Arxiu d'etiquetes: vector

What is gene therapy?

In the last years we have heard discuss gene therapy and its potential. However, do we know what gene therapy is? In this article, I want to make known this promising tool that can cure some diseases that therapies with conventional drugs cannot it. I discuss approaches of gene therapy and their key aspects, where we find animal models.

INTRODUCTION

A clinical trial is an experimental study realized in patients and healthy subjects with the goal to evaluate the efficiency and/or security of one or various therapeutics procedures and, also, to know the effects produced in the human organism.

Since the first human trial in 1990, gene therapy has generated great expectations in society. After over 20 years, there are a lot of gene therapy protocols have reached the clinical stage.

Before applying gene therapy in humans it is necessary to do preclinical studies; these are in vitro or in vivo investigations before moving to clinical trials with humans. The aim of these is protect humans of toxic effects that the studied drug may have.

An important element in preclinical studies are animal models. First, tests are made with small animals like mice. If they are successful, then tests are made with larger animals, like dogs. Finally, if these studies give good results then they are passed to higher animals: primates or humans.

WHAT IS GENE THERAPY?

Gene therapy represents a promising tool to cure some of those diseases that conventional drug therapies cannot. This therapy consists in the transfer of genetic material into cells or tissues to prevent or cure a disease.

Initially gene therapy was established to treat patients with hereditary diseases caused by single gene defects, but now, at present, many gene therapy efforts are also focused on curing polygenic or non-inherited diseases with high prevalence (Video 1).

Video 1. Explanation about what gene therapy is (Source: YouTube)

APPROACHES IN GENE THERAPY

There are two types of approaches in gene therapy (Figure 1):

  • In vivo gene therapy: introduce a therapeutic gene into a vector which then is administered directly to the patient. The vector will transfer the gene of interest in the target tissue to produce the therapeutic protein.
  • Ex vivo gene therapy: transfer the vector carrying the therapeutic gene into cultured cells from the patient. After, these genetically engineered cells are reintroduced to the patients where they now express the therapeutic protein.

in-ex-vivo
Figure 1. Differences between the two types of approaches in gene therapy (Source: CliniGene – Gene Therapy European Network)

KEY ASPECTS OF GENE THERAPY

When designing a gene therapy approach there are some key aspects to be considered:

1/ THERAPEUTIC GENE

The gene of interest is that which is introduced into the body to counteract the disease. For the one hand, for the diseases are caused by the lost or dysfunction of a single protein, the gene to be transferred is more identifiable, being that only a correct copy of the gene whose dysfunction causes the diseases will be introduced. For the other hand, for the diseases whose origin is more complex the choice of the therapeutic gene may be more difficult and will have to make several studies and know well the disease.

2/ VECTOR

Vehicle by which the gene of interest is transported to the target cells. The perfect vector should be able to transduce target cells without activating an immune response either against itself or the therapeutic gene. But there aren’t a universal vector to treat any disease.

2.1/ VIRAL VECTORS

These type of vectors derives from viruses, but this is not a problem because much or all of the viral genes are replaced by the therapeutic gene. This means that the viral vectors do not cause pathogenic disease because the gene was deleted.

2.2/ NON-VIRAL VECTORS

These type of vectors does not derive from viruses, but the therapeutic gene is part of a plasmid.

3/ TARGET CELLS

Any cell that has a specific receptor for an antigen or antibody, or hormone or drug… The therapeutic gene must be directed to target cells in specific tissues.

4/ ROUTES OF ADMINISTRATION

The therapeutic gene must be administered through the most appropriate route. The type of route depends, as like as vector, the target tissue, the organ to manipulate or the disease to be treated.

5/ ANIMAL MODELS

Are used to find out what happens in a living organism. They are mainly used in research to achieve progress of scientific knowledge, as many basic cellular processes are the same in all animals and can understand what happens to the body when it has a defect; as models for the study of a disease, because humans and animals share many diseases and how to respond to the immune system; to develop and test potential methods of treatment, being an essential part of applying biological research to real medical problems and allowing the identification of new targets for the intervention of the disease; and, finally, to protect the safety of people, animals and environment, researchers have measured the effects of beneficial and harmful compound on an organism, identifying possible problems and determine the dose administration.

Gene therapy represents a promising tool to cure some of those diseases that conventional drug therapies cannot. The availability of animal models is key to preclinical phases because it allows thorough evaluation of safety and efficacy of gene therapy protocols prior to any human clinical trials.

In the near future, gene therapy will be an effective alternative to pharmacological efforts, and enable treatment of many diseases that are refractory or not suitable for pharmacologic treatment alone. Thus, gene therapy is a therapeutic tool that gives us virtually unlimited possibilities to develop better and more effective therapies for previously incurable diseases.

REFERENCES

MireiaRamos-angles

¿Qué es la terapia génica?

En los últimos años hemos oído hablar de la terapia génica y su potencial. ¿Pero sabemos bien qué es o en qué consiste? En este artículo quiero dar a conocer esta herramienta prometedora que puede curar algunas de las enfermedades que las terapias con medicamentos convencionales no pueden. Os hablaré de sus enfoques y también de sus elementos clave, donde encontramos los modelos animales.

INTRODUCCIÓN

Un clinical trial es un estudio clínico, es decir, un estudio experimental que se realiza en pacientes y sujetos sanos para evaluar la eficacia y/o seguridad de uno o varios procedimientos terapéuticos y, también, para conocer los efectos producidos en el organismo humano.

Desde el primer clinical trial hecho en humanos el 1990, la terapia génica ha generado grandes expectativas en nuestra sociedad. Después de más de 20 años, hay muchos protocolos de terapia génica en estado de clínica.

