Arxiu d'etiquetes: vibrio cholerae

Basic microbiology (II):thousands of bacterial forms

Imagine a bacterium. What image has come to your mind? You have possibly thought of elongated like a Bacillus, type E. coli bacteria or into a small ball. For years, we have associated the bacterial morphology to a few basic shapes, but there are a multitude of forms in the environment. Discover them in the second chapter of Basic Microbiology!

BACTERIAL SHAPES

Microorganisms represent a very varied group of organisms invisible to the naked eye. In the previous chapter previous chapter of this article collection we talk about the microbe’s size and in this second chapter of basic microbiology we are going to talk about the different morphologies or forms that exist of the group bacteria and the archaea group (extremophile bacteria).

Usually, when we started the trip in the bacterial world, found that bacteria have a series of basic shapes: coccus (spherical or berry), bacillus (shaped) and spirillum (coiled), as well as its aggregations. These are formed by the union of the cells after division. For example, there are species that are pairs of cocci (known as diplococci), others form long chains of cocci (such as Streptococcus sp.), others are arranged in three-dimensional cubic groupings (like Sarcina sp.) and others formed structures like clusters of grapes (Staphylococcus sp.).

04-01_cocciarrange_1
Cocci and its aggregations (Image: Aula virtual).

In the case of rod-shaped bacteria, we can find also different groups such as the diplobacillus or the streptobacillus (such as for example Bacillus cereus). Apart we can find many variations of bacillus: there are shorter and more rounded (numerous coccobacillus, as it would be the case of Yersinia pestis), there are Pleomorphic (who have one or more forms depending on the phase of the cell cycle), finished in tip (as for example Epulopiscium fishelsoni), curved or crooked.

04-02_bacilli_1
Rod shaped bacteria and its aggregation (image: Aula Virtual)

 

Finally, the spiral shapes appear as it would be the case of the vibrios (in the form of comma, as Vibrio cholerae), the spirils (as Rhodospirillium rubrum) or spirochaetes (Spirochaeta stenostrepta).

04-04_spiralbacteria_1
Spiral bacteria (Image: Aula Virtual).

 

But why morphology is generalized to these forms?

Should be remember that it microbiology always had been a medical discipline and these forms are the more recurrent in the pathogenic bacteria. Now, with the rise of Microbiology, it has been observed that in the environment there is a huge variety of different morphologies, some much more complex that is known so far. The following graphic is result of an elaborate study of David T. Kysela and shows the true morphological variety that exists in the bacterial world.

imagen1
Differents bacterial morphologies around the Philogenetic tree (Image: David T. Kysela)

FEW EXAMPLES

Some individual bacteria present peculiar structures, as for example stretching narrow known as prostheca. This would be the case of Caulobacter sp. and Hyphomicrobium sp. These stretching allow to anchor the bacterium to a solid surface. There are bacteria that can also present stems, spines, or tips.

holm_niels
Hyphomicrobium sp. with their prostheca (Image: Holm Niels)

Other bacteria have unusual shapes. For example, Halophyte bacteria (that support high levels of salt concentration) like Stella sp. and Haloquadratum sp. Form a very odd aggregation. The first has a star shape and second rectangular shape.

04-05_starshaped_1
Diagram of the characteristic shape of Stella vacuolata (a) and Haloquadratum walsbyi (b). (Image: Aula virtual).

Haloarcula japonica is an individual halophyte bacteria as the previous ones, presenting a very striking morphology. As we can see in the first section of the image, in certain stages of the cell cycle has triangular shape. On the other hand, Pyrodictium abyssi (b) presents one of the most striking morphologies, since it has the form of a  “y”letter.

img_dos
a) Haloarcula japonica (Image: Nite) b) Pyrodictium abyssi (Image: Benjamin Cummings)

Also, there are very characteristics bacterial associations, as for example long chains of organisms that give an aspect of filamentous bacteria. This is the case of the bacterial phylum known as Chloroflexi, where green sulfur bacteria like Chloroflexus sp. are classified (b). Another very striking grouping are the palisades. These are characterized by bacterial rods with vertical connections. A well-known example is the case of Simonsiella muelleri (b).

chloroflexus_-simonsiella
a) Microphotography of Chloroflexus sp. (Image: JGI Genome Portal). b) Scanner microphotography of Simonsiella sp. (Image: J. Pangborn)

In some cases, there are bacteria that do not have a definite shape or this may vary throughout the cell cycle. In this case, we speak of technically known as Pleomorphic bacteria. Corynebacterium sp. and Rhizobium sp. are good examples of this type of morphology.

DETERMINED BY THE GENOME

The form or morphology that presents the different bacteria is determined by its genome. This fact, and the great diversity of morphologies in different environments, suggest that this feature has an adaptive value and that have been produced by selective forces.

In general, the morphological features are attributed to environmental events as for example the limitation of nutrients, reproduction, dispersion, evasion of a predator or detection of the guest. In the case of filamentous bacteria, they presented a better buoyancy in liquid media and are more difficult to digest by protists. Helical bacteria move easiest in viscous media, while a spherical bacterium or cocci is ideal for the diffusion of nutrients (because it increases the surface/volume ratio).

So, expect that same morphology may appear by convergence in different lineages (that do not have a common ancestor), i.e. that shape is an adaptation to a given environment. For example, before, bacteria that have prostheca were grouped into a single genre known as Prosthecomicrobium, but thanks to genetic studies, this genus has been divided in three different genres. The surprise came when noted that each one of these genera was more similar to a gender without prostheca that between them, i.e., not were related phylogenetically. Simply these species have developed the same system of adaptation to the environment.

However, there are also remember that there are morphological characteristics that are inherited from a common ancestor and are preserved because it is useful for the life of the microbe.

·

As well as increase the knowledge in the microbial world and genetic techniques, we will discover more facts about these tiny organisms.

REFERENCES

  • Brock, microbe Biology. Madigan. Ed. Pearson.
  • Microbiology Introduction. Tortora. Ed. Panamericana. (Free access in spanish here)
  • David, T. Kysela. Diversity takes shape: understanding the mechanistic and adaptative basis of bacterial morphology. PLOS Biology. (Free access)
  • Kevin D. Young. The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews. (Free access)
  • Kevin D. Young. Bacterial morphology: why have different shapes? Current Opinion in Microbiology. (Free access)
  • Cover Photo: Escuela y Ciencia.

    Maribel-anglès

Microbiologia bàsica (II): Bacteris de mil i una forma

Imagina’t un bacteri. Quina imatge has pensat? Potser has pensat amb un bacteri de forma allargada, com E.coli? O potser has pensat en una esfera petita? Durant anys, hem associat la forma dels bacteris a diverses morfologies bàsiques, però a la natura podem trobar moltes formes més. Endavant, descobreix les més interessants amb nosaltres!

MIL I UNA FORMA BACTERIANES

Com bé sabem, els microorganismes representen un grup molt gran d’organismes invisibles a l’ull humà. Al darrer capítol sobre microbiologia bàsica parlarem de la mida d’aquests éssers i avui, parlarem sobre les diferents formes morfològiques que podem trobar al grup dels Bacteris (incloent-hi les Arqueas o bacteris extremòfils).

