante la metamorfosis, muchas estructuras que son útiles durante el estado larvario serán reabsorbidas mediante la apoptosis, un proceso de muerte celular controlada. En muchos casos este proceso está altamente condicionado por varios factores ambientales como la densidad de población, la disponibilidad de alimento y la presencia de ciertas sustancias químicas en el agua.

CAMBIOS HORMONALES

A nivel hormonal, la metamorfosis se caracteriza por la interacción de dos tipos de hormonas diferentes: las hormonas tiroideas y la prolactina. Mientras que las hormonas tiroideas, como la tiroxina (segregadas por la glándula tiroides), estimulan el proceso de metamorfosis, la prolactina (segregada por la glándula pituitaria o hipófisis) la inhibe. La concentración de estas dos hormonas (regulada por el eje Hipotálamo→Hipófisis→Tiroides) es lo que controla las diferentes fases de la metamorfosis.

thyroid_system-min
Esquema de Mikael Häggström del eje hipotálamo (verde), hipófisis o pituitaria (rojo), tiroides (azul) en seres humanos y la liberación de hormonas tiroideas.

PREMETAMORFOSIS

Es la fase de crecimiento de la larva, y dura alrededor de los primeros 20 días de vida (dependiendo de la especie). Esta fase se caracteriza por una baja secreción de hormonas tiroideas y por una alta concentración de prolactina, que inhibe el proceso de metamorfosis. Esto se debe a que el sistema hipotálamo→hipofisario aún es inmaduro.

PROMETAMORFOSIS

Es un período de crecimiento reducido con cambios morfológicos lentos, debidos al aumento en la concentración de tiroxina en sangre a causa del crecimiento de la glándula tiroides. Además, comienza a desarrollarse el eje hipotálamo→hipofisario, el cual hará aumentar aún más la concentración de tiroxina y disminuirá la de prolactina, abriendo paso a grandes cambios morfológicos.

CLÍMAX METAMÓRFICO

Es el momento en el que el eje hipotálamo→hipófisis→tiroides se encuentra en su máximo rendimiento y se dan grandes cambios morfológicos en la larva, la cual se acabará convirtiendo en un adulto en miniatura. Finalmente, los niveles de tiroxina se empezarán a restablecer por un sistema de retroalimentación negativa de ésta sobre el hipotálamo y la hipófisis.

th-graph-min
Esquema extraído de Brown & Cai 2007, sobre los niveles generales de hormonas tiroideas durante las diferentes etapas de la metamorfosis.

CAMBIOS MORFOLÓGICOS

A lo largo del proceso de metamorfosis, las larvas sufrirán una serie de cambios anatómicos que les permitirán adquirir la forma adulta. Algunos cambios comunes a la mayoría de especies son la adquisición de párpados y nuevos pigmentos retinales, la reabsorción de las branquias y la pérdida de la línea lateral. Otros cambios morfológicos varían entre los diferentes órdenes. Por ejemplo en las cecilias (orden Apoda) las larvas se parecen a adultos en miniatura pero con branquias externas. Además, la mayoría de cecilias presentan metamorfosis interna y al nacer ya no tienen ningún rastro de las branquias.

new-species-burrowing-caecilian-egg-closeup_48946_600x450-min
Foto de Blog do Nurof-UFC del huevo de una Cecilia, dentro del cual vemos a la larva branquiada.

En los urodelos (orden Urodela), los cambios metamórficos externos tampoco son muy espectaculares. Las larvas se parecen bastante a los adultos ya que sus extremidades se desarrollan temprano, aunque tienen branquias externas filamentosas, no tienen párpados y la aleta caudal está más desarrollada. Incluso su dieta es carnívora como la de los adultos. Aun así, la gran diversidad de salamandras y tritones hace que los ciclos vitales de las diferentes especies varíen mucho, desde especies vivíparas que paren a crías vivas, hasta especies neoténicas que mantienen características larvarias durante la vida adulta.

urodela-min
Foto de David Álvarez del parto vivíparo de una salamandra común (Salamandra salamandra), y foto de Faldrian de un ajolote (Ambystoma mexicanum), una especie neoténica.

Las ranas y los sapos (orden Anura) son el grupo en el que los cambios metamórficos son más dramáticos. La larva de los anuros es tan distinta que se llama renacuajo, el cual se diferencia del adulto tanto en el aspecto como en la fisiología y el comportamiento. Aunque los renacuajos nacen con branquias externas, éstas quedan cubiertas a los pocos días por unos pliegues de piel que forman una cámara branquial. Además los renacuajos tienen un cuerpo redondeado y sin patas y una cola larga y comprimida que les permite nadar velozmente en el agua.

litoria_ewingii_tadpole-min
Foto de J. J. Harrison de un renacuajo de rana arborícola parda meridional (Litoria ewingii).