Antes de aplicar la terapia génica en humanos es necesario hacer estudios preclínicos, se tienen que hacer investigaciones in vitro o in vivo antes de probar los clinical trial en humanos. El objetivo de éstos es proteger a los humanos de los efectos tóxicos de las drogas que se estudian.

Un elemento importante de los estudios preclínicos son los animales modelos. Primeramente se tienen que hacer estudios con animales pequeños como el ratón. Si los resultados son satisfactorios, entonces se pasa a animales más grandes como los perros. Finalmente, si los estudios dan buenos resultados se pasa a animales superiores: primates o humanos.

¿QUÉ ES LA TERAPIA GÉNICA?

La terapia génica representa una herramienta prometedora para curar algunas enfermedades que con drogas convencionales no se puede. Esta terapia consiste en transferir material genético dentro de células o tejidos para prevenir o curar enfermedades.

Inicialmente la terapia génica se estableció para tratar pacientes con enfermedades hereditarias causadas por un defecto genético, pero ahora, actualmente, muchos de los esfuerzos de la terapia génica están focalizados en curar enfermedades poligénicas o no hereditarias con alta prevalencia (Video 1).

Video 1. Extracto del programa Redes (Tv2) donde se explica qué es la terapia génica (Fuente: YouTube)

ENFOQUES EN TERAPIA GÉNICA

Hay dos tipos de enfoques en terapia génica (Figura 1):

  • Terapia génica in vivo: introducir un gen terapéutico dentro de un vector que es administrado directamente al paciente. El vector transferirá el gen de interés en el tejido estimado para producir la proteína terapéutica.
  • Terapia génica ex vivo: transferir el vector que lleva el gen terapéutico a células cultivadas del paciente. Después, estas células genéticamente modificadas son reintroducidas al paciente donde expresaran la proteína terapéutica.

in-ex-vivo
Figura 1. In vivo: el gen terapéutico es insertado al vector, que será el encargado de transportalo al tejido diana (ej: hígado) a través de una inyección. Ex vivo: se extrae una muestra de células del paciente para cultivarlas y modificarlas genéticamente. Una vez hecho esto, se vuelven a reintroducir al paciente (Fuente: CliniGene – Gene Therapy European Network)

ASPECTOS CLAVE DE LA TERAPIA GÉNICA

Cuando diseñamos un enfoque de terapia génica hay algunos aspectos clave a tener en cuenta:

1/ GEN TERAPÉUTICO

Es el gen de interés que es introducido en el organismo para contrarrestar la enfermedad. Por un lado, para enfermedades causadas por la pérdida o disfunción de una sola proteína, el gen que se transfiere es fácilmente identificable, siendo sólo una copia correcta del gen la que causa la disfunción. Por otro lado, para enfermedades con origen más complejo, la elección del gen terapéutico es más complicada y se tendrán que hacer más estudios para conocer bien la enfermedad.

2/ VECTOR

Es el vehículo por el cual el gen de interés es transportado a las células diana. El vector perfecto tendría que ser transferido a las células diana sin activar la respuesta inmunitaria, ya sea en contra de él mismo o del gen terapéutico. Por ahora no existe un vector universal para tratar cualquier enfermedad.

2.1/ VECTORES VIRALES

Este tipo de vectores deriva de los virus, pero esto no es un problema porque muchos o todos los genes virales son reemplazados por el gen terapéutico. Esto significa que los vectores virales no causan enfermedades patogénicas porque el gen es eliminado.

2.2/ VECTORES NO VIRALES

Este tipo de vectores no deriva de los virus, pero el gen terapéutico forma parte de un plásmido.

3/ CÉLULAS DIANA

Cualquier célula que tenga un receptor específico para un antígeno o anticuerpo, hormona, droga… El gen terapéutico tiene que ser dirigido a las células diana de un tejido específico.

4/ VÍAS DE ADMINISTRACIÓN

El gen terapéutico tiene que ser administrado a través de la vía más adecuada. El tipo de vía dependerá, igual que el vector, del tejido diana, el órgano a manipular o de la enfermedad a tratar.

5/ MODELOS ANIMALES

Son utilizados para ver qué pasa en un organismo vivo. Se utilizan principalmente en la investigación para conseguir el progreso de los conocimientos científicos, ya que muchos procesos celulares básicos son los mismos en todos los animales y, así, se puede entender lo que le pasa al cuerpo cuando tiene un defecto; como modelos para el estudio de una enfermedad, porque los seres humanos y los animales comparten muchas enfermedades y permiten saber cómo responde el sistema inmunológico; para desarrollar y probar métodos potenciales del tratamiento, siendo una parte esencial de la aplicación de la investigación biológica a problemas médicos reales y que permite la identificación de nuevas dianas para la intervención de la enfermedad; y, finalmente, para proteger la seguridad de las personas, animales y el medio ambiente, los investigadores han mesurado los efectos del compuesto beneficiosos y nocivos en el organismo, la identificación de posibles problemas y determinar la administración de la dosis.

La disponibilidad de modelos animales es clave en fases preclínicas, ya que permite la evaluación exhaustiva de la seguridad y la eficacia de los protocolos de terapia génica antes de cualquier ensayo clínico humano.

En un futuro próximo, la terapia génica será una alternativa eficaz a los esfuerzos farmacológicos y permitirá el tratamiento de muchas enfermedades en las que ahora mismo el tratamiento farmacológico no es adecuado. Así, la terapia génica es una herramienta terapéutica que nos ofrece un nombre ilimitado de posibilidades para conseguir y desarrollar terapias mejores y más efectivas para enfermedades que antes eran incurables.

REFERENCIAS

MireiaRamos-castella

Què és la teràpia gènica?

En els darrers anys hem sentit a parlar sobre la teràpia gènica i el seu potencial. Però sabem ben bé què és o en què consisteix? En aquest article vull donar a conèixer aquesta  eina prometedora que pot curar algunes de les malalties que les teràpies amb medicaments convencionals no poden. Us parlaré dels seus enfocaments i també dels seus elements clau, on trobem els models animals.