Generalment, quan iniciem el viatge pel món bacterià se’ns presenten tres morfologies bàsiques: el coc (de forma esfèrica), el bacil (en forma de bastó) i l’espiril (en espiral), i també les seves agregacions. Aquestes darreres es formen mitjançant la unió de les cèl·lules filles després de la divisió, és a dir, no s’arriben a separar. Per exemple, hi ha espècies que formen agregacions de dos cocs (diplococs), altres formen llargues cadenes (com seria el cas dels Streptococcus sp.), altres es disposen en agrupacions cúbiques tridimensionals (com Sarcina sp.) o formen estructures irregulars i en totes les dimensions, com si fossin un grell de raïm (com ara Stahpylococcus sp.).

04-01_cocciarrange_1
Diferents agrupacions de cocs. (Imatge: Aula virtual).

Respecte als bacils, podem trobar també diferents agrupacions com els diplobacils o els estreptobacils (cadenes de bacils com per exemple Bacillus cereus). A part, es poden identificar variacions dels bacils més simples: n’hi ha de curs i redons (coneguts com a cocobacils, per exemple Yersinia pestis), n’hi ha de pleomòrfics (és a dir, tenen una o més formes en funció de la fase del cicle cel·lular), n’hi ha d’acabats en punta (com Epulopiscium fishelsoni), corbats o torts.

04-02_bacilli_1
Diferents agrupacions i variacions dels bacils (imatge: Aula Virtual)

Finalment, trobem les formes tortes o en forma d’espiral com seria el cas dels vibrios ( en forma de coma, com Vibrio cholerae), els espirils (com Rhodospirillium rubrum) i les espiroquetes (en forma de llevataps, com  Spirochaeta stenostrepta).

04-04_spiralbacteria_1
Formes espiralades o helocoïdals (Imatge: Aula Virtual).

Però, per què si existeixen més morfologies a la natura, només ens parlen d’aquestes més bàsiques?

Cal recordar que durant gairebé tota la història, la microbiologia ha estat una disciplina mèdica i aquestes formes bàsiques són les que trobem majoritàriament als bacteris patògens. Actualment, com la microbiologia estudia ambients més amplis s’ha observat que hi ha una gran varietat de formes diferents, algunes molt més complexes del que es pensava. Al gràfic filogenètic següent, podem observar les formes que presenten els diferents fílums bacterians.

imagen1
Diferents morfologies que podem trobar als fílums bacterians (Imatge: David T. Kysela)

ALGUNS EXEMPLES

Hi ha bacteris individuals que presenten estructures molt curioses, com per exemple elongacions estretes conegudes tècnicament com a prosteques. Caulobacter sp. i Hyphomicrobium sp. són exemples molt clars d’aquest tipus de cèl·lules. Aquestes estructures permeten als organismes aferrar-se a una superfície sòlida. En altres casos, també podem trobar bacteris amb  espines o puntes.

holm_niels
Bacteri de l’espècie Hyphomicrobium sp. amb la seva característica elongació o prosteca. (Imatge: Holm Niels)

Altres bacteris presenten formes més peculiars i variades. Per exemple, els bacteris halòfils (que poden sobreviure en ambients amb elevades concentracions salines) de les espècies Stella sp. i Haloquadratum sp. formen agregacions molt característiques: la primera ho fa en forma d’estrella i la segona en forma de rectangle.

04-05_starshaped_1
Forma característica de Stella vacuolata (a) i Haloquadratum walsbyi (b). (Imatge: Aula virtual).

Haloarcula japonica és un bacteri halòfil (com les anteriors) que presenta una morfologia curiosa: és triangular. Per altra banda, tenim a Pyrodictium abyssi amb la seva forma característica: forma de i grega.

img_dos
a) Haloarcula japonica (Imatge: Nite) b) Pyrodictium abyssi (Imatge: Benjamin Cummings)

En el cas de les agrupacions, també trobem alguns exemples molt curiosos. Per exemple, existeixen bacteris filamentosos que formen llargues cadenes d’individus, com seria el cas del fílum bacterià Chloroflexi, on trobem els bacteris verds del sofre Chloroflexus sp. Una altra espècie que té una morfologia molt interessant és Simonsiella muelleri. Aquestes estructures es formen per la unió vertical dels bacils.

chloroflexus_-simonsiella
a) Microfotografia d’una colònia de Chloroflexus sp. (Imatge: JGI Genome Portal). b) Microfotografia d’escàner de Simonsiella sp. (Imatge: J. Pangborn)

Com ja hem dit abans, hi ha certs casos de bacteris que no presenten una forma definida o aquesta pot variar al llarg del cicle cel·lular. En aquest cas parlem de bacteris pleomòrfiques. Aquesta característica la presenten bacteris de l’espècie Corynebacterium sp. i Rhizobium sp.

EL GENOMA MANA

La morfologia que presenten els diferents bacteris ve determinada pel genoma de l’individu. Aquest fet, juntament amb la gran diversitat de formes descobertes, suggereixen que aquesta característica té un determinat valor adaptatiu i que s’ha produït com a resultat de la pressió per diverses forces selectives.

En general, les característiques morfològiques s’atribueixen a factors ambientals com per exemple la limitació dels nutrients, la reproducció, la dispersió, difusió de nutrients, evasió d’un depredador o detecció d’un hostatger. Per exemple en el cas dels bacteris filamentosos, aquests presenten una millor capacitat de surar al medi líquid i són més difícils de digerir per protozous. Els bacteris helicoïdals o espirals tenen una millor mobilitat en ambients viscosos, mentre que un bacteri de forma esfèrica és ideal per la difusió dels nutrients, ja que augmenta la relació superfície/volum.

Així, doncs, una mateixa morfologia pot aparèixer per convergència a llinatges bacterians diferents (és a dir, que no tenen un avantpassat comú). Per tant, això significa que la forma ha estat adquirida com a adaptació a unes condicions determinades de l’ambient. Per exemple, abans els bacteris que presenten prosteca s’agrupaven a dins un mateix gènere conegut com a Prosthecomicrobium, però gràcies als estudis genètics es va separar en tres gèneres diferents. Van observar també, que aquests nous gèneres tenien més semblances amb gèneres de bacteris fora prosteca que entre ells. Això significava que no estaven relacionats filogenèticament, però que els tres havien adquirit la prosteca de forma independent com a resultat d’una adaptació al medi.

També hi ha grups bacterians que comparteixen una mateixa característica morfològica per què l’han heretada d’un avantpassat comú i la mantenen per què és útil en les condicions ambientals que viuen.

·

A mesura que augmentin els coneixements sobre el món microbià, anirem descobrint més i més curiositats sobre aquests fascinants éssers. No us ho podeu perdre!

REFERÈNCIES

  • Brock, Biología de los Microorganismos. Madigan. Ed. Pearson. (Castellà)
  • Introducción a la Microbiología. Tortora. Ed. Panamericana. (Disponible en castellà aquí)
  • David, T. Kysela. Diversity takes shape: understanding the mechanistic and adaptative basis of bacterial morphology. PLOS Biology. (Article en anglès aquí).
  • Kevin D. Young. The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews. (Article en anglès aquí).
  • Kevin D. Young. Bacterial morphology: why have different shapes? Current Opinion in Microbiology. (Article en anglès aquí).
  • Imatge de portada: Escuela y Ciencia. 

Maribel-català

Disease outbreaks, another effect of climate change?

We know that many infectious diseases depend on climatic factors such as temperature. So, can climate change cause an increase of the outbreaks? Let’s find out!