Una de las principales diferencias entre los anuros adultos y los larvarios es la dieta. Mientras que las ranas y los sapos adultos son depredadores, los renacuajos son larvas herbívoras, alimentándose o bien filtrando partículas vegetales suspendidas en el agua, o bien raspando las algas pegadas a las rocas con un conjunto de “dientes” córneos que presentan algunas especies. Esto se refleja en su aparato digestivo en forma de espiral y extremadamente largo a fin de poder digerir las grandes cantidades de materia vegetal de la que se alimentan. Los renacuajos son máquinas de comer incansables, con algunas especies filtradoras siendo capaces de filtrar hasta ocho veces su volumen corporal de agua por minuto.

developing_internal_organs_of_a_tadpole-min
Foto de Denise Stanley de un renacuajo, donde vemos tanto los “dientes” córneos, como el intestino en forma de espiral.

Tras la metamorfosis, los renacuajos reabsorberán las branquias y la cola, reducirán la longitud de su aparato digestivo, desarrollarán las patas y los pulmones, convirtiéndose en metamórficos preparados para la vida en tierra.

dscn1328-bufo-spinosus-min
Sapo espinoso justo después de la metamorfosis (Bufo spinosus) de David López.

Como hemos visto, el proceso de metamorfosis varía mucho entre las diferentes especies de cada orden. Este proceso hace que la mayoría de lisanfibios pasen parte de sus vidas en el agua y parte en tierra, hecho representativo de la transición de los primeros tetrápodos del medio acuático al medio terrestre. Además, la gran diversidad de nichos ecológicos que ocupan tanto los adultos como las larvas de las diferentes especies y el amplio abanico de factores ambientales que afectan al proceso de metamorfosis, hacen de los lisanfibios grandes bioindicadores del estado de salud de los ecosistemas.

REFERENCIAS

Se han consultado las siguientes fuentes durante la elaboración de esta entrada:

difusio-castella

Híbridos y ladrones de esperma: cleptones anfibios

En biología un híbrido es el resultado de la reproducción de dos progenitores de especies genéticamente diferentes, aunque en la mayoría de casos los híbridos o no son viables o son estériles. Pero a veces, en algunas especies de anfibios los híbridos no sólo son viables, sino que además forman nuevas especies con características especiales. En esta entrada os ponemos dos casos de híbridos de anfibios que forman lo que se conoce como un cleptón y que ponen en duda el concepto tradicional de especie.

¿QUÉ ES UN CLEPTÓN?

Un cleptón o kleptón (abreviado kl.) es una especie que depende de otra especie para completar su ciclo reproductivo. El origen de la palabra cleptón viene del griego “kleptein” que significa “robar”, ya que el cleptón “roba” a otra especie para poder reproducirse. En el caso de los anfibios, los cleptones se han originado por fenómenos de hibridación. Las potentes feromonas sexuales de los anfibios y los coros de múltiples especies en el caso de los anuros, provocan que a veces machos y hembras de diferentes especies intenten aparearse. Aun así los híbridos sólo son viables entre especies muy emparentadas.

Dentro de las diferentes especies cleptón podemos encontrar dos métodos diferentes según el tipo de concepción: los zigocleptones, en los que hay una fusión del material genético del óvulo y del espermatozoide, y los ginocleptones, en los que el óvulo necesita estimulación por parte del espermatozoide pero no incorpora su material genético.

Los diferentes cleptones de anfibios suelen estar constituidos por hembras (hay pocos machos o ninguno) que utilizan el esperma de otra especie para perpetuar el cleptón. Como los cleptones de anfibios a veces dependen de varias especies emparentadas, esto puede hacer que se creen “complejos de especies” donde varias especies muy parecidas presenten zonas de hibridación y relaciones muy complicadas entre ellas. A continuación os ponemos dos ejemplos de cleptones, uno en anuros europeos y otro en urodelos americanos.

HIBRIDOGÉNESIS EN RANAS VERDES

Las ranas verdes europeas (género Pelophylax) forman lo que se conoce como “complejo hibridogenético” en el cual los híbridos de distintas especies forman cleptones que no se pueden reproducir entre sí, sino que han de reproducirse con un miembro de la especie progenitora, “robando” o “parasitando” su esperma para sobrevivir.