INTRODUCCIÓ

Un clinical trial és un estudi clínic, és a dir, un estudi experimental que es realitza en pacients i subjectes sans per avaluar l’eficàcia i/o seguretat d’un o varis procediments terapèutics i, també, per conèixer els efectes produïts en l’organisme humà.

Des del primer clinical trial fet en humans el 1990, la teràpia gènica ha generat grans expectatives en la nostra societat. Després de més de 20 anys, hi ha molts protocols de teràpia gènica en estat de clínica.

Abans d’aplicar la teràpia gènica en humans és necessari fer estudis pre-clínics, s’han de fer investigacions in vitro o in vivo abans de provar els clinical trials en humans. L’objectiu d’aquests és protegir els humans dels efectes tòxics de les drogues que s’estudien.

Un element important dels estudis pre-clínics són els animals models. Primer s’han de fer tests amb animals petits com el ratolí. Si els resultats són satisfactoris, llavors es passa a animals més grans com els gossos. Finalment, si els estudis donen bons resultats es passa a animals superiors: primats o humans.

QUÈ ÉS LA TERÀPIA GÈNICA?

La teràpia gènica representa una eina prometedora per curar algunes malalties que amb drogues convencionals no es pot. Aquesta teràpia consisteix en transferir material genètic dins de cèl·lules o teixits per prevenir o curar malalties.

Inicialment la teràpia gènica es va establir per tractar pacients amb malalties hereditàries causades per un defecte genètic, però ara, actualment, molts dels esforços de la teràpia gènica estan focalitzats en curar malalties poligèniques o no hereditàries amb alta prevalença (Vídeo 1, en castellà).

Vídeo 1. Extracte del programa Redes (Tv2) on s’explica què és la teràpia gènica (Font: YouTube)

ENFOCAMENTS EN TERÀPIA GÈNICA

Hi ha dos tipus d’enfocaments en teràpia gènica (Figura 1):

  • Teràpia gènica in vivo: introduir un gen terapèutic dins un vector que és administrat directament al pacient. El vector transferirà el gen d’interès en el teixit estimat per produir la proteïna terapèutica.
  • Teràpia gènica ex vivo: transferir el vector que porta el gen terapèutic a cèl·lules cultivades del pacient. Després, aquestes cèl·lules genèticament modificades són reintroduïdes al pacient on expressaran la proteïna terapèutica.

in-ex-vivo
Figura 1. In vivo: el gen terapèutic és inserit al vector, que serà l’encarregat de transportar-lo al teixit diana (ex: fetge) a través d’una injecció. Ex vivo: s’extreu una mostra de cèl·lules del pacient per cultivar-les i modificar-les genèticament. Un cop fet això es tornen a reintroduir al pacient (Font: CliniGene – Gene Therapy European Network)

ASPECTES CLAUS DE LA TERÀPIA GÈNICA

Quan dissenyem un enfocament de teràpia gènica hi ha alguns aspectes claus a tenir en compte:

1/ GEN TERAPÈUTIC

És el gen d’interès que és introduït a l’organisme per contrarestar la malaltia. Per una banda, per malalties causades per la pèrdua o disfunció d’una sola proteïna, el gen que es transfereix és fàcilment identificable, sent només una còpia correcta del gen la que causa la disfunció. Per altra banda, per malalties amb origen més complex, l’elecció del gen terapèutic és més complicada i s’hauran de fer més estudis per conèixer bé la malaltia.

2/ VECTOR

És el vehicle per el qual el gen d’interès és transportat a les cèl·lules diana. El vector perfecte hauria de ser transferit a les cèl·lules diana sense activar la resposta immunitària ja sigui en contra d’ell mateix o del gen terapèutic. Per ara no existeix un vector universal per tractar qualsevol malaltia.

2.1/ VECTORS VIRALS

Aquest tipus de vectors deriva dels virus, però això no és un problema perquè molts o tots els gens virals són reemplaçats pel gen terapèutic. Això significa que els vectors virals no causen malalties patogèniques perquè el gen és eliminat.

2.2/ VECTORS NO VIRALS

Aquest tipus de vectors no deriva dels virus, però el gen terapèutic forma part d’un plàsmid.

3/ CÈL·LULES DIANA

Qualsevol cèl·lula que tingui un receptor específic per un antigen o anticòs, hormona, droga… El gen terapèutic ha de ser dirigit a les cèl·lules diana d’un teixit específic.

4/ VIES D’ADMINISTRACIÓ

El gen terapèutic ha de ser administrat a través de la via més apropiada. El tipus de via dependrà, igual que el vector, del teixit diana, l’òrgan a manipular o de la malaltia a tractar.

5/ MODELS ANIMALS

Són utilitzats per veure què passa en un organisme viu. S’utilitzen principalment en la investigació per aconseguir el progrés dels coneixements científics, ja que molts processos cel·lulars bàsics són els mateixos en tots els animals i així es pot entendre el que li passa al cos quan té un defecte; com a models per a l’estudi d’una malaltia, perquè els éssers humans i els animals comparteixen moltes malalties i permeten saber com respon el sistema immunològic; per desenvolupar i provar mètodes potencials del tractament, sent una part essencial de l’aplicació de la investigació biològica a problemes mèdics reals i que permeti la identificació de noves dianes per a la intervenció de la malaltia; i, finalment, per protegir la seguretat de les persones, animals i el medi ambient, els investigadors han mesurat els efectes del compost beneficiosos i nocius en l’organisme, la identificació de possibles problemes i determinar l’administració de la dosi.

La disponibilitat de models animals és clau per fases preclíniques, ja que permet l’avaluació exhaustiva de la seguretat i l’eficàcia dels protocols de teràpia gènica abans de qualsevol assaig clínic humà.