HEALTH AND CLIMATE CHANGE

 According to some surveys conducted by the Pew Research center, 54% of respondents believe that climate change is a serious problem and their major concerns include drought, intense rainfall and heat. If you are interested in to learn more about this survey, you can find them in the following article.

These changes have a negative effect on human health. The World Health Organization (WHO) expected that between 2030 and 2050 climate change will cause some 250,000 additional deaths a year. The effects can be very varied: deaths by  heat, floods, increase in respiratory diseases, stress etc. One of the important health effects is an increase in the transmission of infectious diseases.

climate_change_health_impacts600w
Graphic of impacts of climate change on human health (Photo: CDC)

Infectious diseases are closely related to  environment’s characteristics (such as temperature and humidity). In some cases, these diseases are transmitted by vectors (bats, arthropods, snails, rodents, ticks…). A  temperaturerising  will modified its geographical distribution, seasonality and population size. An example is  the presence of the mosquito Aedes albopictus, known as mosquito tigre, in Spain.

On the other hand, changes in the use of the soil, overcrowding of cities, poor hygienic habits and other socio-economic factors also have an effect in the transmission of certain diseases. For example, deforestation and poor hygiene of the population increases the breeding sites of the mosquitoes, causing an increase in the probability of malaria transmission.

tabla_cambioshumanos_
Human activities may effect diseases transmission rate. (Photo: OMS)

VECTOR DISEASES

Vector diseases are those that are transmitted through a vector animal (whether a mosquito, rodent, tick, snail, bat…). These diseases may be zoonotic (animal to human, as rabies) or antroponotic (among humans, such as malaria or dengue). If you want to know more about the effects of climate change on vector, feel free to access this article.

Sin título
Different types of vector diseases. (Photo: OMS)

There are many vector diseases which should be monitored in the coming years, as for example the malaria, dengue fever chikungunya, Boutonneuse etc. Let’s look at the two best known infectious diseases.

MALARIA

This disease is caused by parasites of the genus Plasmodium, which is transmitted by the bite of mosquitoes of the genus Anopheles. There are four different types of malaria, but the most deadly is that caused by the species Plasmodium falciparum.

p_falci_cdc
Plasmodium falciparum gametocyte. (Photo: CDC)

The WHO estimates that in the year 2013, 198 million people were infected,  584,000 of which died. It is expected that these numbers will increase due to climate change. Temperature rise leads to an increase in the infective period of the mosquito and the modification of vector’s geographical distribution. Possibly in the next few years, if the trend does not change, there will be an increase in the spread of the disease in endemic areas  and will probably resurface in other areas (red areas on the map).

global_warming_climate_change__malaria
Estimation of the spread of malaria in 2050 (Photo: Randolph Rogers)

In Spain, the autochthonous malaria was eradicated in 1964. Currently, the spanish cases of malaria are imported from countries with indigenous malaria. Even so, note the geographic situation of our country, the rising temperatures, the presence of a competent vector and the presence of imported parasit, significantly increase the likelihood of disease’s transmission.

DENGUE FEVER

This is a viral disease (caused by viruses of the genus Flavivirus) that is transmitted by the bite of mosquitoes of the Aedes genus (including the Tiger mosquito). Dengue fever is a widespread disease in tropical countries, although its suffering geographical changes due to changes in temperature, precipitation and a demographic overcrowding of the cities.

dengue
Structure of dengue fever virus (Photo: César Cabezas)

Before 1970, only nine countries had experienced serious dengue epidemic episodes. In recent decades, the cases have increased sharply. According to WHO estimates, each yerar are produced about 390 million infections,  23%  of which are clinically manifested.

12889_2014_6968_Fig3_HTML
forecast of the spread of dengue fever in Europe during the twenty-first century. Expressed in nº of cases /100.000 habitants. (Photo: Moha Bouzid)

As in the case of malaria, current climatic variations alter the geographical distribution of the vector. As we can see in the previous map, the predictions for this century, if conditions do not change, are a significant dengue fever cases increase in Northern Europe (lighter areas are potential sites of infection). As we see in the case of Spain, the Mediterranean would be the region that would have more cases of dengue fever.

WATERBORNE DISEASES

Climate change also affects the water cycle. The news about weather disasters (floods, strong drought, torrential rains, hurricanes…) never cease to appear in the media. These climatic variations affect those diseases that are spread by water, either by contamination of the flows, by human migration and low hygiene that exist in certain places of overcrowded cities.

The most known diseases associated with floods and droughts are infections of Cryptosporidium or cholera. Let’s look at this last example.

CHOLERA

Vibrio cholerae is a bacilar bacteria that causes this disease. It is a diarrheal infection that suffer every year between 1.4 and 4.3 million people, 142,000 which end up dying. The transmission of this Bacillus is closely linked to environmental mismanagement. Heavy rains or flooding can cause water pollution, and extreme drought increases the bacterial charge of the existing flows.

vibrio colerae
Microphoto of Vibrio cholerae (Photo: Louisa Howard).

During the 19th century, cholera spread across the world from Ganges (India). The last cholera epidemic began, as we can see in the map, in the South of Asia in 1961. Now cholera has been distributed worldwide due above all to human migrations (bacillus carriers), the agglomeration of people in suburban areas without hygiene habits and climate disasters. The WHO estimates that by 2030 there will be 10% more cases due to climate change.

0291-choleraspread-EN
evolution of last epidemic of cholera (1961-2004). (Photo: IPCC)

It may not be possible to quantify in that measure climate change can affect the transmission of these diseases, since these depend on many other factors (demographic dynamics, immunization, etc.). Is worth mentioning, that the provisions set out in this article are assumptions obtained from current data. That means, that if the mechanisms for the reduction of global climate change works and environmental conditions improve, these data would no longer have any statistical value

·

Remember that it is better to be safe than sorry!

Cares for the environment: the Earth is your home. 

REFERENCES

Maribel-anglès

¿Son las epidemias otro efecto del cambio climático?

Sabemos que muchas enfermedades infecciosas dependen de factores climáticos como la temperatura, ¿Podría, entonces, el cambio climático provocar un aumento de los brotes epidémicos? ¡Sigue leyendo para descubrirlo!

LA SALUD Y EL CAMBIO CLIMÁTICO

Según algunas encuestas realizadas por el Pew Research center, un 54% de los encuestados consideran que el cambio climático es un problema grave y entre sus mayores preocupaciones se encuentran la sequía, las lluvias intensas y el calor (Si te interesa conocer más datos sobre esta encuesta, puedes encontrarlos en el siguiente artículo o en esta  infografía con datos de España).

Estos cambios tienen un efecto negativo en la salud humana, tanto que la Organización Mundial de la Salud (OMS) prevé que entre el 2030 y 2050 el cambio climático causará unas 250.000 defunciones adicionales al año. Los efectos pueden ser muy variados: muertes por olas de calor, inundaciones, incremento de enfermedades respiratorias, estrés, etc. Uno de los efectos importantes para la salud es el aumento en la transmisión de enfermedades infecciosas.

climate_change_health_impacts600w
Infografía sobre los impactos del cambio climático en la salud. (Foto: CDC)

Las enfermedades infecciosas están muy relacionadas con las características del ambiente (como por ejemplo la temperatura y la humedad). En ciertos casos, estas enfermedades son transmitidas por vectores (artrópodos, garrapatas, caracoles, roedores, murciélagos…) que con un aumento de la temperatura verán modificada su distribución geográfica, estacionalidad y tamaño poblacional. Un ejemplo muy claro es la presencia del mosquito Aedes albopictus, más conocido como mosquito tigre,  en España.