Pelophylax_esculentus_-_Amplexus_01
Foto de Bartosz Cuber de dos ranas comestibles (Pelophylax kl. esculentus) en amplexo. Este híbrido es el más conocido tanto por su amplia distribución, como por ser considerado una delicia en Francia.

En la hibridogénesis de las ranas verdes, el material genético de ambos progenitores se combina para formar el híbrido resultante (zigocleptón). Estos híbridos (normalmente siempre hembras) tendrán la mitad del genoma de una especie y la mitad de la otra. Aun así, al no poder reproducirse con otros híbridos similares, durante la gametogénesis se elimina el material genético de una de las especies progenitoras. Así, al aparearse con un individuo de la especie cuyo material genético ha eliminado, volverán a formar un híbrido.

Hybirds
Esquema sobre la dotación genética de los diferentes cleptones de Pelophylax. En este complejo hibridogenético intervienen cuatro especies “naturales”: la rana europea común (Pelophylax ridibundus, genoma RR), la rana de Lessona (Pelophylax lessonae genoma LL), la rana verde ibérica (Pelophylax perezi, genoma PP) y la rana italiana (Pelophylax bergeri, genoma BB).

La rana comestible común (Pelophylax kl. esculentus, genoma RL) proviene de la hibridación entre la rana común europea y la rana de Lessona. La rana comestible italiana (Pelophylax kl. hispanicus, genoma RB) proviene de un híbrido entre la rana común europea y la rana italiana. Finalmente la rana de Graf (Pelophylax kl. grafi, genoma RP) proviene de la hibridación de la rana comestible común (en la cual se elimina el ADN de la rana de Lessona de los gametos) y la rana verde ibérica.

Hybridogenesiisisisi
Esquemas de Darekk2 sobre los procesos hibridogenéticos de los diferentes cleptones de ranas europeas. Los círculos grandes indican el genoma de los individuos y los círculos pequeños el material genético de los gametos.

Como vemos, la dotación genética de la rana común europea es la que se encuentra en los tres cleptones. Estos cleptones eliminan el material genético de la especie con la que comparten el hábitat de sus gametos y mantienen el de la rana común europea (R). Así por ejemplo, la rana comestible (P. kl esculentus) elimina de sus óvulos el ADN de la rana de Lessona (L), con la cual se encuentra en su distribución natural y se reproduce, dando lugar a más ranas comestibles (RL). La rana común europea raramente se reproduce con alguno de los híbridos y si lo hace, salen ranas comunes europeas normales.

SALAMANDRAS CON VARIOS GENOMAS

Las salamandras del género Ambystoma, generalmente conocidas como salamandras topo, son un género endémico de América del Norte y son los únicos representantes actuales de la familia Ambystomatidae. Cinco de estas especies forman el llamado “complejo Ambystoma, en el cual estas especies contribuyen a la composición genética de un linaje unisexual de salamandras que se reproducen por ginogénesis (ginocleptón). Basándose en el ADN mitocondrial de las poblaciones unisexuales, se cree que este complejo proviene de un fenómeno de hibridación de hace unos 2,4-3,9 millones de años.

ambystomert complexx
Este complejo está formado por las siguientes cinco especies: la salamandra de puntos azules (Ambystoma laterale de genoma LL, foto de Fyn Kynd Photography), la salamandra de Jefferson (Ambystoma jeffersonianum de genoma JJ, foto de Vermont Biology), la salamandra de boca chica (Ambystoma texanum de genoma TT, foto de Greg Schechter), la salamandra de riachuelo (Ambystoma barbouri de genoma BB, foto de Michael Anderson) y la salamandra tigre (Ambystoma tigrinum de genoma TiTi, foto de Carla Isabel Ribeiro).

En la ginogénesis de este linaje compuesto únicamente por hembras, el óvulo necesita la activación por parte de un espermatozoide para empezar a dividirse y desarrollarse, aunque antes debe duplicar su material genético mediante un proceso de endomitosis para evitar la formación de zigotos haploides (con la mitad de información genética) inviables. Aun así, como con los reptiles partenogenéticos, a la larga la falta de recombinación genética puede pasar factura a los individuos. Es por esto que este linaje unisexual de salamandras tiene la capacidad de incorporar ocasionalmente el genoma entero de los machos de cuatro de las especies que forman el complejo (actualmente no se ha visto que la salamandra de riachuelo se aparee con ningún individuo unisexual).

ginogino
Esquema de Bi, Bogart & Fu (2009) en el que vemos las diferentes vías que puede tomar la reproducción ginogenética de las salamandras topo.