En un futur pròxim, la teràpia gènica serà una efectiva alternativa als esforços farmacològics i permetrà el tractament de moltes malalties en les que ara mateix el tractament farmacològic sol no és adequat. Així, la teràpia gènica és una eina terapèutica que ens ofereix un nombre il·limitat de possibilitats per aconseguir i desenvolupar teràpies millors i més efectives per a malalties que abans eren incurables.

REFERÈNCIES

MireiaRamos-catala

How is genetic engineering done in plants?

For years, by crossing, scientists have achieved plants with a desired characteristic after many generations. Biotechnology accelerates this process and allows to catch only the desired genes from a plant, achieving the expected results in only one generation. Genetic engineering allows us to do all this. In this article I will explain what it is and how does it work.

WHAT IS GENETIC ENGINEERING?

Genetic engineering is a branch of biotechnology that consists in modifying hereditary characteristics of an organism by altering its genetic material. Usually it is used to get that certain microorganisms, such as bacteria or viruses, increase the synthesis of compounds, form new compounds or adapt to different environment.

It is a safer and more efficient tool for improving species than traditional methods (crossing) as it eliminates much of the randomness. On the other hand, modern biotechnology also becomes a new technology that has the power to modify the attributes of living organisms by introducing genetic material prepared in vitro.

It could be defined as the set of methodologies to transfer genes from one organism to another and express them (to produce proteins for which these genes encode) in different organisms of the original organism. DNA which combines fragments of different organisms is called recombinant DNA. Consequently, genetic engineering’s techniques are called recombinant DNA techniques.

Currently there are more plant organisms genetically modified than animal organisms. For this reason I will explain genetic engineering based on plants.

GENETIC ENGINEERING vs. TRADITIONAL METHODS

This methodology has 3 key advantages compared with traditional methods of genetic improvement based on hybridization:

  • The genes could come from any specie (for example a bacteria’s gene can be incorporated in soy‘s genome).
  • At genetically improved plant you may introduce a single new gene preserving the remaining genes from the original plant to their offspring.
  • This modification process delays less the deadlines than improvement by crossbreeding.

With this way you can modify properties of plants more broadly, more accurate and faster.

In traditional crossing it generates a hybrid which combines randomly genes of both parental organisms, including the gene of interest encoding the desired trait. In contrast, biotechnology techniques only pass one or few genes which encode a specific trait known. The new plant has all the original genes of the plant and an introduced gene accurately and directed (Figure 1).

fig1ENG
Figure 1. (A) Traditional method where, by crossing, a new variety is obtained. This carries the gene of interest (red), but also another genes randomly. (B) With genetic engineering we obtain a new variety of commercial plant with the gene of interest (red) of any other species (Source: Mireia Ramos, All You Need is Biology)

METHODOLOGY OF GENETIC ENGINEERING

Obtaining a transgenic organism through genetic engineering techniques involves the participation of an organism who gives the gene of interest and a receptor organism who will express the desired quality. The steps and the process techniques are:

0/ DECIDE THE AIM: MAKE KNOCK IN OR KNOCK OUT

KNOCK OUT:

This technique is to remove the expression of a gene, replacing it with a mutated version of itself, this being a non-functional copy. It allows the gene is not expressed.

KNOCK IN:

It is the opposite of the knock out process. A gene is replaced by a modified version of itself, which produces a variation in the resulting function of it.

In medicine, the knock in technique has been used as a strategy to replace or mutate genes that cause diseases such as Huntington’s chorea, in order to create a successful therapy.

1/ DOUBLE CHECK THAT THERE IS A GENE CODING FOR THE CHARACTERISTIC OF INTEREST

Firstly, you have to check the characteristic of interest comes from a gene, as this will be easier to transfer to a living organism that does not.

2/ CLONING THE GENE OF INTEREST

It is a complex process, but outline the steps are the following:

  • Extract DNA
  • Find a gene among the genes of this DNA
  • Sequence it
  • Build the recombinant vector

The DNA of interest is inserted into a plasmid, a circular DNA molecule with autonomous replication. The plasmids of bacterial origin are the most used (Video 1).

Video 1. “Clonación de un gen en un plásmido vector”. Explaining the use of plasmids as a vector in the process of cloning (Source: YouTube)

The development of these techniques was possible by the discovery of restriction enzymes. These enzymes recognize specific sequences and cut the DNA by these points. The generated ends can be sealed with ligase enzyme and to obtain a new DNA molecule, it called recombinant DNA (Figure 2).

adnrecombi
Figure 2. (1) Plasmid’s DNA (2) DNA from another living organism (3a, 3b) The restriction enzyme cuts DNA (4) The restriction enzyme recognizes AATT sequence and cuts between A and T nucleotides (5) The two DNAs are contacted with the purpose of forming recombinant molecules (6) A ligase enzyme joins the DNA ends (Source: GeoPaloma)

3/ CHARACTERISE GENE OF INTEREST

If we know the gene sequence we can compare this sequence with known gene sequence through bioinformatics, provided to determine which gene looks and assign a possible function. So when we have predicted the function of cloned gene we confirm it in vivo, usually transferring it to a model organism.

4/ MODIFY GENE OF INTEREST

We can add (promoter, introns…) or mutate sequences inside the encoding region.

5/ TRANSFORMATION OF A LIVING ORGANISM WITH GENE OF INTEREST

When we have finished the gene building with the desired gene and the promoter, the recombinant DNA is inserted into the cells of the living organism that we want to modify.

6/ CHARACTERIZATION GMO

When we already have the GMO (Genetically Modified Organism) it is analysed from the molecular and biological point. In the molecular analysis it must demonstrate if you have one or more copies of the transgene or how and what tissues the gene is expressed. In the biological analysis it looks if it achieves the objective for which it was designed.