Por otro lado, los cambios del uso del suelo, masificación de ciudades, mala higiene y otros factores socioeconómicos también tienen un gran efecto en la transmisión de ciertas enfermedades. Por ejemplo, la deforestación y la escasa higiene de la población aumenta los lugares de cría de los mosquitos, produciendo así un aumento en la probabilidad de transmisión de la malaria.

tabla_cambioshumanos_
Impactos de la actividad humana que afectan a la transmisión de enfermedades. (Imagen: OMS)

ENFERMEDADES VECTORIALES

Como habíamos mencionado, las enfermedades vectoriales son aquellas que se transmiten a través de un vector animal (ya sea un mosquito, un roedor, garrapata, caracol, murciélago…). Estas enfermedades pueden ser zoonóticas (de un animal a los humanos, como el caso de la rabia) o antroponóticas (entre humanos, como el caso de la malaria o el dengue), pero siempre interviene en su transmisión un vector. Si te apetece conocer como afecta el cambio climático a los insectos vectores, no te puedes perder este articulo de Irene Lobato.

Sin título
Diferentes tipos de enfermedades vectoriales (Foto: OMS)

Hay muchas enfermedades vectoriales que conviene vigilar en los próximos años, como por ejemplo la malaria, el chikungunya, la fiebre botonosa, etc. Analizaremos las dos enfermedades infecciosas más conocidas.

MALARIA

Esta enfermedad está causada por parásitos del género Plasmodium que se transmiten por la picadura de mosquitos del género Anopheles. Hay cuatro tipos diferentes de malaria o paludismo humano, pero el más mortífero es el causado por la especie Plasmodium falciparum.

p_falci_cdc
Plasmodium falciparum (fase gametocito). (Foto: CDC)

La OMS calcula que en el año 2013 se contagiaron 198 millones de personas, 584.000 de las cuales murieron. Se prevé que estas cifras aumenten debido al cambio climático. El aumento de temperatura propicia un aumento en el periodo infectivo del mosquito y la modificación de la distribución geográfica de los vectores. Posiblemente en los próximos años, si la tendencia no cambia, habrá un aumento en la propagación de la enfermedad en zonas endémicas actuales y posiblemente reemergerá en otras zonas (zonas rojas en el mapa).

global_warming_climate_change__malaria
Estimación de la expansión de la malaria en 2050 (Foto: Randolph Rogers)

En España, se erradicó en 1964 el paludismo autóctono. Los casos de malaria que se dan actualmente son casos importados desde países con paludismo autóctono. Aún así, cabe destacar que la situación geográfica de nuestro país, el aumento de las temperaturas, la posible  presencia de un vector competente y la presencia de parásito importado, aumentan significativamente la probabilidad de transmisión de la enfermedad.

DENGUE

Esta es una enfermedad vírica (provocada por infección de virus del género Flavivirus) que se transmite por la picadura de mosquitos del género Aedes (entre los que se encuentra el mosquito tigre). El dengue es una enfermedad muy extendida en países del trópico, aunque esta sufriendo grandes modificaciones geográficas debido a cambios en la temperatura, precipitaciones y una masificación demográfica de las ciudades.

dengue
Esquema de la estructura del virus Dengue (Foto: César Cabezas)

Antes de 1970, sólo nueve países habían sufrido episodios epidémicos de dengue grave. En las últimas décadas, los casos  han aumentado enormemente. Según las estimaciones de la OMS, se producen unos 390 millones de infecciones cada año de los cuales un 23 % se manifiestan clínicamente .

12889_2014_6968_Fig3_HTML
Previsión de la expansión del Dengue en Europa durante el siglo XXI, expresado en nº de casos/100.000 habitantes. (Foto: Moha Bouzid)

Como en el caso del paludismo, las variaciones climáticas actuales modifican la distribución geográfica del vector. Como podemos observar en el mapa anterior, las predicciones para este siglo, si las condiciones no cambian, son de un aumento significativo de casos de dengue en el norte de Europa (zonas más claras son posibles lugares de infección). Como vemos en el caso de España, la zona mediterránea seria la región que más casos de dengue presentaría.

ENFERMEDADES TRANSMITIDAS POR EL AGUA

El cambio climático también afecta al ciclo del agua. Las noticias sobre catástrofes climáticas (inundaciones, fuertes sequías, lluvias torrenciales, huracanes…) no dejan de aparecer en los medios de comunicación. Estas variaciones climáticas afectan a aquellas enfermedades que se transmiten por el agua, ya sea por contaminación de los caudales, por las migraciones humanas hacia zonas más seguras y por la poca higiene que hay en ciertos lugares de ciudades masificadas.

Las enfermedades más conocidas asociadas a las inundaciones y sequías son las infecciones de Cryptosporidium o de Cólera. Analizaremos este último ejemplo.

CÓLERA

Vibrio cholerae es el bacilo causante de esta enfermedad. Es una infección diarreica que padecen cada año entre 1,4 y 4,3 millones de personas, 142.000 de las cuales acaban muriendo. La transmisión de este bacilo está estrechamente ligada a una mala gestión ambiental. Las fuertes lluvias o inundaciones pueden provocar la contaminación de aguas y  la sequía extrema aumenta la carga bacteriana de los caudales existentes.

vibrio colerae
Microfotografía de Vibrio cholerae con microscopía electrónica (Foto: Louisa Howard).

Durante el siglo XIX, el cólera se propagó por el mundo desde Ganges (India). La última epidemia de cólera empezó, como podemos ver en el mapa, en el Sur de Asia en 1961. Actualmente el cólera se ha distribuido por todo el mundo debido sobretodo a las migraciones humanas (portadores del bacilo), la aglomeración de gente en zonas suburbanas sin higiene y a los desastres climáticos acontecidos. La OMS estima que en 2030 habrá un 10% más de casos debido al cambio climático.

0291-choleraspread-EN
Evolución de la última epidemia de cólera (1961-2004). (Foto: IPCC)

Tal vez no sea del todo posible cuantificar en qué medida el cambio climático puede afectar a la transmisión de estas enfermedades puesto que éstas dependen de muchos otros factores (dinámica demográfica, inmunización, etc). Cabe destacar, pues, que las previsiones expuestas en  este artículo son conjeturas obtenidas a partir de datos actuales. Eso quiere decir, que si los mecanismos para la reducción del cambio climático global funcionan y las condiciones ambientales mejoran, estos datos ya no tendrían ningún valor estadístico.

·

¡Recordad que la mejor cura es la prevención! Cuida el medio ambiente: la Tierra es tu hogar. 

REFERENCIAS

Maribel-castellà

Són les epidèmies un altre efecte del canvi climàtic?

Moltes malalties infeccioses estan lligades a les condicions climàtiques, com per exemple la temperatura o la humitat. Doncs, podria el canvi climàtic afectar a aquestes malalties i produir un augment dels episodis epidèmics? En aquest article parlarem sobre les previsions en aquest camp. No t’ho perdis! 

EL CANVI CLIMÀTIC I LA SALUT

Al Desembre del 2015, el Pew ResearchCenter va realitzar una enquesta on el 54% de les persones consideraven el canvi climàtic com un problema molt greu. L’enquesta va revelar que les majors preocupacions de la població són les sequeres, les pluges intenses i l’augment de les temperatures. Si t’interessa conèixer una mica més els resultats de l’enquesta, no dubtis en consultar el nostre article.