Estos individuos no mezclan el genoma adquirido, sino que lo suman al suyo. Esto provoca que dentro de este linaje podamos encontrar individuos diploides, triploides, tetraploides e incluso hasta pentaploides (aunque cuanto más aumenta la ploidía menos viables son los individuos), dependiendo de la cantidad de genomas diferentes que hayan ido incorporando las generaciones anteriores.

mes ibrids
Dentro del cleptón, la combinación más común son los triploides basados en la salamandra de puntos azules y la de Jefferson, con los genomas LLJ (izquierda, imagen de David Misfud) y JJL (derecha, imagen de Nick Scobel), aunque el número de combinaciones es increíblemente grande, motivo por el cual los científicos no han podido asignar un nombre científico válido a este grupo de origen híbrido.

A diferencia de las ranas verdes, resulta muy difícil definir un nombre científico dentro de este cleptón de Ambystoma, ya que los genomas de las diferentes especies se pueden encontrar en diferentes combinaciones y proporciones en los diferentes individuos unisexuales.

REFERENCIAS

Durante la elaboración de esta entrada se han utilizado las siguientes fuentes:

Difusió-castellà

Cómo respirar sin pulmones, al estilo lisanfibio

Aunque la mayoría de vertebrados terrestres dependemos de los pulmones para realizar el intercambio de gases, los lisanfibios además presentan respiración cutánea, respiran a través de la piel. Aunque esto puede parecer una desventaja, ya que deben mantener la piel relativamente húmeda, en esta entrada veremos las ventajas que les confiere la respiración cutánea y cómo en algunos grupos, ésta ha sustituido completamente la respiración pulmonar.

RESPIRAR AGUA O AIRE

Los vertebrados terrestres utilizan los pulmones para realizar el intercambio de gases. Aunque nuestros antepasados acuáticos respiraban mediante branquias, éstas no sirven en el medio terrestre, ya que la gravedad haría que se colapsaran y perdiesen su estructura. Los pulmones, al encontrarse en el interior del cuerpo, pueden mantener su estructura en un ambiente con mayor gravedad. Tanto branquias como pulmones presentan estructuras muy ramificadas para aumentar la superficie de difusión y así, favorecer el intercambio de gases (a mayor superficie, más intercambio).

Giant_Mudskipper_(Periophthalmodon_schlosseri)_(15184970133)Espécimen de saltador del barro gigante (Periophthalmodon schlosseri), un pez del sudeste asiático que puede salir del agua gracias en parte, a la respiración cutánea. Foto de Bernard Dupont.

Aun así, entre los vertebrados existe una tercera forma de intercambio de gases. Aunque no está tan extendida como las branquias o los pulmones, la respiración cutánea la encontramos en varios grupos de animales, como los peces pulmonados y algunos reptiles marinos (tortugas y serpientes marinas). Aun así, los lisanfibios son el grupo que ha llevado la especialización en la respiración cutánea al extremo.

¿CÓMO RESPIRAN LOS LISANFIBIOS?

Los lisanfibios actuales son el grupo de tetrápodos que presentan mayor diversidad de estrategias respiratorias. Aparte de la respiración cutánea presente en todas las especies, la mayoría de lisanfibios nacen en un estado larvario acuático con branquias, y después de la metamorfosis, desarrollan pulmones para respirar en tierra firme.

Las larvas de los urodelos y los ápodos presentan branquias externas filamentosas y muy ramificadas que les permiten respirar bajo el agua. Éstas han de estar en movimiento constante para que haya intercambio de gases. Algunas especies de salamandras neoténicas mantienen las branquias durante la edad adulta. En cambio, los renacuajos de los anuros presentan branquias internas cubiertas por sacos branquiales.

Salamander_larva_closeupRetrato de una larva de salamandra en la que se aprecian les branquias ramificadas y filamentosas. Foto de Brian Gratwicke.

La mayoría de lisanfibios terrestres presentan un par de pulmones simples con pocas ramificaciones y grandes alveolos. Éstos tienen una baja tasa de difusión de gases comparados con los pulmones amniotas. Además, mientras que los amniotas ventilamos los pulmones mediante la expansión de la caja torácica y el diafragma, los lisanfibios han de forzar el aire a los pulmones mediante un sistema de bomba bucal.