REFERENCES

MireiaRamos-angles

¿Cómo se aplica la ingeniería genética en plantas?

Durante años, mediante el cruzamiento, se han conseguido plantas con una característica deseada después de muchas generaciones. La biotecnología acelera este proceso y permite a los científicos coger sólo los genes deseados de una planta, consiguiendo así los resultados esperados en una generación. La ingeniería genética nos permite hacer todo esto. En este artículo explicaré en qué consiste y su metodología.  

¿QUÉ ES LA INGENIERÍA GENÉTICA?

La ingeniería genética es una rama de la biotecnología que consiste en modificar las características hereditarias de un organismo mediante la alteración de su material genético. Habitualmente se utiliza para conseguir que determinados microorganismos, como bacterios o virus, aumenten la síntesis de compuestos, formen compuestos nuevos o se adapten a medios diferentes.

Es una herramienta más segura y más eficiente para el mejoramiento de especies que los métodos tradicionales (cruzamientos), ya que elimina gran parte de la aleatoriedad y del azar. Por otro lado, la biotecnología moderna también una deviene una nueva tecnología en disponer de la facultad de modificar los atributos de los organismos vivos mediante la introducción de material genético preparado in vitro.

Se podría definir como el conjunto de metodologías que permiten transferir genes de un organismo a otro y expresarlos (producir proteínas para las cuales estos genes codifican) en organismos diferentes al de origen. El ADN que combina fragmentos de organismos diferentes se llama ADN recombinante. Como consecuencia, las técnicas que utiliza la ingeniería genética se llaman técnicas de ADN recombinante.

A día de hoy hay muchos más organismos vegetales modificados genéticamente que no organismos animales. Por esta razón explicaré la ingeniería genética basándome en plantas.

INGENIERÍA GENÉTICA vs. MÉTODOS TRADICIONALES

Esta metodología tiene tres ventajas fundamentales respecto a las técnicas convencionales de mejora genética basadas en la hibridación:

  • Los genes que se tienen que incorporar pueden venir de cualquier especie, emparentada o no (por ejemplo un gen de una bacteria se puede incorporar al genoma de la soja).
  • A la planta mejorada genéticamente se le puede introducir un único gen nuevo preservando el resto de los genes de la planta original a su descendencia.
  • Este proceso de modificación retrasa mucho menos los plazos que la mejora por cruzamiento.

De esta forma se pueden modificar propiedades de las plantas de manera más amplia, más precisa y más rápida.

Con el cruzamiento tradicional se genera un híbrido que combina al azar genes de los dos organismos parentales, entre ellos el gen de interés que codifica para el rasgo deseado. Con las técnicas de la biotecnología se pasan uno o algunos genes, que codifican una característica específica conocida. La planta nueva está integrada con todos los genes originales de la planta y un gen introducido de manera precisa y dirigida (Figura 1).

fig1ESP.jpg
Figura 1. (A) Método tradicional donde, mediante el cruzamiento, se obtiene una nueva variedad. Ésta lleva el gen de interés (rojo) pero también otros genes al azar. (B) Con la ingeniería genética obtenemos una nueva variedad de la planta comercial con el gen de interés (rojo) de cualquier otra especie (Fuente: Mireia Ramos, All You Need is Biology)

METODOLOGÍA DE LA INGENIERÍA GENÉTICA

La obtención de un organismo transgénico a través de técnicas de ingeniería genética implica la participación de un organismo que da el gen de interés y un organismo receptor del gen que expresará la nueva característica deseada. Las etapas y técnicas del proceso son las siguientes:

0/ DECIDIR EL OBJETIVO: REALIZAR UN KNOCK-IN O UN KNOCK-OUT

Técnica KNOCK-OUT:

El bloqueo de genes o knock-out es la técnica que consiste en suprimir la expresión de un gen, sustituyéndolo por una versión mutada de sí mismo, siendo esta copia no funcional. Esta técnica permite hacer que un gen se deje de expresar.

Técnica KNOCK-IN:

La técnica del knock-in es el proceso opuesto al del knock-out. Se remplaza un gen por una versión modificada de sí mismo, el cual produce una variación en la función resultante de éste.

En el ámbito de la medicina, el knock-in de genes se ha aplicado como estrategia para sustituir o mutar los genes que causan enfermedades como la Corea de Huntington, con el fin de ayudar a crear una terapia exitosa.

1/ CORROBORAR QUE EXISTE UN GEN QUE CODIFICA PARA LA CARACTERÍSTICA DE INTERÉS

Primero se tiene que comprobar que la característica que interesa proviene de un gen, ya que así será más fácil transferirla a un organismo que no la tenga.

2/ CLONAR EL GEN DE INTERÉS

Es un proceso complejo, pero a rasgos generales los pasos que se siguen son los siguientes:

  • Extraer el ADN
  • Buscar un gen entre todos los genes de este ADN
  • Secuenciarlo
  • Construir el vector recombinante

El ADN de interés se inserta en un plásmido, una molécula de ADN circular con replicación autónoma. Los más utilizados son los plásmidos de origen bacteriano (Video 1).

Video 1. “Clonación plásmido traducido”. Explicación de la utilitzación de plàsmidos en el proceso de clonación  como vector (Font: YouTube)

El desarrollo de estas técnicas fue posible gracias al descubrimiento de las enzimas de restricción. Estas enzimas reconocen secuencias específicas, de pocas bases, y cortan por este punto el ADN. Los extremos generados se pueden sellar con la enzima ligasa y obtener así una nueva molécula de ADN, nombrada recombinante (Figura 2).

adnrecombi
Figura 2. (1) ADN del plásmido. (2) ADN de otro organismo. (3a, 3b) Se corta el ADN con una enzima de restricción. (4) La enzima de restricción reconoce la secuencia AATT y corta entre los nucleótidos A y T de las cadenas de ADN. (5) Se ponen en contacto los dos ADN para que se formen moléculas recombinantes. (6) Una enzima ligasa une los extremos del ADN con tal de tener una nueva molécula (Fuente: GeoPaloma)

3/ CARACTERIZAR EL GEN DE INTERÉS

Conociendo la secuencia del gen se puede comparar con esta secuencia con la de genes ya conocidos a través de la bioinformática, con tal de determinar a qué gen se parece y asignarle una posible función. Después de haber predicho la función del gen clonado se confirma la función in vivo, normalmente transfiriéndolo a un organismo modelo.