Els efectes del canvi climàtic també alteren la salut humana. L’Organització Mundial de Salut (OMS) preveu que entre el 2030 i el 2050 hi haurà unes 250.000 morts addicionals a causa dels efectes negatius del canvi climàtic, com ara: morts per cops de calor, inundacions, increment de malalties respiratòries o cardiovasculars, estrés, etc. Un dels aspectes més importants és l’augment de la transmissió de malalties infeccioses.

climate_change_health_impacts600w
Infografía sobre els impactes del canvi climàtic a la salut humana. (Foto: CDC)

Les malalties infeccioses estan lligades a les condicions de l’ambient, com per exemple la temperatura, disponibilitat d’aigua o la humitat. En certs casos, aquestes malalties són transmeses per vectors (artròpodes, paparres, caragols, rosegadors o ratpenats). Amb un augment de les temperatures, la distribució geogràfica, l’estacionalitat i la densitat poblacional d’aquests vectors canvia i per tant, canvia també la distribució de les malalties. Un exemple és la presència al nostre país del mosquit tropical Aedes albopictus, més conegut com mosquit tigre.

Per altra banda, hi ha factors socioeconòmics (canvis en els usos del sòl, massificació de ciutats, males condicions higièniques…) que també tenen un gran efecte en la transmissió de malalties infeccioses. Per exemple, la desforestació i les males condicions higièniques creen llocs idíl·lics per la reproducció i cria dels mosquits, augmentant així el risc d’infectar a les persones de malària.

tabla_cambioshumanos_
Diversos impactes de l’activitat humana a la transmissió de malalties infeccioses (Imatge: OMS)

MALALTIES DE TRANSMISSIÓ VECTORIAL

Hi ha malalties infeccioses que necessiten l’activitat d’un vector animal per poder-se transmetre. Els principals vectors són els mosquits, mosques, rosegadors, paparres o ratpenats. Aquestes malalties de transmissió vectorial poden ser de dos tipus: zoonòtiques ( dels animals als homes, com per exemple la ràbia) o antroponòtiques (entre éssers humans, com la malària o el dengue). Per sabre ampliar informació sobre com afecta el canvi climàtic als insectes vectors, no dubteu en llegir l’article “Insectes vectors: quina és la causa de la seva expansió?”.

Sin título
Esquema sobre els diferents tipus de malalties de transmissió indirecta (Foto: OMS)

Hi ha moltes malalties de transmissió vectorial que convé tenir en compte els pròxims anys si les condicions climàtiques no milloren, com ara la malària, el dengue, la febre del Botonosa, etc. Analitzarem,  avui, les dues primeres.

MALÀRIA

Els paràsits causants d’aquesta malaltia pertanyen al gènere Plasmodium i es transmeten per la picada dels mosquits del gènere Anopheles. Hi ha quatre tipus diferents de paludisme humà, però el més perillós és el causat per l’espècie Plasmodium falciparum.

p_falci_cdc
Fase de gametocit de Plasmodium falciparum. (Foto: CDC)

L’ OMS calcula que al any 2013 es van contagiar 198 milions de persones, 584.000 de les quals van morir. Es preveu que aquestes dades augmentin significativament degut al canvi climàtic. L’augment de la temperatura afavoreix un augment del període infectiu dels mosquits i la seva distribució geogràfica. Possiblement, a les pròximes dècades hi haurà un augment de casos de malària en llocs on la malaltia és endèmica i és reintroduirà a altres zones (zones vermelles al mapa, previsió pel 2050).

global_warming_climate_change__malaria
Previsió de l’expansió de la malària cap a l’any 2050 (Foto: Randolph Rogers)

A Espanya, el paludisme autòcton es va eradicar l’any 1964. Els casos de malària que es donen actualment són casos importats. Tot i això, cal recordar que la situació geogràfica d’Espanya, l’augment de les temperatures, la possible presència d’un vector competent  i la presència del paràsit importat, augmenten de manera exponencial la probabilitat de transmissió de la malaltia.

DENGUE

El Dengue virus pertany al gènere Flavivirus. Es transmet per la picada de mosquits del gènere Aedes (entre els quals trobem el mosquit tigre). El dengue és una malaltia molt estesa als països tropicals, tot i que actualment està modificant la seva distribució geogràfica a causa de l’augment de la temperatura global, les precipitacions i una massificació demogràfica de les zones suburbanes de grans ciutats.

dengue
Dibuix de l’estructura del virus causant del Dengue (Foto: César Cabezas)

Abans de 1970, només nou països havien experimentat episodis epidèmics de dengue en la seva variant més greu. En els darrers 40 anys, els casos de dengue han augmentat significativament. Segons estimacions de l’OMS, es produeixen uns 390 milions d’infeccions cada any, un 23% dels quals es manifesta clínicament.

12889_2014_6968_Fig3_HTML
Previsions de l’expansió del dengue a Europa al llarg del segle XXI. Expressat en nombre de casos per cada 100.000 habitants. (Foto: Moha Bouzid)

Com en el cas de la malària, les variacions climàtiques actuals modifiquen la distribució geogràfica del vector. Com podem observar, al mapa anterior, les prediccions per aquest segle, si les condicions no canvien, són d’un augment significatiu de casos de dengue a les zones Nord d’Europa (zones més clares o vermelles són zones amb més casos de dengue), possiblement degut al vector competent A. albopictus. La conca mediterrània i les zones sud d’Espanya són les zones que es veurien més afectades. 

MALALTIES TRANSMESES PER L’AIGUA

No és una novetat que el canvi climàtic afecta també al cicle de l’aigua. Les notícies sobre catàstrofes climàtiques (inundacions, fortes sequeres, pluges torrencials, huracans…) no deixen de sortir a les portades dels mitjans de comunicació. Aquestes variacions extremes afecten aquelles malalties que es transmeten per l’aigua, ja sigui per la contaminació de cabals, migracions humanes cap a zones més segures, poca higiene o per l’augment de càrrega infecciosa a llocs amb fortes sequeres.

Les malalties més conegudes associades a inundacions o sequeres són les infeccions per Crypstosporidium o el Còlera. En aquest article analitzarem aquest darrer exemple.

CÒLERA

El bacil Vibrio cholerae és el causant d’aquesta malaltia diarreica. És una infecció que pateixen cada any entre 1.4 i 4.3 milions de persones, 142.000 de les quals es converteixen en casos greus i moren. La transmissió del bacteri  està fortament lligada a una mala gestió ambiental y poca higiene. Les fortes pluges o inundacions poden provocar la contaminació de les aigües i les sequeres augmenten la càrrega bacteriana als cabals ja contaminats.

vibrio colerae
Microfotografía de microscopia electrònica de Vibrio cholerae (Foto: Louisa Howard).

Al llarg del segle XIX, aquesta malaltia es va propagar des de Ganges (Índia). La darrera pandèmia (epidèmia mundial) de còlera va començar als anys 60 al Sud d’Àsia. Actualment, està distribuït per tot el món a causa, sobretot, de les migracions humanes (portadores del bacil), l’aglomeració de gent a zones suburbanes amb males condicions higièniques i als desastres climàtics que han tingut lloc. L’OMS preveu que l’any 2030 hi haurà un 10% més de casos a causa del canvi climàtic. 