Four_stroke_buccal_pumpingEsquema del sistema de respiración pulmonar de los lisanfibios. En el sistema de bomba bucal, la cavidad bucal se llena de aire y después se eleva el suelo de la boca para forzar el aire hacia los pulmones. Imagen de Mokele.

Además de la respiración branquial o pulmonar, los lisanfibios oxigenan la sangre por respiración cutánea. La piel de los lisanfibios es muy delgada y está muy capilarizada (tienen una gran cantidad de vasos sanguíneos). Esto hace que ésta tenga una gran capacidad de difusión de moléculas gaseosas, permitiéndoles la respiración cutánea mediante un sistema contracorriente.

600px-ExchangerflowEsquema modificado de un sistema de intercambio contracorriente. En éste, la sangre desoxigenada (con CO2) circula en dirección contraria al aire (cargado de O2) y entre los dos fluidos se da un intercambio de gases en un intento de igualar la concentración de ambos gases. Imagen modificada de Joe.

La piel de los lisanfibios difiere de la de los amniotas en que no presenta escamas, plumas ni pelo. Esto hace que la piel de los anfibios sea muy permeable tanto a los gases como al agua (lo que les convierte en grandes bioindicadores de los ambientes en los que viven, yq que sus pieles absorben muchos tipos de sustancias solubles). Por eso los lisanfibios han de mantener la piel relativamente húmeda para que el intercambio se pueda llevar a cabo.

KammolchmaennchenMacho de tritón crestado (Triturus cristatus) en la fase nupcial. Las anchas crestas de la cola incrementan la superficie de piel aumentando la difusión de gases. Foto de Rainer Theuer.

Los lisanfibios viven constantemente en un delicado equilibrio en el que la piel se ha de mantener suficientemente húmeda para permitir el intercambio de gases, pero no tan permeable como para que pierdan agua, se deshidraten y mueran. Esto lo consiguen viviendo en ambientes húmedos, o bien creando capas de piel húmeda externas para crear un ambiente acuoso a su alrededor.

Bombay_caecilianFoto de una cecília de Bombay (Ichthyophis bombayensis) un lisanfibio que vive en lodazales y otros hábitats húmedos. Foto de Uajith.

Muchos lisanfibios presentan gran cantidad de piel, cosa que aumenta la superficie respiratoria. Algunos ejemplos son, las papilas vasculares de la rana peluda (Trichobatrachus robustus), los pliegues de piel de las ranas del géneros Telmatobius o las anchas aletas caudales de muchos tritones.

TrichobatrachusGreenDibujo de la rana peluda (Trichobatrachus robustus) en el que se ven las papilas que le dan nombre. Imagen extraída de Proceedings of the Zoological Society of London (1901).

Aunque la mayoría de ranas obtiene gran parte del oxígeno por los pulmones durante el verano, durante las épocas más frías (cuando su metabolismo se ralentiza) muchas especies hibernan en el fondo de lagos helados, realizando el intercambio de gases exclusivamente por vía cutánea.

6887057816_d68fccf4f4_oMuchos lisanfibios de zonas subárticas hibernan bajo el agua, utilizando la piel para extraer oxígeno del agua y expulsar el dióxido de carbono de la sangre. Foto de Ano Lobb.

Los urodelos adultos presentan mucha más diversidad de estrategias respiratorias y además, dentro de éstos encontramos uno de los únicos grupos de vertebrados terrestres que no presentan ningún rastro de pulmones.

VIVIR SIN PULMONES

Dentro del suborden de los salamandroideos encontramos la familia Plethodontidae. Estos animales son conocidos popularmente como salamandras apulmonadas ya que, como su nombre indica, no tienen pulmones y dependen exclusivamente de la piel para realizar el intercambio de gases.

Kaldari_Batrachoseps_attenuatus_02Salamandra esbelta de California (Batrachoseps attenuatus) fotografiada por Kaldari. Esta es un perfecto ejemplo de los cuerpos largos y delgados de los pletodóntidos, que les facilita la difusión de gases.

Estos urodelos se encuentran distribuidos principalmente por las Américas, con algunas especies en la isla de Cerdeña y la Península de Corea. Lo más sorprendente es que los pletodóntidos, como la mayoría de salamandroideos, son animales principalmente terrestres y no presentan fase larvaria acuática. Aunque algunas especies presenten branquias durante el estado embrionario, éstas se pierden antes de nacer y los pulmones no se llegan a desarrollar.