4/ MODIFICAR EL GEN DE INTERÉS

Si se desea se puede agregar (promotor, intrones…) o mutar secuencias dentro de la región codificante para que se puede expresar en el sistema de interés.

5/ TRANSFORMACIÓN DE UN ORGANISMO CON EL GEN DE INTERÉS

Una vez finalizada la construcción genética con el gen y el promotor deseado, se inserta el ADN recombinante a las células del individuo que se quiere modificar.

6/ CARACTERIZACIÓN DEL OGM

Cuando ya se tiene el OGM (Organismo Genéticamente Modificado) se analiza desde el punto de vista molecular y biológico. En el análisis molecular se tiene que demostrar, entre otros, si tiene una (o más) copias del transgen o como y a qué tejidos se expresa el gen. En el análisis biológico se mira si cumple el objetivo por el cual se ha diseñado.

REFERENCIAS

MireiaRamos-castella

Com s’aplica l’enginyeria genètica en plantes?

Durant anys, mitjançant el creuament, s’han aconseguit plantes amb una característica desitjada després de moltes generacions. La biotecnologia accelera aquest procés i permet als científics agafar només els gens desitjats d’una planta, aconseguint així els resultats buscats en només una generació. L’enginyeria genètica ens permet fer tot això. En aquest article explicaré en què consisteix i la seva metodologia.

QUÈ ÉS L’ENGINYERIA GENÈTICA?

L’enginyeria genètica és una branca de la biotecnologia que consisteix a modificar les característiques hereditàries d’un organisme mitjançant l’alteració del seu material genètic. Habitualment s’utilitza per aconseguir que determinats microorganismes, com ara bacteris o virus, augmentin la síntesi de compostos, formin compostos nous o s’adaptin a medis diferents. És una eina més segura i més eficient pel millorament d’espècies que els mètodes tradicionals (creuaments), ja que elimina gran part de l’aleatorietat i l’atzar. D’altra banda, la biotecnologia moderna també esdevé una nova tecnologia, en disposar de la facultat de modificar els atributs dels organismes vius mitjançant la introducció de material genètic preparat in vitro.

Es podria definir com el conjunt de metodologies que permeten transferir gens d’un organisme a un altre i expressar-los (produir proteïnes per a les quals aquests gens codifiquen) en organismes diferents al d’origen. L’ADN que combina fragments d’organismes diferents s’anomena ADN recombinant. En conseqüència, les tècniques que utilitza l’enginyeria genètica es denominen tècniques d’ADN recombinant.

A dia d’avui hi ha molts més organismes vegetals modificats genèticament que no pas animals. Per aquesta raó explicaré l’enginyeria genètica basant-me en plantes.

ENGINYERIA GENÈTICA vs. MÈTODES TRADICIONALS

Aquesta metodologia té tres avantatges fonamentals respecte de les tècniques convencionals de millora genètica basades en la hibridació:

  • Els gens que s’han d’incorporar poden venir de qualsevol espècie, emparentada o no (per exemple un gen d’una bactèria es pot incorporar al genoma de la soja).
  • A la planta millorada genèticament s’hi pot introduir un únic gen nou preservant la resta dels gens de la planta original a la seva descendència.
  • Aquest procés de modificació endarrereix molt menys els terminis que no pas la millora per encreuament.

D’aquesta forma es poden modificar propietats de les plantes de manera més àmplia, més precisa i més ràpida.

Amb el creuament tradicional es genera un híbrid que combina a l’atzar gens d’ambdós organismes parentals, entre ells el gen d’interès que codifica pel tret desitjat. Amb les tècniques de la biotecnologia es passen un o alguns gens, que codifiquen una característica específica coneguda. La nova planta està integrada amb tots els gens originals de la planta i un gen introduït de manera precisa i dirigida (Figura 1).

fig1CAT.jpg
Figura 1. (A) Mètode tradicional on, mitjançant el creuament, s’obté una nova varietat. Aquesta porta el gen d’interès (vermell), però també altres gens a l’atzar. (B) Amb l’enginyeria genètica obtenim una nova varietat de la planta comercial amb el gen d’interès (vermell) de qualsevol altra espècie (Font: Mireia Ramos, All You Need is Biology)

METODOLOGIA DE L’ENGINYERIA GENÈTICA

L’obtenció d’un organisme transgènic a través de tècniques d’enginyeria genètica implica la participació d’un organisme que dóna el gen d’interès i un organisme receptor del gen que expressarà la nova característica desitjada. Les etapes i tècniques del procés són les següents:

0/ DECIDIR L’OBJECTIU: REALITZAR UN KNOCK-IN O UN KNOCK-OUT

Tècnica KNOCK-OUT:

El bloqueig de gens o knock-out és la tècnica que consisteix en suprimir l’expressió d’un gen, substituint-lo per una versió mutada de si mateix, sent aquesta còpia no funcional. Aquesta tècnica permet fer que un gen deixi d’expressar-se.

Tècnica KNOCK-IN:

La tècnica del knock-in és el procés oposat al del knock-out. Es reemplaça un gen per una versió modificada de si mateix, el qual produeix una variació en la funció resultant d’aquest.