0291-choleraspread-EN
Evolució de la darrera epidèmia de còlera (1961-2004). (Foto: IPCC)

Tal vegada no sigui possible quantificar en quin grau el canvi climàtic afecta la transmissió de les malalties infeccioses, ja que aquestes també depenen de molts altres factors, com ara les migracions humanes, la immunització de la població, etc. Cal destacar, que les previsions exposades en aquest article són conjectures, és a dir, que si les condicions climàtiques milloren, les dades ja no serien vàlides estadísticament.

·

Recordeu que la millor cura és la prevenció. Així doncs, cuideu del medi ambient. La terra és la nostra llar. 

REFERÈNCIES

  • Organització Mundial de la Salut (OMS)
  • Centre de Control de Malalties (CDC)
  • Observatòri de Salut i Canvi climàtic (Ministeri de Sanitat)
    • Impactes del canvi climàtic sobre la salut (PDF, castellà)
  • Imatge de Portada: Lucía Nodal, Solo kilovatios verdes.

Maribel-català

Guerra Biològica: les armes silencioses

La sospita d’un possible atac biològic ha augmentat en els darrers anys el nivell de pànic i terror a les grans nacions. Però, què són realment les armes biològiques? Quins organismes s’utilitzen en la seva fabricació? Existeix la possibilitat de patir un atac bioterrorista? En aquest nou article donem resposta a aquestes i més preguntes. 

INTRODUCCIÓ

Es defineix Guerra biològica com la utilització de microorganismes i substàncies derivades de les seves activitats metabòliques amb finalitat  bèl·lica. Si aquests organismes són utilitzats de forma clandestina i criminal contra la població, estem parlant de Bioterrorisme. Les armes biològiques són considerades armes de destrucció massiva. Són armes difícils de controlar i silencioses, ja que el temps per poder detectar un atac biològic és llarg a causa de l’existència de períodes d’incubació dels organismes.

Al llarg de la historia, s’han observat diferents casos on s’han emprat aquest tipus d’armes. Per exemple, els Mongols llançaven els cadàvers afectats per la pesta contra els murs de les ciutats enemigues; a la Guerra de Paraguai l’any 1867, els soldats abocaven cadàvers contaminats amb còlera als pous per contagiar per l’aigua el seu enemic. En el segle XX amb l’auge de l’estudi de la Bacteriologia, molts països van començar a investigar i produir armes biològiques. Es crearen grans instal·lacions com el Fort Detrick als Estats Units i el laboratori Biopreparat a Rússia. L’any 1972 va tenir lloc la Convenció per la prohibició del desenvolupament, producció i distribució d’armes biològiques on es va signar un acord de prohibir la producció d’armes d’aquest tipus. Tot i això, són molts els casos d’atacs amb armes biològiques, com per exemple l’atac bioterrorista que sofriren alguns civils als Estats Units amb àntrax. El resultat va ser de cinc víctimes mortals i un augment significatiu del pànic front aquest tipus d’atacs.

Hi ha molts tipus d’armes biològiques que es classifiquen en funció del seu objectiu (humans, animals o plantes) o el seu agent biològic (bacteris, virus, toxines). En aquest article analitzarem l’armament utilitzat  contra els humans segons el seu component biològic. A la següent taula apareixen alguns exemples d’organismes utilitzats, tot i que l’ ONU amplia la llista fins a 31 possibles candidats. Cal destacar, que si tenim en compte els organismes modificats genèticament, la llista augmenta de forma exponencial.

tabla_organismos
Exemples d’organismes i toxines utilitzats com armes biològiques. Autor Duraipandian Thavaselvam

ARMES BACTERIOLÒGIQUES

Aquest tipus d’armes estan compostes per bacteris o les seves formes de resistència (espores). La majoria dels organismes es troben fàcilment a la natura i alguns d’ells, són modificats genèticament per millorar les seves característiques: major capacitat d’infecció, resistencia a les condicions del medi, etc.

L’organisme més conegut com a arma biològica és Bacillus anthracis. Se’l coneix popularment com àntrax. Aquest bacteri bacil·lar forma espores resistents que poden mantenir-se infeccioses al medi durant anys. Pot infectar per tres vies diferents: lesions de la pell, mitjançant la ingestió de les espores o respirant-les. El darrer cas és el més perillós i el més utilitzat en atacs bioterroristes. Tot i això, cal destacar que aquest bacteri no és capaç de transmetre’s de persona a persona. Per tant, es tractaria d’una arma biològica amb un objectiu concret.

anthrax
Microfotografia de Bacillus anthracis. El cercle vermell indica les endospores. (Foto pública del CDC)

La característica més valorada d’una arma biològica és que es pogués disseminar per l’aire i contagiar-se persona a persona. Aquestes característiques les compleix el bacteri Yersinia pestis, una altra forta candidata a arma perillosa. És la responsable de la coneguda com a Pesta negra, que al segle XIV va matar a gairebé 50 milions de persones. Existeixen tres tipus de pesta: bubònica (la més comuna i transmesa per la picada d’una puça), la septicèmica i la pneumònica (la més virulenta i la més interessant, ja que es transmet per l’aire). Actualment Yersinia pestis està controlada amb antibiòtics, però s’han creat al laboratori variants resistents a aquests fàrmacs. Això suposaria que la medicina actual no serviria per a neutralitzar-la.

yersinia_cdc
Microfotografia elèctronica d’escàner (SEM) de Yersinia pestis. (Foto pública de la CDC)

Bacteris del gènere Brucella (causants de la brucel·losis humana), Fracinella tularensis (causant de tularèmia), Vibrio cholerae (que produeix la malaltia de còlera) i altres microorganismes patògens naturals dels humans són considerats possibles armes biològiques. Aquests darrers, es troben classificats en categories menys perilloses per factors com la immunització prèvia de la població. Cal insistir, però, que molts experts afirmen que qualsevol bacteri modificat genèticament podria suposar una arma biològica molt perillosa.

ARMES VÍRIQUES

Els virus són partícules infeccioses que només es poden multiplicar a l’interior d’altres cèl·lules. Tenen diferents mecanismes específics per entrar i infectar aquestes cèl·lules diana i replicar-se al seu interior. Aquestes característiques fan que siguin considerades armes biològiques perfectes. Molts d’ells són patògens naturals dels humans. Necessiten petites dosis infectives per produir la malaltia i es poden contagiar de diferents formes de persona a persona.

El virus més conegut utilitzat com a possible arma biològica és el de la Verola. Els humans són els únics portadors naturals d’aquest virus. És molt contagiós i té una gran virulència (capacitat d’infecció). Actualment es considera eradicat, però es van conservar dues mostres a laboratoris dels Estats Units i Rússia. Teòricament s’havien d’eliminar a finals del 1993, però ningú va assegurar que això hagués succeït. Com a arma biològica, el virus de la verola seria molt perillós, ja que la majoria de la població no està immunitzada i la seva dispersió podria generar una nova pandèmia.

smallpox-virus-cdc
Microfotografia amb microscopi electrònic del virus de la Verola. (Foto pública de la CDC).