Northern_red_salamander_(Pseudotriton_ruber)Foto de salamandra roja (Pseudotriton ruber) un pletodóntido endémico de la costa atlántica de los Estados Unidos. Foto de Leif Van Laar.

Se cree que esta familia evolucionó en ríos de alta montaña con fuertes corrientes. La presencia de pulmones los hubiera hecho flotar demasiado, cosa que les hubiese dificultado el movimiento en estos hábitats. Las aguas frías de los ríos alpinos son ricas en oxígeno, haciendo que la respiración cutánea fuese suficiente para estos pequeños animales.

Vídeo de Verticalground100 donde se nos muestran algunas especies de pletodóntidos.

Una piel fina y vascularizada (facilita la difusión) y la evolución de cuerpos largos y delgados (facilita el transporte de O2 por todo el cuerpo) hicieron que los pulmones resultaran inútiles para los pletodóntidos.  Actualmente las salamandras apulmonadas son la familia de urodelos más numerosa, y representan más de la mitad de la biomasa animal en muchos ecosistemas norteamericanos. Además, son más activos que la mayoría de lisanfibios, con sistemas nerviosos y sensoriales muy desarrollados, siendo depredadores voraces de artrópodos y otros invertebrados.

3679651745_d678454a1b_oSalamandra zig-zag de Ozark (Plethodon angusticlavius) una curiosa salamandra apulmonada típica del estado de Missouri. Imagen de Marshal Hedin.

Como veis, la respiración cutánea de los lisanfibios les permite hacer cosas que pocos tetrápodos pueden hacer. Pasar todo un invierno sumergidos y vivir en tierra firme sin pulmones son gestas increíbles reservadas a un pequeño grupo de animales. Puede que los lisanfibios aún dependan del medio acuático para sobrevivir, pero como hemos visto, poco tienen de lentos y primitivos, ya que presentan algunas de las adaptaciones fisiológicas más impresionantes del reino animal.

REFERENCIAS

Se han utilizado las siguientes fuentes para la elaboración de esta entrada:

Difusió-castellà

Regeneración de extremidades, del ajolote al ser humano

La regeneración de partes del cuerpo perdidas o dañadas en los animales es conocida desde hace varios siglos. En 1740 el naturalista Abraham Trembley observó a un pequeño cnidario que podía regenerar su cabeza si se la cortaban, por lo que lo llamó Hydra, en referencia al monstruo de la mitología griega que podía regenerar sus múltiples cabezas si se las cortaban. Posteriormente, se descubrió que había muchas otras especies animales con capacidades regenerativas. En esta entrada hablaremos sobre estos animales.

Regeneración en el reino animal

La regeneración de partes del cuerpo está mucho más extendida entre los diferentes grupos de invertebrados que de vertebrados. Este proceso puede ser bidireccional, en el que ambos trozos del animal regeneran las partes que les faltan para generar dos animales (cómo en la hidra, las planarias, los gusanos y las estrellas de mar), o unidireccional, en el que el animal pierde una extremidad pero solo la regenera sin que se formen dos animales (artrópodos, moluscos y vertebrados). Entre los vertebrados, peces y anfibios son los que presentan mayores capacidades regenerativas, aunque muchos lagartos y algunos mamíferos pueden regenerar sus colas.

ch14f01Imagen de Matthew McClements sobre la regeneración bidireccional en planàrias, hidras y estrellas de mar. Extraído de Wolbert's Principles of Development.

La regeneración se puede dar de dos maneras distintas:

  • Regeneración sin proliferación celular activa o “morphalaxis”. En este modo, la parte del cuerpo ausente es recreada principalmente mediante la remodelación de células preexistentes. Esto es lo que ocurre en la Hydra, en la que las partes perdidas se regeneran sin la creación de material nuevo. Por lo tanto, si se secciona una hidra por la mitad, obtendremos dos versiones más pequeñas de la hidra original.
Vídeo de un experimento en el que se ha seccionado una Hydra en diferentes trozos. Vídeo de Apnea.
  • Regeneración con proliferación celular o “epimorfosis”. En éste, la parte perdida se regenera mediante proliferación celular o sea, que se crea “de nuevo”. Ésta en la mayoría de casos se produce mediante la formación de una estructura especializada llamada blastema, masa de células madre sin diferenciar que aparece en fenómenos de regeneración celular.