En l’àmbit de la medicina, el knock-in de gens s’ha aplicat com estratègia per substituir o mutar els gens que causen malalties com la Corea de Huntington, per tal d’ajudar a crear una teràpia exitosa.

1/ CORROBORAR QUE EXISTEIX UN GEN QUE CODIFICA PER LA CARACTERÍSTICA D’INTERÈS

Primer s’ha de comprovar que la característica que interessa prové d’un gen, ja que així serà més fàcil transferir-la a un organisme que no la té.

2/ CLONAR EL GEN D’INTERÈS

És un procés complex, però a trets generals, els passos que es segueixen són els següents:

  • Extreure ADN
  • Buscar un gen entre tots els gens d’aquest ADN
  • Seqüenciar-lo
  • Construir un vector recombinant

L’ADN d’interès s’insereix en un plàsmid, una molècula d’ADN circular amb replicació autònoma. Els més utilitzats són els plàsmids d’origen bacterià (Vídeo 1).

Vídeo 1. “Clonación plásmido traducido”. Explicació de la utilització de plàsmids en el procés de clonació  com a vector (Font: YouTube)

El desenvolupament d’aquestes tècniques va ser possible gràcies a la descoberta dels enzims de restricció. Aquests enzims reconeixen seqüències específiques, de poques bases, i tallen l’ADN per aquest punt. Els extrems generats es poden segellar amb l’enzim lligasa i així obtenir una molècula d’ADN nova, anomenada recombinant (Figura 2).

adnrecombi
Figura 2. (1) ADN del plàsmid. (2) ADN d’un altre organisme. (3a, 3b) Es talla l’ADN amb un enzim de restricció. (4) L’enzim de restricció reconeix la seqüència AATT i talla entre els nucleòtids A i T de les cadenes d’ADN. (5) Es posen en contacte els dos ADNs perquè es formin molècules recombinants. (6) Un enzim lligasa uneix els extrems de l’ADN per tal de tenir una nova molècula (Font: GeoPaloma)

3/ CARACTERITZAR EL GEN D’INTERÈS

Coneixent la seqüència del gen es pot comparar aquesta seqüència amb la de gens ja coneguts a través de la bioinformàtica, per tal de determinar a quin gen s’assembla i assignar-li una possible funció. Després d’haver predit la funció del gen clonat es confirma la funció in vivo, normalment transferint-lo a un organisme model.

4/ MODIFICAR EL GEN D’INTERÈS

Si es desitja es pot agregar (promotor, introns…) o mutar seqüències dins de la regió codificant perquè es pugui expressar en el sistema d’interès.

5/ TRANSFORMACIÓ D’UN ORGANISME AMB EL GEN D’INTERÈS

Un cop acabada la construcció genètica amb el gen i el promotor desitjat, s’insereix l’ADN recombinant a les cèl·lules de l’individu que es vol modificar.

6/ CARACTERITZACIÓ DE L’OGM

Un cop obtingut l’OGM (Organisme Genèticament Modificat) s’analitza des del punt de vista molecular i biològic. En l’anàlisi molecular cal demostrar, entre altres, si té una (o més) còpies del transgen o com i a quins teixits s’expressa el gen. En l’anàlisi biològic es mira si compleix l’objectiu pel qual s’ha dissenyat.

REFERÈNCIES

 

MireiaRamos-catala

¿Son las epidemias otro efecto del cambio climático?

Sabemos que muchas enfermedades infecciosas dependen de factores climáticos como la temperatura, ¿Podría, entonces, el cambio climático provocar un aumento de los brotes epidémicos? ¡Sigue leyendo para descubrirlo!

LA SALUD Y EL CAMBIO CLIMÁTICO

Según algunas encuestas realizadas por el Pew Research center, un 54% de los encuestados consideran que el cambio climático es un problema grave y entre sus mayores preocupaciones se encuentran la sequía, las lluvias intensas y el calor (Si te interesa conocer más datos sobre esta encuesta, puedes encontrarlos en el siguiente artículo o en esta  infografía con datos de España).

Estos cambios tienen un efecto negativo en la salud humana, tanto que la Organización Mundial de la Salud (OMS) prevé que entre el 2030 y 2050 el cambio climático causará unas 250.000 defunciones adicionales al año. Los efectos pueden ser muy variados: muertes por olas de calor, inundaciones, incremento de enfermedades respiratorias, estrés, etc. Uno de los efectos importantes para la salud es el aumento en la transmisión de enfermedades infecciosas.

climate_change_health_impacts600w
Infografía sobre los impactos del cambio climático en la salud. (Foto: CDC)

Las enfermedades infecciosas están muy relacionadas con las características del ambiente (como por ejemplo la temperatura y la humedad). En ciertos casos, estas enfermedades son transmitidas por vectores (artrópodos, garrapatas, caracoles, roedores, murciélagos…) que con un aumento de la temperatura verán modificada su distribución geográfica, estacionalidad y tamaño poblacional. Un ejemplo muy claro es la presencia del mosquito Aedes albopictus, más conocido como mosquito tigre,  en España.

Por otro lado, los cambios del uso del suelo, masificación de ciudades, mala higiene y otros factores socioeconómicos también tienen un gran efecto en la transmisión de ciertas enfermedades. Por ejemplo, la deforestación y la escasa higiene de la población aumenta los lugares de cría de los mosquitos, produciendo así un aumento en la probabilidad de transmisión de la malaria.

tabla_cambioshumanos_
Impactos de la actividad humana que afectan a la transmisión de enfermedades. (Imagen: OMS)

ENFERMEDADES VECTORIALES

Como habíamos mencionado, las enfermedades vectoriales son aquellas que se transmiten a través de un vector animal (ya sea un mosquito, un roedor, garrapata, caracol, murciélago…). Estas enfermedades pueden ser zoonóticas (de un animal a los humanos, como el caso de la rabia) o antroponóticas (entre humanos, como el caso de la malaria o el dengue), pero siempre interviene en su transmisión un vector. Si te apetece conocer como afecta el cambio climático a los insectos vectores, no te puedes perder este articulo de Irene Lobato.