Un altre virus que els darrers anys ha adquirit molta importància és el virus de l’Ebola. Aquest produeix febres hemorràgiques amb una alta taxa de mortalitat. El seu diagnòstic és complicat i es coneix poc sobre el seu cicle biològic. Aquestes característiques fan que el virus sigui un candidat perfecte per a crear una arma biològica. Tot i així, cal destacar que parlem d’un virus fràgil que s’elimina al cap de poques hores d’estar al medi. Presenta una gran dificultat de dispersió (un cop s’ha detectat), ja que no es transmet per l’aire. No existeix cura, però es pot tractar en fases inicials mitjançant un sèrum amb anticossos. Altres virus productors de febres hemorràgiques com el Marburg o virus de la família Araviridae també són considerats possibles armes biològiques.

virusebola_cdc
Microfotografia amb microscopi electrònic del virus de l’Ebola (Foto pública de la CDC)

TOXINES

Hi ha una gran quantitat de toxines que podrien ser utilitzades com a arma biològica. Presenten altes taxes de mortalitat, són molt tòxiques i de fàcil producció. Un exemple molt conegut és el de la toxina botulínica produïda per Clostridium butolinum. Aquestes són les responsables del botulisme. Una altra toxina molt perillosa és la Ricina (que s’extreu de l’arbust Ricinus communis) que ja ha estat utilitzada com arma biològica, no te antídot i segons la CDC, és un dels verins més potents que es coneixen.

Mitjançant la modificació genètica s’ha aconseguit que bacteris incapaços de sintetitzar aquestes toxines, com Escherichia coli, les puguin produir. Així, doncs, cada vegada és més fàcil produir-les en grans quantitats.

·

No ens atabalem! Les nacions actuals tenen extensos programes de biodefensa i prevenció. La investigació i coneixement d’aquests organismes és la solució a un possible atac biològic. 

REFERÈNCIES

Maribel-català

Biological warfare: silent weapons

Today, the panic and terror that a biological attack is an important concern for the most powerful countries. What are biological weapons? What organisms are used for their production? Is there a possibility of a bioterrorist attack? This article is the answer to these and more questions.

INTRODUCTION

The military use of microorganisms and substances derived from its activity is known as biological warfare. They are generally used to create disease, panic, terror and death in the population. If this objective is carried out clandestinely, we are talking about bioterrorism. Biological weapons are considered weapons of mass destruction, difficult to control and silent weapons (the detection time is extended due to the periods of incubation). 

These military methods have been used since ancient times. The Mongols threw the corpses infected with the plague against the walls of the cities enemy; in the war of 1867 in Paraguay, the soldiers threw corpses with cholera to wells to infect their enemies and decrease its troops. In the 20th century, with the increase of knowledge in Bacteriology and Virology, many countries began to produce biological weapons, as for example the creation of Fort Detrick in USA facilities and  Biopreparat laboratory in Russia. In 1972 was held the Convention on the prohibition of the production and distribution of biological weapons, was the arrival at an agreement to not produce this type of weaponry. However, in 2001, several civilian Americans suffered a biological attack with anthrax. The result was 5 deaths and an increase in insecurity against a biological attack. 

There are many types of biological weapons according to its objective (humans, plants or animals) or the biological component present (bacteria, viruses, toxins). In this article will analyze different biological agents most likely to use. The following table shows some examples, although the list could increase if we consider genetically modified agents.

tabla_organismos
Examples of bioagents used in biowarfare. Autor Duraipandian Thavaselvam

 

BACTERIOLOGICAL WEAPONS

This type of weapons is composed of bacteria or its spores (forms of resistance). Most of these organisms are easily found in nature and some of them are genetically modified to acquire a greater capacity for infection, increased resistance to the conditions of the environment, etc.

The body that most feared is Bacillus anthracis, popularly known as anthrax. This form of Bacillus bacterium forms resistant spores that can remain infectious in the environment for years. It may infect via three routes: skin lesions, through ingestion of spores or by breathing them. The latter is the most dangerous case and most often used in biological warfare. Even so, this bacteria cannot be transmitted between people, which would be used in a certain range, like for example one person. 

anthrax
Photomicrograph of Bacillus anthracis. The red circle designates the endospores. Public photo of CDC

 

A good biological weapon would be one that could spread through the air and spread person to person. Yersinia pestis is a bacterium that meets this profile. It is responsible for the known as the black death that took the lives of more than 50 million people in the 14th century. There are three types of plague: bubonic (the most common and transmitted by the bite of a flea), septicemic and pneumonic (the most virulent and the most interesting in terms of its use as a biological weapon). Currently, Yersinia pestis is controlled by antibiotics but a laboratory created a resistant strain through genetic modification. This fact would imply that current medicine would not serve to neutralize it.

yersinia_cdc
Electron photomicrograph of scanning (SEM) of Yersinia pestis (Public Photo from CDC)

 

Bacteria of the genus Brucella (cause of human brucellosis), Francisella tularensis (cause of tularemia), vibrio chloreae (cause of cholera disease) and other microorganisms are considered possible bacteriological weapons. These last are classified at lower levels of endangerment due to factors such as previous immunization of the population. Note that some experts believe that there are many possible bacteria, that genetically modified, they could become dangerous biological weapons.

VIRAL WEAPONS

Viruses are infectious particles that can only multiply inside of other cells. So they have different specific mechanisms to enter and infect a cell and replicate inside it. These features make them the perfect biological weapon. Many of them are natural pathogens of man. They need small infective doses to produce the disease and can transmit different forms of person to person.

Smallpox is the best-known virus used as a possible biological weapon. Humans are the only natural carriers of this virus. This is very contagious and has a large virulence (capacity of infection). Currently, it is considered eradicated, but two samples were kept in laboratories in the United States and Russia. Theoretically, they should be removed at the end of 1993, but no one said that this had happened. The smallpox virus as a biological weapon would be very dangerous since currently population is not immunized and his could generate a new pandemic.

smallpox-virus-cdc
Microphotography with electron microscope of smallpox virus (public photo of the CDC)

 

Another very important virus in recent years is the Ebola virus. It produces hemorrhagic fevers with a high mortality rate. His diagnosis is difficult and its biological cycle is virtually unknown. These characteristics make this virus a perfect candidate as a biological weapon. Even so, note that it is a fragile virus that only survives a few hours in the middle. It has great difficulty of dispersion is not transmitted by air. There is no cure, but it can be treated in early stages by a serum with antibodies against the virus. Other virus hemorrhagic fevers as the Marburg viruses of the family Araviridae and others are also good candidates for biological agents for war. 

virusebola_cdc
Microphotography with electron microscope of ebola virus (public photo of the CDC)

 

TOXINS 

There are a large number of bacterial toxins that could be used as a biological weapon. They have high mortality rates, are very toxic and are easily produced, as it would be the case of the toxin of Clostridium  botulinum. These toxins produce botulism. Another interesting toxin is ricin (extracted from the shrub Ricinus communis) which has already been used as a biological weapon, has no antidote, and according to the CDC is one of the most powerful poisons that are known.

Using genetic modification has been achieved that bacteria such as Escherichia coli (that do not produce these toxins) can generate them. By inserting special genes in non-pathogenic bacteria, is becoming easier to produce large amounts of toxins.

·

DO NOT PANIC! Current Nations have extensive prevention and Biodefense programs. The research and knowledge of these microorganisms are the solutions to a possible biological attack.

REFERENCES

Maribel-anglès

Guerra biológica: las armas silenciosas

En los últimos años, las afirmaciones de una posible utilización de armas biológicas han creado terror y pánico entre las mayores naciones. ¿Qué són las armas biológicas? ¿Que organismos se utilizan para crearlas? ¿Existe la posibilidad de un ataque bioterrosista? En este artículo damos respuesta a esta y más preguntas. 