Casi todos los grupos de animales con capacidades regenerativas presentan regeneración con formación de blastema. Aun así, el origen de las células madre del blastema varía según el grupo. Mientras que las planarias presentan células madre pluripotentes (que pueden diferenciarse a cualquier tipo celular) repartidas por todo el cuerpo, los vertebrados presentan células específicas en cada tipo de tejido (cartílago, músculo, piel…) que sólo generaran células de los tejidos donde se encuentre el blastema.

Entre los vertebrados terrestres, las lagartijas y los urodelos son los que muestran mayores habilidades regenerativas. A continuación veremos cómo lo consiguen y las aplicaciones que esto tiene en la medicina actual.

Colas prescindibles

Cuando eres un pequeño animal que está siendo perseguido por un gato u otro depredador, probablemente te salga más rentable perder tu preciada cola a perder tu vida. Algunos vertebrados terrestres han evolucionado siguiendo esta filosofía, y ellos mismos pueden desprenderse de su cola voluntariamente mediante un proceso llamado autotomía caudal. Esto les permite huir de sus depredadores, los cuáles se entretienen con la cola perdida que sigue moviéndose.

 Vídeo en el que se vé cómo algunas lagartijas como este vanzosaurio de cola roja (Vanzosaura rubricauda) tienen colas de colores brillantes para atraer la antención de los depredadores. Vídeo de Jonnytropics.

La autotomía o autoamputación, se define como un comportamiento en el que el animal se desprende de una o varias partes del cuerpo. La autotomía caudal la encontramos en muchas especies de reptiles y en dos especies de ratones espinosos del género Acomys. Entre los reptiles, encontramos autotomía caudal en los lacértidos, los geckos, los escincos o eslizones y en los tuataras.

Acomys.cahirinus.cahirinus.6872Foto de un ratón espinoso del Cairo (Acomys cahirinus), un mamífero que es capaz de desprenderse de su cola y regenerarla. Foto de Olaf Leillinger.

En los reptiles, la fractura de la cola se da en zonas concretas de las vértebras caudales que de por sí están debilitadas. La autotomía se puede dar de dos formas distintas: la autotomía intravertebral, en la que las vértebras del centro de la cola tienen planos de fractura transversales preparados para romperse si se les aplica suficiente presión, y la autotomía intervertebral, en la cual la cola se rompe entre las vértebras por constricción muscular.

0001-3765-aabc-201520130298-gf03Modelo tridimensional de los planos de fractura de la cola de un lagarto y la regeneración post-autotomía de un tubo cartilaginoso. Imagen extraída de Joana D. C. G. de Amorim et al.

La autotomía caudal permite huir al animal, pero le saldrá caro. Muchos reptiles utilizan la cola como reservorio de grasas y perder este almacén de energía suele ser perjudicial para el animal. Por eso se sabe que muchos lagartos, una vez ha desaparecido la amenaza, buscan su cola perdida y se la comen, para al menos recuperar la energía que tenían acumulada en forma de grasa. Además, regenerar una nueva cola es un proceso costoso energéticamente.

DSCN9467Foto de una lagartija parda (Podarcis liolepis) que ha perdido la cola. Foto de David López Bosch.

La regeneración de la cola en los reptiles difiere de la de anfibios y peces en que no se forma el blastema, y en que en vez de regenerarse realmente las vértebras caudales, se forma un tubo de cartílago. La nueva cola no es tan móvil y suele ser más corta que la original, y suele regenerarse completamente al cabo de unas semanas. La mayoría de lagartos pueden regenerar la cola varias veces, pero algunos cómo el lución (Anguis fragilis) sólo pueden hacerlo una vez. En ocasiones, la cola original no se rompe del todo pero se activan los mecanismos de regeneración, cosa que puede dar a que nos podamos encontrar a lagartijas y salamanquesas con más de una cola.

056 (2)Detalle de la cola de una salamanquesa común (Tarentola mauritanica) que ha regenerado la cola sin acabar de perder la cola original. Foto de Rafael Rodríguez.

Urodelos, los reyes de la regeneración

De todos los tetrápodos, los anfibios son los que presentan las mayores capacidades regenerativas. Durante la fase larvaria de la mayoría de especies, tanto la cola como las extremidades (si las presentan) pueden ser regeneradas tras su pérdida. La comunidad científica cree que esto se debe a que en los anfibios el desarrollo de las extremidades y otros órganos se retrasan hasta el momento de la metamorfosis. Aun así, ranas y sapos (anuros) sólo conservan sus poderes regenerativos durante su fase de renacuajo, perdiéndolos al llegar a la edad adulta.