Sin título
Diferentes tipos de enfermedades vectoriales (Foto: OMS)

Hay muchas enfermedades vectoriales que conviene vigilar en los próximos años, como por ejemplo la malaria, el chikungunya, la fiebre botonosa, etc. Analizaremos las dos enfermedades infecciosas más conocidas.

MALARIA

Esta enfermedad está causada por parásitos del género Plasmodium que se transmiten por la picadura de mosquitos del género Anopheles. Hay cuatro tipos diferentes de malaria o paludismo humano, pero el más mortífero es el causado por la especie Plasmodium falciparum.

p_falci_cdc
Plasmodium falciparum (fase gametocito). (Foto: CDC)

La OMS calcula que en el año 2013 se contagiaron 198 millones de personas, 584.000 de las cuales murieron. Se prevé que estas cifras aumenten debido al cambio climático. El aumento de temperatura propicia un aumento en el periodo infectivo del mosquito y la modificación de la distribución geográfica de los vectores. Posiblemente en los próximos años, si la tendencia no cambia, habrá un aumento en la propagación de la enfermedad en zonas endémicas actuales y posiblemente reemergerá en otras zonas (zonas rojas en el mapa).

global_warming_climate_change__malaria
Estimación de la expansión de la malaria en 2050 (Foto: Randolph Rogers)

En España, se erradicó en 1964 el paludismo autóctono. Los casos de malaria que se dan actualmente son casos importados desde países con paludismo autóctono. Aún así, cabe destacar que la situación geográfica de nuestro país, el aumento de las temperaturas, la posible  presencia de un vector competente y la presencia de parásito importado, aumentan significativamente la probabilidad de transmisión de la enfermedad.

DENGUE

Esta es una enfermedad vírica (provocada por infección de virus del género Flavivirus) que se transmite por la picadura de mosquitos del género Aedes (entre los que se encuentra el mosquito tigre). El dengue es una enfermedad muy extendida en países del trópico, aunque esta sufriendo grandes modificaciones geográficas debido a cambios en la temperatura, precipitaciones y una masificación demográfica de las ciudades.

dengue
Esquema de la estructura del virus Dengue (Foto: César Cabezas)

Antes de 1970, sólo nueve países habían sufrido episodios epidémicos de dengue grave. En las últimas décadas, los casos  han aumentado enormemente. Según las estimaciones de la OMS, se producen unos 390 millones de infecciones cada año de los cuales un 23 % se manifiestan clínicamente .

12889_2014_6968_Fig3_HTML
Previsión de la expansión del Dengue en Europa durante el siglo XXI, expresado en nº de casos/100.000 habitantes. (Foto: Moha Bouzid)

Como en el caso del paludismo, las variaciones climáticas actuales modifican la distribución geográfica del vector. Como podemos observar en el mapa anterior, las predicciones para este siglo, si las condiciones no cambian, son de un aumento significativo de casos de dengue en el norte de Europa (zonas más claras son posibles lugares de infección). Como vemos en el caso de España, la zona mediterránea seria la región que más casos de dengue presentaría.

ENFERMEDADES TRANSMITIDAS POR EL AGUA

El cambio climático también afecta al ciclo del agua. Las noticias sobre catástrofes climáticas (inundaciones, fuertes sequías, lluvias torrenciales, huracanes…) no dejan de aparecer en los medios de comunicación. Estas variaciones climáticas afectan a aquellas enfermedades que se transmiten por el agua, ya sea por contaminación de los caudales, por las migraciones humanas hacia zonas más seguras y por la poca higiene que hay en ciertos lugares de ciudades masificadas.

Las enfermedades más conocidas asociadas a las inundaciones y sequías son las infecciones de Cryptosporidium o de Cólera. Analizaremos este último ejemplo.

CÓLERA

Vibrio cholerae es el bacilo causante de esta enfermedad. Es una infección diarreica que padecen cada año entre 1,4 y 4,3 millones de personas, 142.000 de las cuales acaban muriendo. La transmisión de este bacilo está estrechamente ligada a una mala gestión ambiental. Las fuertes lluvias o inundaciones pueden provocar la contaminación de aguas y  la sequía extrema aumenta la carga bacteriana de los caudales existentes.

vibrio colerae
Microfotografía de Vibrio cholerae con microscopía electrónica (Foto: Louisa Howard).

Durante el siglo XIX, el cólera se propagó por el mundo desde Ganges (India). La última epidemia de cólera empezó, como podemos ver en el mapa, en el Sur de Asia en 1961. Actualmente el cólera se ha distribuido por todo el mundo debido sobretodo a las migraciones humanas (portadores del bacilo), la aglomeración de gente en zonas suburbanas sin higiene y a los desastres climáticos acontecidos. La OMS estima que en 2030 habrá un 10% más de casos debido al cambio climático.

0291-choleraspread-EN
Evolución de la última epidemia de cólera (1961-2004). (Foto: IPCC)

Tal vez no sea del todo posible cuantificar en qué medida el cambio climático puede afectar a la transmisión de estas enfermedades puesto que éstas dependen de muchos otros factores (dinámica demográfica, inmunización, etc). Cabe destacar, pues, que las previsiones expuestas en  este artículo son conjeturas obtenidas a partir de datos actuales. Eso quiere decir, que si los mecanismos para la reducción del cambio climático global funcionan y las condiciones ambientales mejoran, estos datos ya no tendrían ningún valor estadístico.

·

¡Recordad que la mejor cura es la prevención! Cuida el medio ambiente: la Tierra es tu hogar. 

REFERENCIAS

Maribel-castellà