INTRODUCCIÓN 

La guerra biológica es la utilización de microorganismos y substancias derivadas de estos con fines bélicos, es decir, la utilización de organismos vivos para crear pánico, terror y muerte en una situación de guerra. Si estos organismos son utilizados de forma criminal y  clandestina contra la población se considera un acto bioterrorista. Las armas biológicas son consideradas armas de destrucción masiva. Son armas difíciles de controlar y silenciosas, ya que el tiempo para detectar un ataque biológico puede ser muy largo debido a los períodos de incubación de las enfermedades.

A lo largo de la historia, las armas biológicas se han utilizado en tiempos de guerra. Los mongoles lanzaban los cadáveres infectados por la peste contra los muros de las ciudades sitiadas de sus enemigos; en la guerra de Paraguay en 1867, los soldados tiraban cadáveres afectados por cólera a los pozos de agua para contagiar a sus enemigos y diezmar sus tropas. En el siglo XX, con el crecimiento en el estudio de la bacteriología, muchos países empezaron a investigar para la creación de armas biológicas, ejemplo de ello son las famosas instalaciones de Fort Detrick en Estados Unidos y Biopreparat en Rusia. En 1972 en la Convención para la prohibición del desarrollo, producción y distribución de armas bacteriológicas i de toxinas, se llegó a un acuerdo de no producir armas biológicas para uso bélico. Aún así, en el año 2001, varios civiles de Estados Unidos sufrieron un ataque bioterrorista con anthrax. El resultado fue de cinco víctimas mortales y un aumento del pánico hacia este tipo de actos y armas.

Existen muchos tipos de armas biológicas en función de su objetivo (personas, animales o plantas) y del componente biológico que las compone (bacteria, virus, toxinas). En este artículo  analizaremos las armas contra los humanos según su componente biológico. En la siguiente tabla aparecen algunos ejemplos de organismos y toxinas sospechosos para la producción de estas armas, aunque la ONU reconoce hasta 31 posibles organismos. Cabe destacar que la lista podría aumentar si se incluyen organismos modificados genéticamente.

tabla_organismos
Ejemplos de agentes biológicos utilizados para la producción de armas biológicas. Autor: Duraipandian Thavaselvam.

ARMAS BACTERIOLÓGICAS

Este tipo de armas estan compuestas por bacterias o sus esporas (forma de resistencia). La mayoría de estos organismos se encuentran fácilmente en la naturaleza y algunos de ellos son modificados para que sus características sean mejores: mayor capacidad de infección, mayor resistencia a las condiciones del medio, etc.

El organismo que más temor ha suscitado ha sido Bacillus anthracis, conocido popularmente como anthrax o carbunco. Esta bacteria bacilar forma esporas resistentes que pueden mantenerse infecciosas en el ambiente durante años. Puede infectar a través de tres vías: heridas en la piel, mediante la ingestión de las esporas o por la respiración de las mismas. Este último es el caso más peligroso y el más utilizado en guerra biológica. Aún así, esta bacteria no puede transmitirse entre personas, por lo cual se utilizaría en caso de tener un objetivo determinado.

anthrax
Microfotografía de Bacillus anthracis, el círculo señala las endoesporas. (Foto pública de la CDC)

Una buena arma biológica seria aquella que se pudiera diseminar por el aire y contagiarse persona a persona. Estas características las cumple la bacteria Yersinia pestis. Es la responsable de la conocida como Peste negra que se cobró en el siglo XIV más de 50 millones de víctimas mortales. Existen tres tipos de peste: bubónica (la más común y transmitida por la picadura de una pulga), la septicémica y la pneumónica (la más virulenta y la más interesante en cuanto a su utilización como arma biológica). Actualmente Yersinia pestis está controlada mediante antibióticos, pero en el laboratorio se creó una cepa resistente mediante modificación genética. Este hecho implicaría que la medicina actual no serviría para neutralizarla.

yersinia_cdc
Microfotografía electrónica de barrido (SEM) de Yersinia pestis (Foto pública de la CDC)

Bacterias del género Brucella (Causantes de la brucelosis humana),  Francisella tularensis (causante de tularemia), vibrio chloreae (causante de la enfermedad de cólera) y otros microorganismos son considerados posibles armas bacteriológicas. Estos últimos estan clasificados en categorías de peligrosidad inferiores debido a factores como la inmunización previa de la población. Cabe destacar que algunos expertos afirman que hay muchas posibles bacterias, que modificadas genéticamente, podrían convertirse en grandes armas biológicas.

ARMAS VÍRICAS

Los virus son partículas infecciosas que solo pueden multiplicarse en el interior de otras células. Así pues tienen diversos mecanismos específicos para entrar e infectar una célula y replicarse en su interior. Estas características les hacen el arma biológica perfecta. Muchos de ellos son patógenos naturales del hombre. Necesitan pequeñas dosis infectivas para producir la enfermedad y se pueden contagiar de diferentes formas de persona a persona.

El virus más conocido utilizado como posible arma biológica es el de la Viruela. Los humanos son los únicos portadores naturales de este virus. Este es muy contagioso y tiene una gran virulencia (capacidad de infección). Actualmente se considera erradicado, pero se conservaron dos muestras en laboratorios de Estados Unidos y Rusia. Teóricamente debían eliminarse a finales del 1993, pero nadie aseguró que esto hubiera sucedido. Como arma biológica, el virus de la viruela sería muy peligrosa, ya que actualmente gran parte la población no esta inmunizada y su propagación  podría generar una nueva pandemia.

smallpox-virus-cdc
Microfotografía con microscopio electrónico del virus de la viruela (Foto pública de la CDC)

Otro virus muy importante en los últimos años es el virus del Ébola. Este produce fiebres hemorrágicas con una alta tasa de mortalidad. Su diagnóstico es difícil y se conoce poco sobre su ciclo. Estas características hacen que este virus sea un candidato perfecto como arma biológica. Aún así, cabe destacar que se trata de un virus frágil que se destruye a las pocas horas de encontrarse en el medio. Presenta una gran dificultad de dispersión ya que no se transmite por el aire. No existe cura, pero se puede tratar en fases iniciales mediante un suero con anticuerpos contra el virus. Otros virus productores de fiebres hemorrágicas como el Marbugo, virus de la familia Araviridae y otros, también son considerados posibles armas biológicas.

virusebola_cdc
Microfotografía con microscopio electrónico del virus del ébola (Foto pública de la CDC)

 

TOXINAS

Hay una gran cantidad de toxinas que podrian ser utilizadas como arma biológica. Presentan altas tasas de mortalidad, son muy tóxicas y son de fácil producción, como seria el caso de la toxina butolínia de Clostridium butolinum. Estas toxinas producen el botulismo. Otra toxina interesante es la ricina ( extraída del arbusto Ricinus communis) que ya ha sido utilizada como arma biológica, no tiene antídoto y según la CDC es uno de los venenos más potentes que se conocen.

Mediante la modificación genética se ha conseguido que bacterias no capaces de sintetizar estas toxinas, como Escherichia coli, puedan producirlas. Así pues, cada vez es más fácil producir grandes catidades de toxinas.

·

¡OJO, que no cunda el pánico! Las naciones actuales tienen extensos programas de biodefensa y prevención. La investigación y conocimiento de estos microorganismos es la solución a un posible ataque biológico. 

REFERENCIAS

Maribel-castellà