Wood_frog_tadpoleRenacuajo de rana de bosque (Rana sylvatica) que, cómo en todos los anfibios, pospone el desarrollo de las extremidades hasta el momento de la metamorfosis. Foto de Brian Gratwicke.

En cambio, muchas salamandras y tritones (urodelos) conservan sus poderes regenerativos durante toda su vida. Aunque muchas especies presentan autotomía caudal, a diferencia de las lagartijas, los urodelos regeneran completamente, no sólo la cola, sino prácticamente cualquier tejido corporal perdido. De todas las especies conocidas, el ajolote (Ambystoma mexicanum), un anfibio neoténico que llega a la edad adulta sin sufrir metamorfosis, ha servido como organismo modelo para el estudio de la formación del blastema que precede a la regeneración.

 Vídeo en el que se habla del ajolote, este curiosos anfibio que se encuentra en grave peligro de extinción. Vídeo de Zoomin.TV Animals.

La regeneración que se da en las salamandras tiene fases genéticamente similares a las que sufren el resto de vertebrados al desarrollar los distintos tejidos y órganos durante el desarrollo embrionario. En el ajolote (y en el resto de urodelos) la regeneración después de la amputación de una extremidad pasa por tres fases distintas:

  • Curación de la herida: Durante la primera hora tras la amputación, células epidérmicas migran a la zona de la herida. El cierre de la herida se produce más o menos a las dos horas e intervienen los mismos mecanismos que en el resto de vertebrados. Aun así, la regeneración completa de la piel se retrasa hasta el final de la regeneración.
  • Desdiferenciación: Esta segunda fase comienza a las 24 horas de la amputación y es cuando se forma el blastema. Éste está compuesto por células de los tejidos especializados de la zona de amputación que pierden sus características (obtienen la capacidad de proliferar y diferenciarse de nuevo), y de células derivadas del tejido conectivo que migran a la zona de amputación. Cuando estas células de diferente origen se acumulan y forman el blastema, se inicia la proliferación celular.
  • Remodelación: Para el inicio de la tercera fase, es imprescindible la formación de un blastema con células de diversos orígenes. Una vez formado el blastema de células desdiferenciadas, la formación de la nueva extremidad sigue el mismo patrón que el de las extremidades de cualquier vertebrado durante el desarrollo embrionario (incluso intervienen los mismos genes).
A_Stages_of_zebrafish_caudal_fin_regeneration_as_longitudinal_sections.Esquema de la formación del blastema en el pez zebra (Danio rerio) otro organismo modelo. Imagen de Kyle A. Gurley i Alejandro Sánchez Alvarado.

Recientemente se han encontrado fósiles de diversos grupos de tetrápodos primitivos que presentan rastros de regeneración. Se han encontrado pruebas de regeneración de extremidades en fósiles de temnospóndilos (Apateon, Micromelerpeton y Sclerocephalus) y de lepospóndilos (Microbrachis y Hyloplesion). Esta amplia gama de géneros de tetrápodos basales que presentan regeneración y el hecho de que muchos peces también la presenten, ha llevado a muchos científicos a plantearse si los diferentes grupos de tetrápodos primitivos presentaban capacidad de regeneración y ésta se perdió en los antepasados de los amniotas (reptiles, aves y mamíferos).

Axolotl_ganz
Foto de un ajolote, por LoKiLeCh.

Aun así, se cree que la información genética de formación del blastema podría encontrarse en el ADN de los amniotas aunque estaría en estado latente. De las tres fases del proceso de regeneración, la única que es exclusiva de los urodelos es la fase de desdiferenciación, ya que la fase de curación es igual a la cicatrización en el resto de vertebrados y la de remodelación es igual a la formación de extremidades durante la embriogénesis. Actualmente se están llevando a cabo multitud de estudios sobre cómo reactivar los genes latentes que promueven la formación del blastema en otros vertebrados, como por ejemplo los seres humanos.

Algunos órganos humanos como el riñón y el hígado ya tienen cierta capacidad de regeneración, pero gracias a la investigación con células madre en animales como las salamandras y las lagartijas, actualmente es posible regenerar dedos, genitales y partes de la vejiga, el corazón y los pulmones. Como hemos visto, los diferentes animales capaces de regenerar miembros seccionados encierran el secreto que podría salvar a miles de personas. Recordemos esto la próxima vez que oigamos que cientos de especies de anfibios y reptiles se encuentran en peligro por culpa de la mano del hombre.

Difusió-castellà

Referencias

Para la elaboración de esta entrada se han utilizado las siguientes fuentes: